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Abstract: Face recognition operating in visible domains exists in many aspects of our lives, while the
remaining parts of the spectrum including near and thermal infrared are not sufficiently explored.
Thermal–visible face recognition is a promising biometric modality that combines affordable technol-
ogy and high imaging qualities in the visible domain with low-light capabilities of thermal infrared.
In this work, we present the results of our study in the field of thermal–visible face verification using
four different algorithm architectures tested using several publicly available databases. The study
covers Siamese, Triplet, and Verification Through Identification methods in various configurations.
As a result, we propose a triple triplet face verification method that combines three CNNs being used
in each of the triplet branches. The triple triplet method outperforms other reference methods and
achieves TAR @FAR 1% values up to 90.61%.

Keywords: thermal to visible face recognition; cross-spectral face recognition; biometrics; CNN

1. Introduction

Face recognition has become a popular technology exploited in many aspects of our
life nowadays. A significant part of the research related to face recognition explores the
visible spectrum of light, while other parts of the spectrum, including near and thermal
infrared, are yet to be thoroughly investigated. The main cause of this fact may lay in
the cost and accessibility of the equipment required to capture thermal face images of
proper quality.

Visible light imaging performs very well as long as the observed scene is properly
illuminated, but this technology is not effective in low-light conditions. On the other hand,
complementary thermal infrared imagery permits subjects to be observed even in pitch
darkness. Combined thermal–visible face recognition may be a pivotal method to recognize
subjects captured in low light conditions; however, the modality gap between thermal
infrared and visible light domains needs to be filled in with the correct statistical algorithms
trained using applicable databases.

This paper reports on the study and implementation of thermal–visible face recognition
for identity verification of subjects on-the-move. We propose a triple triplet method to
compare face images in thermal and visible domains. This study is based on the outcome of
an international project under the name of “Detecting document fraud and identity on-the-
fly” (D4FLY), which received funding from the European Union’s Horizon 2020 research
and innovation programme. The goal of the endeavor is to provide travelers moving
around border crossing facilities with effective means of identity verification. The person
verification scheme comprises two stages executed in order at the enrollment kiosk and
in the biometric corridor. The enrollment kiosk, equipped with thermal and visible light
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cameras, is used to register new subjects in the system, while the verification is performed
in a few-meter-long corridor furnished with a visible light camera only.

This work’s primary contribution areas are as follows:

• Investigation of Siamese and Triplet architectures, together with VTI methods testing
state-of-the-art algorithms for thermal–visible face verification;

• Examining spectral dependence of anchor images;
• Proposition of triple triplet method for using a specific set of CNNs for improved

impostors and genuine subject distinction.

Section 2 describes other works in the field of thermal–visible face recognition, while
Section 3 introduces the research methodology. Datasets are described in Section 4, followed
by the overview of investigated methods in Section 5. We present results and summary in
Sections 6 and 7, respectively.

2. Related Works

In this section, we present works related to visible and cross-spectral face recogni-
tion between thermal infrared and visible face images, specifically for subject identity
verification.

Face recognition has gained superior popularity mainly in the visible spectrum due
to easily accessible sensors integrated with popular electronic devices, including but not
limited to smartphones and laptops. Current face recognition systems can outperform
human perception capabilities in the visible spectrum of light, and are deemed the foremost
tools available.

Taigman et al. [1] proposed the DeepFace method, which effectively generalized face
representation to other datasets. They proposed a new deep neural network architecture
and learning method, which achieved an accuracy of 97.35% when evaluated on the
LFW dataset.

Wen et. al. [2] proposed center loss as a new loss function to enhance the discriminative
power of the deeply learned features in neural networks. It allows for minimizing intraclass
distances of the deep features. They achieved an accuracy of 99.28% while evaluated on an
LFW dataset.

Parkhi et al. [3] introduced a very large-scale dataset VGG Face and investigated
various CNN architectures. They were inspired by VGG architectures. They showed that
the training process and a dataset are the key factors for the face recognition method.
They also showed that it is possible to achieve 98.95% accuracy with the appropriate
training process.

Liu et al. [4] proposed an angular Softmax loss for CNNs to learn discriminative face
features with an angular margin. Their work presents a deep hypersphere embedding
approach. Their proposed A-Softmax loss is very effective for learning face representation
and achieved an accuracy of 99.42%.

On the contrary, thermal–visible face recognition is not as popular and widely studied
as methods grounded in the visible domain, and results reported in this modality com-
bination are lower in performance. One of the initial works in this field is focused on
thermal–visible face identification [5]. Hu et al. proposed a method based on a specific
pre-processing stage, Histogram of Oriented Gradients and Partial Least Squares based
model. The proposed pre-processing stage consists of four components applied in the
following order: median filtering of dead pixels, geometric normalization, difference-of-
Gaussian (DOG) filtering, and contrast enhancement. Evaluation of the proposed method
is conducted using the University of Notre Dame (UND) Collection X1, a dataset collected
by the Wright State Research Institute (WSRI), and a dataset acquired by the U.S. Army
Night Vision and Electronic Sensors Directorate (NVESD). They performed experiments
at distances from 1 to 4 m, also analyzing the impact of the exercises on the results of
thermal-to-visible identification. The results they obtained for the Rank-1 Identification
metric: 0.7 (equivalent to 70%) for the distance of 1 m before exercise, and 0.64 after exercise
(equivalent to 64%).
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Chen et al. [6] presented face recognition between visible and thermal images based
on a cascaded subspace learning scheme. This scheme is composed of whitening transfor-
mation, factor analysis, and common discriminant analysis. They used a factor analysis
model to extract the identity factor as a subject across different spectra. In order to reduce
some of the cross-spectral appearance differences, they tested filtering algorithms, such
as Center-Surround Divisive Normalization (CSDN) and Self Quotient Image (SQI). After
the application of image filters, the Pyramid Scale Invariant Feature Transform (PSIFT)
and Histograms of Principal Oriented Gradients (HPOG) descriptors are utilized to extract
features from thermal and visible face images. The application of whitening transformation
is to ensure that the distribution of samples conforms to an isotropic Gaussian as required
by the Hidden Factor Analysis. The decision function is based on Partial Least Squares
(PLS) and Canonical Correlation Analysis (CCA). They used the PCSO dataset as a training
dataset and performed face matching between visible and thermal face images using the
CARL dataset. The final results, combining the two feature extraction methods by means
of fusion, gave a score of 75.61% for the Rank-1 Identification rate, 27.71% for the 0.1% FAR,
and 51.24% for the 1% FAR in the verification approach.

Sarfraz et al. [7] presented a study to find a bridge between the two modalities by
trying to model directly the highly non-linear mapping. The authors developed a model
based on a feedforward deep neural network in order to map the perceptual differences
between the two modalities while preserving the identity information. The study was
based on the University of Notre Dame UND-X1 dataset. They achieved an accuracy of
83.73% using all visible images in the gallery for the Rank-1 Identification rate, and 55.36%
when they were used in the gallery one visible face image per subject.

In [8], Kantarci et al. showed mapping between thermal and visible domains using a
deep autoencoder model. They used the UND-X1, CARL, and EUROCOM cross-spectral
datasets to evaluate the performance of the proposed system. Their study showed that
deep convolutional autoencoders can learn non-linear mapping between thermal and
visible images for the cross-domain face recognition task. As a decoder, they used two
different upsampling methods. The first one is bilinear upsampling, which is a standard
interpolation technique. This approach reduces the number of trainable parameters and
decreases training time on a GPU dice, but as information for the decoding part is lost, the
performance is degraded. The second method is a convolution with a 2 × 2 filter size as
proposed in the U-Net. The implemented loss function for this network is mean square loss,
so it makes its output as similar as possible to the ground truth thermal images. For the
CARL dataset, they achieved the best scores of 48% for the Rank-1 Identification rate when
one visible image per subject is in the gallery, and 85% when all images per subject are
available. The study was repeated using the UND-X1 dataset and achieved 87.2% accuracy
for all images in the gallery and 58.75% for the Rank-1 identification rate for one visible
image in the gallery. For the EUROCOM dataset, the results are the following: 88.33% and
57.91% for all images per subject and one image per subject in the gallery, respectively.

Fondje et al. [9] proposed a domain adaptation framework, which consists of feature
extraction using a truncated deep neural network for visible and thermal face images,
Residual Spectral Transform (RST) between thermal and visible features, cross-domain
identification loss, and domain invariance loss. Features are extracted using VGG16 and
ResNet-50 architectures. The RST is a residual block that allows as much discriminability
from the truncated networks as possible to be preserved while transforming features
between thermal and visible domains. Before conducting all stages from the proposed
framework, they applied the Difference of Gaussians filter to visible and thermal face
images. For testing, they used three separate datasets/protocols compiled by the CCDC
Army Research Laboratory. For frontal face images, they achieved a Rank-1 Identification
rate of 96% and 84% for ResNet-50 and VGG16, respectively.

Numerous works in this field have been performed using generative adversarial net-
works (GAN) to transform an image of one modality into an image in the second domain.
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Thermal–visible face recognition has also been addressed by employing GAN net-
works. In [10], Mallat et al. proposed image synthesis for cross-spectrum face recognition,
consisting of generating visible-like images from thermal captures that will be matched
against a gallery of visible faces. Cascaded refinement networks coupled with contextual
loss allow high-quality-colored visible images to be synthesized from thermal acquisitions.
They used their own EUROCOM dataset to test the proposed method. Accuracy of face
recognition achieved 20% for neutral expressions of face images using OpenFace. For
the LightCNN system, they achieved 82% accuracy for neutral face images. The major
drawback of the GAN-based methods is a long processing time, which does not allow them
to be used for on-the-move recognition.

Wang et al. [11] developed a model consisting of a generative network based on the
CycleGAN and detector network. The GAN network learns the bidirectional translation
between thermal and visible images based on an unsupervised manner using unpaired
training images. The detection network extracts 68-landmarks from visible faces, construct-
ing the shape loss function and helping the optimization of the generative network. They
used for research their own dataset consisting of 792 aligned thermal and visible image
pairs of 33 subjects. Images were taken by camera FLIR AX5. From generated probe and
gallery images were obtained features using the Facenet toolbox. Next, they used Euclidean
distance between features of the probe and features of the gallery. The shortest distance
was taken to predict matching and to determine whether it is correct or not. They achieved
91.6% for the Rank-1 rate using the Facenet method for their own generated thermal and
visible images.

Kezebou et al. [12] proposed a framework to automatically synthesize visible face
images captured in the thermal domain, called TR-GAN (thermal to RGB Generative
Adversarial Network). TR-GAN is based on U-Net architecture with cascade residual
blocks for a generator. the generator synthesizes images with consistent global and local
structural information. They used a pretrained VGG-Face recognition model and ResNet-50
to perform the face comparison after the thermal to visible image translation. The study
was conducted using a TUFTS dataset. For the ResNet-50 model, they achieved 80.7%
accuracy of identification, and the VGG16 accuracy of identification was 88.65%.

Immidisetti et al. [13] proposed an Axial GAN framework to synthesize high-resolution
visible images from low-resolution thermal images. Their framework is characterized by an
axial-attention layer. An axial layer effectively captures long-range dependencies with high
efficiency. The study was performed using an ARL-VTF dataset. They used cosine similarity
between features extracted from a VGG-Face model and achieved an AUC of 91.23%.

Anghelone et al. [14] proposed a Latent-Guided Generative Adversarial Network
(LG-GAN) to decompose images into an identity latent code and a style latent code. It
allows spectral-invariant and spectral-dependent properties to be obtained. LG-GAN can
preserve the identity during the spectral transformation and achieve face recognition results
with respect to a visual quality of 96.96% for the AUC rate. For testing purposes, they used
cosine distance between features extracted from ResNet-50.

The work of Cao et al. [15] presents a conversion of a visible face image into a thermal
face image (V2T) and a thermal face image into another one with a different temperature of
the face (T2T). They developed a framework based on a U-Net generator and a six-layer
PatchGAN discriminator. To conduct the V2T task they used the Speaking Face Database,
and for the second task (T2T), the Carl database was used. The model is trained using a
combination of cGAN loss, perceptual loss, and temperature. This work combines two
fields of cross-spectral recognition, including thermal to thermal recognition and thermal
to visible for generated and real images from each spectrum. The face recognition task
is based on three pretrained models: InceptionV3, Xception, and MobileNet. They used
pretrained weights optimized for the ImageNet database for each neural network. They
removed the last fully-connected layer and classification layer from each model and added
an average pooling layer, two fully-connected layers with 512 units, and a classification
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layer to each model. Finally, the method achieved about 78% for Rank-1 tested on the
Speaking Face database, and about 96% for Rank-1 rate tested on the Carl database.

Poster et al. [16] have developed their own thermal to visible face images database.
This database consists of 395 subjects. The total number of images is equal to 549,712.
The distance subject between the camera is 2.1 m. Visible face images were acquired
using an RGB Basler Scout CCD camera and thermal face images were acquired using an
FLIR Grasshooper3 CMOS camera. For the purpose of face recognition, they used five
different methods. Four methods are based on the GAN framework including Pix2Pix [17],
GANVFS [18], SAGAN [19], and “Raw”, which is a naïve baseline method. Thermal images
(probes) and visible images (gallery) were provided directly to the VGG-Face model with a
cosine similarity measure. The results are 2.77%, 6.95%, 6.69%, 84.88%, 91.55%, and 96% for
RAW, Pix2Pix, GANVFS, SAGAN, and Fondje’s method, respectively.

3. Methodology

For this study, we developed a methodology that consists of data collection rules,
algorithms selection, and experiment design. This multi-step methodology aims to develop
several algorithms starting from dataset preparation and annotation, pre-processing, and
face detection up to the face verification process, corresponding to the development of the
feature extraction methods and decision functions.

Since the extraction of features is proposed to be reused in other face verification architec-
tures, several neural networks have been trained for identification purposes. These networks
are the basis for feature extraction in various architectures considered during this study.

The following is a brief overview of the algorithm development phases:

(1) Database preparation and annotation. In this step, the datasets are combined and di-
vided into training and testing splits. Another division used in this paper corresponds
to the number of subjects and the presence of glasses. Since glasses are not transparent
in the thermal infrared domain, they may impact the performance of thermal–visible
face recognition. We decided to split the database according to the presence of glasses
to assess this impact.

(2) Development of face detectors. Wide study has been performed in this context to
evaluate the possibility of using a single face detector for both spectrums. As a result,
we developed two separate face detection algorithms for thermal and visible images,
respectively.

(3) Training of CNNs for identification and feature extraction. The selected CNNs have
been trained for classification purposes to learn the feature representation of thermal
and visible images. The training procedure comprises the following steps:

a. Pre-training of CNNs with the ImageNet database;
b. Training of all CNNs with a joint database of visible and thermal images;
c. Training of all CNNs with separate databases of visible and thermal images.

The trained CNNs will be further re-used for feature extraction in all the studied
architectures.

(4) Development and testing of various methods including:

a. Siamese-based methods;
b. Triplet-based methods;
c. Verification through identification approach.

(5) Analysis and selection of the best algorithm. This step corresponds to the calculation
of performance metrics and the speed of processing.

All the experiments have involved various settings of databases. Another goal was
to evaluate how the data quality may impact the algorithm performance, especially for
thermal infrared images.
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In order to validate the developed method in a controlled environment, it has been
agreed that the thermal–visible face recognition system will be distributed across two
components of the D4FLY system: an enrolment kiosk and a biometric corridor.

(a) A thermal infrared sensor will be embedded into the enrolment kiosk;
(b) The acquisition of face images on the move will be performed in the biometric corridor

using a visible light camera.

The proposed architecture was implemented in the D4FLY prototype and tested during
multiple field test events.

4. Datasets

For the training, evaluation, and testing, several datasets were used during this study.
The main requirement for all databases was to include respective images of faces acquired
in the visible domain and thermal infrared. The datasets used for development came from
our own repositories and from external sources. In this section, we briefly describe all the
datasets that have been utilized during the study.

4.1. D4FLY Thermal and 2D Face

The dataset consists of images of 31 subjects. Face images were acquired for each person
at a distance between 1.5 and 4 m from the camera. After the subject had come towards the
camera and stopped, the images were taken of the face in different head positions, but mainly
in the frontal position (Figure 1). Images were captured using Basler acA2040-90uc (resolution
of 2040 × 2046 pixels) and FLIR A65 cameras (resolution of 640 × 512 pixels).
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4.2. IOE_WAT Dataset

This dataset was collected at the premises of the Military University of Technology
and contains visible and thermal infrared images of 40 subjects [20]. Visible images were
acquired using a Microsoft webcam camera and Microsoft Kinect v2 with resolutions
of 1280 × 720 pixels and 1920 × 1080 pixels, respectively (Figure 2). Thermal infrared
images were acquired using FLIR A65 (for 16 subjects) and FLIR P640 (for 24 subjects), both
with a resolution of 640 × 512 pixels and an NETD below 50 mK. During the acquisition
process, the subject was sitting in front of the camera at a distance of 1.5 m and more
than 100 images were collected for each of the subjects. This dataset contains images of
12 subjects wearing glasses.
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4.3. Speaking Faces Dataset

Dataset [21] is a publicly available large-scale multimodal dataset that contains thermal,
visual, and audio data of 142 different subjects. Visual, thermal, and audio data were
collected from the same nine camera positions during two sessions. During the first session,
the subjects were silent, as opposed to the second session when they were asked to read a
series of sentences. Subjects were directed in front of the camera at approximately one meter
(Figure 3). Thermal images were acquired using an FLIR T540 camera with a resolution
of 464 × 348 pixels while the visible images were captured using a Logitech C920 Pro HD
web-camera with a resolution of 1920 × 1080 pixels.
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4.4. Sejong Face Dataset

The Sejong dataset [22] consists of two subsets (subsets A and B). Subset A contains
face images of 30 subjects (14 males and 16 females) while subset B contains face images
of 70 subjects (44 males and 26 females). The dataset includes images captured in special
conditions including subjects with glasses, masks, beards, fake beards, or scarf. The visible
images were captured using a smartphone device with a resolution of 4032 × 3024 pixels
(Figure 4). The thermal face images were captured using a Therm-App camera. The
resolution of images captured using a thermal camera is 768 × 756.
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4.5. FaceScrub Dataset

This dataset [23] is a collection of unconstrained visible images of 530 subjects (Figure 5).
Each subject is captured at around 200 images, which corresponds to a total number of
106,863 images. This dataset is equally divided into male and female subjects. The resolu-
tion of images differs across the whole dataset.
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4.6. Training and Testing Dataset

The datasets described in Sections 4.1–4.5 have been used either for training or testing
purposes. During the training process, we used 80% of the images from the randomly
selected subjects from the D4FLY and IOE_WAT databases, which will be further referred
to as the joint dataset. The joint training dataset contains images of 71 subjects. Each subject
is represented by 24 images, equally distributed between visible and thermal infrared
domains. Eight images of each subset present the face in frontal position, and four images
present the face turned into right, left, up, or down. Images of subjects wearing glasses
were not included in the training dataset.

The testing dataset corresponds to the remaining 20% subjects of D4FLY and IOE_WAT
supplemented with the first package of the Speaking Faces dataset and selected images
of the Sejong Face dataset. Due to the large rotation of the face images in the Sejong Face
dataset, only five frontal face images for each subject were used.

The testing dataset was divided into two subsets composed of images presenting
subjects with and without glasses. Finally, the number of subjects wearing glasses was 46,
and not wearing glasses was 96.
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As part of the study concerns the use of the VTI method [24], a set of image doublets
was prepared. We prepared a set of doublet images from previously grayscale converted
RGB images and thermal infrared images.

During this study, data augmentation techniques were applied for each of the datasets.
Each dataset was composed of an equal number of images from thermal infrared and
visible light domains.

4.7. Assessment of Data Bias

Since the study covers the face recognition task, it is important to balance the datasets
to avoid or minimize the impact of various types of bias. The datasets used during this
study were characterized in data bias terms. The statistical information on subject gender
distribution is provided in Table 1. As it can be observed, male subjects stand for the
majority of all samples.

Table 1. Gender split of datasets.

Gender

Name of Dataset Female Male

Joint dataset (training) 36% 64%
Joint dataset (testing) 56% 44%

Speaking Faces 48% 52%
Sejong Face 33% 67%

As the datasets are not annotated with geographical information, we are unable to
provide statistical information on the race distribution of the subjects.

5. Proposed Method

The study pursues a face recognition method that allows on-the-move object recogni-
tion with respect to the execution time. The GAN-based methods reported in the literature
are computationally expensive and slow; therefore, we decided to apply the CNN-based ap-
proach. As a starting point, we prepared the face detection algorithm. Due to the modality
gap between visible and thermal infrared images, we developed two separate face detection
algorithms for each respective modality. As a result of our previous investigations, we used
the Faster R-CNN with ResNet-101 to train two separate models. Study on the thermal face
detection process is described in [25].

5.1. Triple Triplet Method-Overview

We propose a modified triplet-based algorithm called triple triplet for thermal–visible
face recognition. The standard triplet architecture requires three images to be processed
simultaneously using analogous processing paths to compute the final scoring. In general,
the three images are called positive, negative, and an anchor. The idea behind using an
anchor image is to increase the separation of similar and dissimilar face images.

Since the considered study uses two different modalities, the anchor image may be
either visible or thermal infrared. The most popular trend in the literature indicates that
the anchor should be of the same class as the positive image. Our in-depth study showed
that the anchor image should be in the visible domain.

Each of the processing paths in the triplet architecture uses a similar CNN model, but
in our case, each CNN is trained either on thermal or visible images, depending on the
spectral range of the processed images. After the feature extraction stage, feature vectors
are used to calculate the distance D between them. Several existing distance functions were
considered to calculate similarities between vector correlation distance, Spearman distance,
Euclidean distance, and city distance (L1 distance). Moreover, we considered a triplet loss
function, which can be calculated by the following formula:

Dtriplet = D( f (P), f (A))− D( f (N), f (A)), (1)
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where D(f (P),f (A)) is a distance function calculated between feature vectors of a positive
image f (P) and an anchor image f (A), and D(f (N),f (A)) is the distance between the feature
vectors of a negative image f (N) and an anchor image f (A).

In this paper, we propose a triple triplet method by adding two additional convo-
lutional neural networks into each branch of the triplet architecture. As a result of this
modification, each branch uses three different CNNs to compute feature vectors simulta-
neously. These networks, namely, ShuffleNet, ResNet-18, and ResNet-50, aim to extract
features from three face images at the same time, as presented in Figure 6. We assumed
that due to the different numbers of network layers and different types of networks, the
extracted feature vectors should differ for each network. The main difference should result
from the differences in the lower-order features, i.e., those that do not relate to the main
edges of the face (higher-order features) and may be associated with lines on the face
and side edges. Since higher-order features are extracted at the initial layers of the neural
network, the differences in the characteristics of the features will be related to the end
layers of the neural networks.
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The proposed method generates nine feature vectors as a result of the feature extraction
process. We have noticed that to achieve the highest performance, features should be
extracted from the layer preceding the fully connected layer, which, in the case of the CNNs
that we were employing, corresponds to the average pooling layer. Figure 6 shows the
architecture of a triple triplet with three neural networks.

As a next step, all feature vectors are used to calculate triplet distances (TD1, TD2, the
TD3) using the same formula as in (1). The triplet distances are calculated for each of the
CNNs by the following formulas:

TD1 = D( f 1(P), f 1(A))− D( f 1(N), f 1(A)), (2)

TD2 = D( f 2(P), f 2(A))− D( f 2(N), f 2(A)), (3)

TD3 = D( f 3(P), f 3(A))− D( f 3(N), f 3(A)), (4)

where the indices of feature vectors correspond to the number of the CNN used for the
feature extraction. Finally, the scoring is calculated based on the triplet distances according
to the formula:

Score = TD1 + TD2 + TD3 (5)
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The final score is a value that can be used to determine the decision threshold. By
employing three CNNs instead of a single CNN, we were able to achieve larger separation
between positive subjects and impostors. This means that the similarity between images
from the same subject increases while dissimilarity between images from different subjects
decreases. Triplet configurations with two neural networks were also tested, providing
lower performance than the proposed solution.

5.2. Training Process

The proposed and reference methods were trained with the joint database described in
Section 4. For the reference, Siamese-based, triplet-based, and the VTI methods were used.
All the methods were implemented in a MATLAB 2021b environment with an NVIDIA RTX
2080 GPU-powered processing unit. The main toolboxes used during experiments include
the Deep Learning Toolbox, Computer Vision Toolbox, and Image Processing Toolbox. The
training process relies on transfer learning with state-of-the-art CNNs. We used pretrained
weights from models trained on the ImageNet database for each neural network considered
in this study, including AlexNet, DenseNet-201, GoogLeNet, InceptionV3, MobileNetv2,
ResNet-18, ResNet-50, ResNet-101, ShuffleNet, SqueezeNet, VGG16, and VGG19.

In the first step, all CNNs were trained using the FaceScrub database with a split
ratio of 90% to 10% for training and validation subsets, respectively. Before the training
process, the Softmax and the last fully connected layers were removed and replaced by new
layers of the same type with the number of neurons correlated to the number of subjects
in the FaceScrub dataset. The learning parameters set during the training process can be
found in Table 2 below. The training process was continued until the classification accuracy
calculated for the validation subset did not improve for 20 network validations in a row.
All values and parameters were determined empirically.

Table 2. Learning parameters set during the training process.

Name of Parameter Value/Method

Learning rate 0.0003
Batch size 64

Optimization method stochastic gradient descent with momentum (SGDM)

Each of the trained models was used to extract features in the Siamese-based, triplet,
and triple triplet methods. To conduct experiments based on the VTI method, we used the
same neural network models pretrained on the ImageNet database. Since the VTI method
outputs two classes (genuine and impostor), the number of neurons in the final Softmax
layer equals two.

In the final step, all the CNNs were trained using 80% of the subjects from the D4FLY
and IOE_WAT datasets. All the datasets were gathered in the data stores.

5.3. Testing Experiments

Testing experiments were divided into two parts, corresponding to subjects wearing
and not wearing glasses. We used different datasets during each of the two experiments
because of the availability of data presenting subjects wearing glasses. A composition
of IOE_WAT, D4FLY, and Speaking Faces databases was used for testing the algorithms
for subjects not wearing glasses, while the IOE_WAT, Speaking Faces, and Sejong Face
databases were used for subjects with glasses.

6. Results

In this section, we present results divided into four parts corresponding to models
and architectures developed and tested during the study. All the results are calculated
using well-known biometric rates including the True Acceptance Rate (TAR) and False
Acceptance Rate (FAR) of 1% and 0.1%, respectively. The overall dependence of TAR
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and FAR values is described by the ROC characteristics. During the tests, we calculated
similarities between the feature vectors using various distance functions including cosine,
Spearman, correlation, and Euclidean to compute the final face verification score.

6.1. Siamese Networks

The first part of the study concerns using Siamese architecture. Table 3 presents the
results for three models that achieved the best TAR values. The best TAR is achieved by
ResNet-50 with a Spearman distance. We observed a significant increase in FAR and a
reduction in TAR for images presenting face images of subjects wearing glasses.

Table 3. Performance of Siamese algorithms with the joint 1 dataset, Speaking Faces dataset, and
Sejong Face dataset.

Joint Dataset 1

CNN Model Distance Function

Without Glasses With Glasses 2

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

MobileNetv2 Cosine 21.10 (FAR = 0.66) 40.82 (FAR = 2.85) 21.65 (FAR = 6.63) 56.94 (FAR = 20.33)
ResNet-50 Spearman 18.48 43.40 (FAR = 1.66) 4.04

(FAR = 1.20) 21.53 (FAR = 6.44)

VGG19 Spearman 16.47 (FAR = 0.23) 42.67 (FAR = 3.09) 9.85
(FAR = 1.26) 33.08 (FAR = 8.40)

Speaking Faces Dataset

CNN Model Distance Function

Without Glasses With Glasses

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

MobileNetv2 Cosine 16.99 (FAR = 1.19) 36.88 (FAR = 4.36) 4.92
(FAR = 1.65) 22.78 (FAR = 10.10)

ResNet-101 Correlation 23.06 (FAR = 3.96) 50.95 (FAR = 12.43) 2.85
(FAR = 0.62) 18.19 (FAR = 6.37)

VGG19 Spearman 13.43 (FAR = 1.61) 37.46 (FAR = 7.60) 5.09
(FAR = 0.91) 28.79 (FAR = 8.32)

Sejong Face Dataset

CNN Model Distance Function

Without Glasses With Glasses

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

ResNet-18 Correlation 2.49
(FAR = 0.66) 12.82 (FAR = 3.21) 0.87 10.06 (FAR = 6.30)

VGG16 Correlation 6.10 12.00 (FAR = 1.77) 0.13 4.63
VGG19 Spearman 7.15

(FAR = 0.59) 6.82 4.83 29.51 (FAR = 6.51)

1 This dataset contains the IOE_WAT and D4FLY datasets. 2 This is the only IOE_WAT dataset that contains
subjects wearing glasses. 3 The values located in parentheses indicate the FAR calculated for the test dataset only
if it differs significantly from the FAR calculated for the training dataset.

All the methods achieve better results for subjects wearing glasses, with the highest
scores obtained for the joint dataset. The values of performance metrics achieved by the
methods based on the Siamese architecture are far below expectations.

6.2. Triplet Networks

In the second part of the study, we investigated the triplet-based methods in various
configurations. We conducted two experiments corresponding to two cases. In the first
experiment, we used thermal infrared images as anchors. The results of the experiment are
presented in Table 4.

During the second experiment, we used visible images as anchors. The results of
the second experiment are presented in Table 5. The best performing CNNs include the
ResNet-18 visible anchor image and Inceptionv3 for thermal anchor images.
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Table 4. Performance of Triplet algorithms for the joint 1, Speaking Faces, and Sejong Face datasets
for a visible anchor image.

Joint Dataset 1

CNN Model Distance Function

Without Glasses With Glasses 2

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

ResNet-18 Cosine 46.99 65.74 29.23 53.47
ResNet-50 Cosine 43.71 67.90 27.59 56.12 (FAR = 1.83)
ShuffleNet Cosine 40.70 68.21 18.31 51.45

Speaking Faces Dataset

CNN Model Distance Function

Without Glasses With Glasses

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

MobileNetv2 Cosine 45.31 (FAR = 0.50) 67.09 (FAR = 2.01) 41.38 67.83 (FAR = 1.52)
ResNet-18 Cosine 61.59 (FAR = 1.45) 81.42 (FAR = 5.40) 59.25 (FAR = 0.56) 79.66 (FAR = 3.99)
ResNet-50 Cosine 50.90 (FAR = 1.19) 76.84 (FAR = 4.90) 34.99 70.32 (FAR = 2.57)

Sejong Face Dataset

CNN Model Distance Function

Without Glasses With Glasses

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

MobileNetv2 Cosine 35.41 62.10 7.11 24.48
ResNet-18 Cosine 48.46 78.30 (FAR = 1.90) 44.53 (FAR = 0.54) 80.08 (FAR = 8.79)
ShuffleNet Cosine 18.36 58.62 50.57 (FAR = 4.29) 80.75 (FAR = 20.25)

1 This dataset contains the IOE_WAT and D4FLY datasets. 2 This is only the IOE_WAT dataset that contains
subjects wearing glasses. 3 The values located in parentheses indicate the FAR for the test dataset only if it differs
significantly from the FAR calculated for the training dataset.

Table 5. Performance of Triplet algorithms for the joint 1, Speaking Faces, and Sejong Face datasets
for a thermal anchor image.

Joint Dataset 1

CNN Model Distance Function

Without Glasses With Glasses 2

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

Inceptionv3 Cosine 17.36 (FAR = 1.66) 31.94 (FAR = 6.17) 3.54
(FAR = 1.33)

28.54
(FAR = 12.50)

ResNet-50 Cosine 11.03 (FAR = 0.85) 25.42 (FAR = 3.39) 1.14
(FAR = 0.38)

23.61
(FAR = 11.36)

VGG19 Correlation 10.03 25.96 8.27
(FAR = 1.01)

22.16
(FAR = 5.43)

Speaking Faces Dataset

CNN Model Distance Function

Without Glasses With Glasses

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

Inceptionv3 Cosine 18.75 38.71 (FAR = 10.29) 23.11
(FAR = 13.98) 44.46 (FAR = 32.32)

ResNet-18 Cosine 10.45 26.69 (FAR = 7.70) 10.79
(FAR = 4.18) 28.23 (FAR = 16.30)

ResNet-101 Cosine 21.26 33.67 (FAR = 8.94) 8.24
(FAR = 3.64) 18.86 (FAR = 9.98)

Sejong Face Dataset

CNN Model Distance Function

Without Glasses With Glasses

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

Inceptionv3 Cosine 9.25 (FAR = 2.10) 21.51 (FAR = 8.33) 40.71 (FAR = 29.11) 67.54
(FAR = 54.46)

MobileNetv2 Spearman 3.08 10.82 (FAR = 2.30) 0.13 1.48
VGG16 Correlation 5.77 (FAR = 0.59) 11.08 (FAR = 1.90) 0.67 5.70

1 This dataset contains the IOE_WAT and D4FLY datasets. 2 This is only the IOE_WAT dataset that contains
subjects wearing glasses. 3 The values located in parentheses indicate the FAR for the test dataset only if it differs
significantly from the FAR calculated for the training dataset.
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The overall performance of the methods based on the triplet architecture is higher than
the Siamese methods. The presented results indicate that the best results were obtained
when the visible images were used as an anchor. Moreover, the TARs are mostly similar
along different datasets with the best results achieved for the Speaking Faces database.

6.3. Verification through Identification

Since the Verification Through Identification method performed very well in the
thermal-to-thermal face verification task, the method was considered as a part of this study.
The results obtained with the three best configurations of the VTI method are presented in
Table 6. The best TAR values were achieved with the Inceptionv3-based algorithm, and
they are the lowest achieved values of all the studied methods.

Table 6. Performance of VTI for the joint, Speaking Faces, and Sejong Face datasets.

Joint Dataset 1

Without Glasses With Glasses 2

CNN Model TAR@
FAR 0.1%

TAR@
FAR1%

TAR@
FAR 0.1%

TAR@
FAR1%

DenseNet-201 1.29 2.76 0.22 2.75
Inceptionv3 0.12 0.87 0.19 2.08

VGG19 0.01 0.98 0.63 2.18

Speaking Faces Dataset

Without Glasses With Glasses

CNN Model TAR@
FAR 0.1%

TAR@
FAR1%

TAR@
FAR 0.1%

TAR@
FAR1%

DenseNet-201 0.04 0.80 0.39 2.85
Inceptionv3 0.26 1.61 0.63 3.04
ShuffleNet 0.25 1.51 0.91 3.96

Sejong Face Dataset

Without Glasses With Glasses

CNN Model TAR@
FAR 0.1%

TAR@
FAR1%

TAR@
FAR 0.1%

TAR@
FAR1%

Inceptionv3 1.61 4.66 0.07 0.80
ResNet-101 0.75 3.61 0.17 1.37
ShuffleNet 0.03 1.61 0.34 3.42

1 This dataset contains the IOE_WAT and D4FLY datasets. 2 This is only the IOE_WAT dataset that contains
subjects wearing glasses.

6.4. Triple Triplet

As an outcome of the results that we achieved with the reference methods, we pro-
posed a modification to the best-performing triplet-based algorithm, as presented in
Section 5.1. Based on the experiments with triplet-based algorithms, our proposed al-
gorithm always uses a visible anchor image. During the study, we also considered the
architecture with two CNNs instead of three, with various CNNs for feature extraction and
various learning parameters. Cumulative results of the method are presented in Table 7.

Figure 7 presents ROC curves of all investigated algorithms divided by the dataset
used for testing purposes. The presented graphs indicate the data bias, which is a result of
imbalanced and relatively small datasets.
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Table 7. Performance of triple triplet algorithms for the IOE_WAT, Speaking Faces, and Sejong Face
datasets for a visible anchor image.

Joint Dataset 1

CNN Model Distance Function

Without Glasses With Glasses 2

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

ResNet-18
ResNet-50
ShuffleNet

Cosine 60.76 76.93 43.75 67.17

Speaking Faces Dataset

CNN Model Distance Function

Without Glasses With Glasses 2

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

ResNet-18
ResNet-50
ShuffleNet

Cosine 77.47 (FAR = 1.69) 90.61 (FAR = 6.74) 70.79 87.52 (FAR = 2.75)

Sejong Face Dataset

CNN Model Distance Function

Without Glasses With Glasses 2

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

TAR@
FAR 0.1% 3

TAR@
FAR 1% 3

ResNet-18
ResNet-50
ShuffleNet

Cosine 50.89 78.23 72.84 (FAR = 4.36) 91.62 (FAR = 19.11)

1 This dataset contains the IOE_WAT and D4FLY datasets. 2 This is only the IOE_WAT dataset that contains
subjects wearing glasses. 3 The values located in parentheses indicate the FAR for the test dataset only if it differs
significantly from the FAR calculated for the training dataset.
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For the two best-performing methods, we prepared an additional analysis showing
the impact of a head position on identity verification. The results are presented in Table 8.
During this analysis, the Sejong Face database was not used because it does not contain
images of the subjects with rotated head. We can observe an increase in the TAR value
for rotated face images between the results for the triple triplet method compared to the
standard triplet architecture. For example, TAR for the Speaking Faces dataset with subjects
not wearing glasses increased from 77.81% to 88.89%.

Table 8. Performance of triple triplet algorithms according to different head positions.

Triplet (Visible Anchor Image) 2

Dataset Position of Head TAR@FAR0.1% 1 TAR@FAR1% 1

D4FLY
frontal 59.10 73.64

not frontal 33.93 53.57

IOEpart1 frontal 62.50 89.45
not frontal 51.56 76.56

IOEpart2 frontal 54.38 65.94
not frontal 23.50 44.25

Speaking Faces frontal 69.14 85.94
not frontal 55.55 77.81

IOE_WAT (glasses) frontal 36.36 63.07
not frontal 23.52 45.80

Speaking Faces (glasses) frontal 68.85 85.94
not frontal 51.58 74.65

Triple Triplet 3

Dataset Position of Head TAR@FAR0.1% 1 TAR@FAR1% 1

D4FLY
frontal 68.34 80.57

not frontal 49.29 66.96

IOEpart1 frontal 89.06 93.36
not frontal 69.38 83.44

IOEpart2 frontal 64.38 82.50
not frontal 35.00 64.00

Speaking Faces frontal 84.51 92.76
not frontal 71.84 88.89

IOE_WAT (glasses) frontal 53.69 73.58
not frontal 35.80 62.05

Speaking Faces (glasses) frontal 81.25 91.24
not frontal 62.42 84.54

1 The values located in parentheses indicate the FAR for the test dataset only if it differs significantly from the FAR
calculated for the training dataset. 2 ResNet-18 model and cosine distance. 3 ResNet-18, ResNet-50 and ShuffleNet
with cosine distance.

6.5. Data Biases-Gender

Referring to Section 4.7, we composed a sub-study related to the data biases. In
Tables 9 and 10, we present results achieved by the triplet-based and the proposed triplet-
based algorithm, respectively. The two tables present the TAR values of the best algorithm
configurations. All the results presented in the tables are calculated for subjects not wear-
ing glasses.

The results presented in both tables show disproportion of the algorithms’ performance
between male and female subjects. Moreover, the TAR value differences are also visible
between the different testing databases. Both the gender and dataset bias are the result of
relatively small and unbalanced datasets, which should be supplied with more subjects of
both sex and uniform age distribution.
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Table 9. Gender-divided performance of the triplet-based algorithm with a visible anchor image.

Joint Dataset (ResNet-50 and Cosine Distance)

Gender TAR@
FAR 0.1%

TAR@
FAR 1%

Female 38.77 60.76
Male 46.18 71.47

Speaking Face (MobileNetv2 and Cosine Distance)

Female 52.99 73.13
Male 38.24 61.54

Sejong Face (MobileNetv2 and Cosine Distance)

Female 30.20 52.80
Male 37.95 66.63

Table 10. Gender-divided performance of the triple triplet method with a thermal anchor image.

Joint Dataset

Gender TAR@
FAR 0.1%

TAR@
FAR 1%

Female 66.32 77.31
Male 57.99 76.74

Speaking Face

Female 83.00 93.37
Male 72.38 88.07

Sejong Face

Female 32.00 64.00
Male 60.10 85.17

6.6. Processing Time

The study aims to look for the thermal–visible face recognition methods that are able
to process the images while the subject is walking through the biometric corridor. This
condition is strictly connected to the processing speed. The average processing time of
the proposed method is presented in Table 11. Time is calculated using the sum of the
following components: time of loading images, time of extracting features, and time of
decision. We present time for two methods. Verification time using the triple triplet method
is about two times greater than during using the triplet method. Our method uses three
models; therefore, feature extraction is performed three times longer, which increases the
total time of the verification process.

Table 11. Average processing times.

Verification Method Time (s)

Triplet (with ResNet-18) 1.06
Triple triplet 2.19

6.7. Ablation Study

In this section, we present the results of the method being trained without an essential
part of the data. For this part of the study, we selected the two best-performing methods
and trained them with single domain images. First, the methods were trained with a dataset
containing visible face images. In the second step, the same methods were trained with
thermal infrared images only. The hyperparameters of the training process are the same, as
presented in Table 2.
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In both cases, the methods were evaluated with a testing dataset composed of thermal
infrared and visible images. The results of the ablation study are presented in Table 12.

Table 12. Results of the ablation study for the triple and triple triplet methods with a visible
anchor image.

Joint Dataset 1

Triplet

CNN Model Distance Function

Thermal Training Dataset Visible Training Dataset

TAR@
FAR 0.1%

TAR@
FAR 1%

TAR@
FAR 0.1%

TAR@
FAR 1%

ResNet-18 Cosine 16.13 38.19 14.20 31.13

Triple Triplet

CNN Model Distance Function

Thermal Training Dataset Visible Training Dataset

TAR@
FAR 0.1%

TAR@
FAR 1%

TAR@
FAR 0.1%

TAR@
FAR 1%

ResNet-18
ResNet-50
ShuffleNet

Cosine 26.58 52.08 22.65 41.20

Speaking Faces Dataset

Triplet

CNN Model Distance Function

Thermal Training Dataset Visible Training Dataset

TAR@
FAR 0.1% 2

TAR@
FAR 1% 2

TAR@
FAR 0.1%

TAR@
FAR 1% 2

ResNet-18 Cosine 49.06 (FAR = 2.16) 77.55 (FAR = 10.86) 39.79 68.03 (FAR = 1.48)

Triple Triplet

CNN Model Distance Function

Thermal Training Dataset Visible Training Dataset

TAR@
FAR 0.1% 2

TAR@
FAR 1% 2

TAR@
FAR 0.1%

TAR@
FAR 1%

ResNet-18
ResNet-50
ShuffleNet

Cosine 53.14 (FAR = 0.86) 85.50 (FAR = 11.22) 45.71 73.76

Sejong Face Dataset

Triplet

CNN Model Distance Function

Thermal Training Dataset Visible Training Dataset

TAR@
FAR 0.1%

TAR@
FAR 1%

TAR@
FAR 0.1%

TAR@
FAR 1%

ResNet-18 Cosine 15.80 51.74 22.75 52.00

Triple Triplet

CNN Model Distance Function

Thermal Training Dataset Visible Training Dataset

TAR@
FAR 0.1%

TAR@
FAR 1% 2

TAR@
FAR 0.1%

TAR@
FAR 1%

ResNet-18
ResNet-50
ShuffleNet

Cosine 19.48 68.66 (FAR = 3.15) 12.26 42.56

1 This dataset contains the IOE_WAT and D4FLY datasets. 2 The values located in parentheses indicate the FAR
for the test dataset only if it differs significantly from the FAR calculated for the training dataset.
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7. Conclusions and Future Works

Cross spectral face recognition using thermal and visible face images is not a well-
explored field of research, mainly due to high-priced equipment and the relatively limited
number of free image databases ready for use. Numerous manuscripts have reported
the results found in the field of GAN methods, which can generate visible images based
on thermal infrared imagery. However, these methods are not suitable for on-the-move
verification due to their long processing time.

In this work, we present the results of our study in the field of thermal–visible face
verification using four different algorithm architectures with a proposed triple triplet
method, which combines three CNNS being used in each of the triplet branches.

In our study, we investigated several different algorithms in various configurations
including the Siamese, Triplet, and VTI methods. For the training and testing purposes, we
used several publicly available datasets composed of corresponding thermal and visible
domain images.

Since all the methods that we investigated used the same CNN models for feature
extractions trained in the same conditions and configurations, the presented results are
easily comparable. Our proposed triple triplet method achieves TAR @FAR 1% values up to
90.61%, depending on the testing dataset. Compared to the traditional triplet-based method,
the triple triplet method increases the TAR value from about 65–67% to 73–77% when tested
on the joint dataset. Compared to related works in the field, the proposed triple triplet
outperforms the corresponding methods. Most of the works listed in the related works
section are focused on the identification task, and thus are not directly comparable with
our undertaking. The work of Chen et al. [6], focused on the verification task, presents a
TAR of 51.24% for 1% of FAR, while in [15], the GAN-based method tested on the Speaking
Faces database achieved a Rank-1 of 78%.

All the algorithms were fourfold tested for performance, partitioned by an attribute
related to glasses put on or removed, and another for frontal or rotated head positions. As
anticipated, all the methods achieve better results for subjects not wearing glasses, since
glasses are not transparent in the thermal infrared domain and significantly reduce the
number of facial features when being worn. We also noticed a large variation in the results
when testing with different datasets. Since the joint dataset was used during the training
process, this fact may indicate a hardware bias, or a dataset bias in general, which is a result
of a relatively small training dataset.

The presented study shows that there is still a lack of publicly available large datasets of
joint thermal infrared and visible face images. The quite high FAR values can be overcome
when using large datasets during the training process. In addition, the study showed that
glasses lower the method’s performance; thus, subjects should be asked to remove them
before being checked.

The presented study is considered as another step toward a fully functional thermal–
visible face recognition method. In future works, we want to expand our dataset and
propose new algorithms and methods.
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