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Abstract: Random drift error is one of the important factors of MEMS (micro-electro-mechanical-
system) sensor output error. Identifying and compensating sensor output error is an important
means to improve sensor accuracy. In order to reduce the impact of white noise on neural network
modeling, the ensemble empirical mode decomposition (EEMD) method was used to separate
white noise from the original signal. The drift signal after noise removal is modeled by GRNN
(general regression neural network). In order to achieve a better modeling effect, cross-validation
and parameter optimization algorithms were designed to obtain the optimal GRNN model. The
algorithm is used to model and compensate errors for the generated random drift signal. The results
show that the mean value of original signal decreases from 0.1130 m/s2 to −1.2646 × 10−7 m/s2,
while the variance decreases from 0.0133 m/s2 to 1.0975 × 10−5 m/s2. In addition, the displacement
test was carried out by MEMS acceleration sensor. Experimental results show that the displacement
measurement accuracy is improved from 95.64% to 98.00% by compensating the output error of
MEMS sensor. By comparing the GA-BP (genetic algorithm-back propagation) neural network and
the polynomial fitting method, the EEMD-GRNN method proposed in this paper can effectively
identify and compensate for complex nonlinear drift signals.

Keywords: MEMS sensor; random drift; error compensation; neural network

1. Introduction

With the development of science and technology, information technology, and intelli-
gence, sensors play an increasingly important role in social development. For example, in
the field of navigation and flight control, UAVs use their own gyroscopes for attitude recog-
nition [1,2]. In the field of vibration testing, acceleration signal is collected by acceleration
sensor for vibration modal analysis. As early as 1961, Berg GV et al. studied the displace-
ment characteristics of buildings through acceleration signals collected by sensors [3]. In the
military field, it is also necessary to obtain acceleration signal by acceleration sensor in real
time in the modification of one-dimensional trajectory model and dynamic parameter test
of artillery [4]. In addition, sensors also play a huge role in medical, electronic consumption,
and other aspects [5,6]. Traditional capacitive, piezoelectric, and other sensors usually
cannot directly output digital signals and are relatively bulky. Due to the mechanical
structure inside these sensors, they cannot withstand large overload shocks. The above
shortcomings limit the use of this type of sensor in some occasions. With the development
of semiconductor technology, MEMS sensors have also been greatly developed. Emerging
MEMS sensors typically have the advantages of small size, high overload resistance, low
cost, and low power consumption. Based on the above advantages, MEMS sensors are
widely used in military, medical, electronic consumer, and other fields [7–9]. However,
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due to their physical structure and manufacturing accuracy, low-cost MEMS sensors often
have output errors [10]. Therefore, the low cost of MEMS sensor output error limits its
application range. For example, when displacement and Angle are obtained by using the
acceleration or angular acceleration output by MEMS sensor, the existence of output error
will be further amplified during quadratic integration [11–13]. Therefore, it is of great
significance to compensate the output errors of MEMS sensors with low cost.

The random error of MEMS sensor is mainly caused by manufacturing accuracy, circuit
interference, external environment, and other influence sources. The output error of MEMS
sensors is usually not constant, so it is difficult to compensate quantitatively. The output
error usually presents a complex nonlinear random drift characteristic. According to the
characteristics of random errors of MEMS sensors, a variety of compensation methods
have been studied, including time series analysis, polynomial fitting, and neural network
compensation [14].

Time series analysis and Kalman filter are used to model and compensate the random
drift signal output by sensors, and certain effects are achieved [15–20]. Time series analysis
methods usually require the original random drift signal to have zero mean, stationarity,
and normality. However, the original random drift signal is usually non-stationary, which
requires first-order or multi-order difference processing on the original data to obtain a
stationary signal. In addition, since the raw signals output by MEMS sensors are usually
time-varying, it is difficult to describe them with a single time series model. It can be seen
that the time series analysis method has relatively high requirements on the initial data, so
it is difficult to realize real-time compensation.

Polynomial fitting is also a common method for modeling random drift errors of
sensors [21–23]. If the random drift of the sensor is approximately linear or the drift trend
is moderate, the error modeling by the polynomial fitting method can achieve a certain
compensation effect. However, if the random drift of sensors presents complex nonlinear
characteristics, the polynomial fitting method needs higher order to merge the drift errors
and the fitting effect is usually not ideal.

As we know, neural network has powerful nonlinear function fitting ability. In the face
of complex random drift signals, non-parametric identification based on neural network is
a more effective method. BP neural network is one of the commonly used neural networks,
and some related literatures also pointed out that the modeling effect of BP neural network
is usually better than polynomial fitting method [24–27]. However, if the original drift
signal is more complex, the function fitting ability of BP neural network will decrease.
In addition, the BP neural network usually cannot reach the local minimum due to the
improper selection of initial weights and thresholds in the training process [28]. In view of
the shortcomings of BP neural network, some scholars proposed to use RBF (radial basis
function) neural network for error modeling.

RBF network is a local neural network that converges to the global minimum. Many
researchers pointed out that local neural networks have better modeling performance than
global neural networks. In [29], a method of integrating RBF neural network and time
series analysis for modeling was proposed. In fact, the complex and disordered white noise
in the random drift signal of the sensor will affect the effect of neural network modeling.
For example, a neural network polluted by noise is prone to “over-learning”. Considering
this problem, some scholars have proposed the idea of modeling based on GRBFN (Grey-
RBF) neural network [30,31]. The effect of white noise on the modeling efficiency of
neural network is eliminated by cumulative generation operation. Although this method
can eliminate the influence of noise to a certain extent by accumulative calculation, the
complexity of calculation will increase with the increase of data volume and subsequent
subtraction operation. In addition, the selection of recursive numbers in the modeling
process also needs to be considered in depth.

In addition to the above methods, some researchers also improve the output accuracy
by improving the physical structure and materials of sensors or designing compensation
circuits. This method is highly specialized, difficult, and usually requires huge research
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funding [32–35]. In fact, the source of the output error of the sensor is multi-faceted and
uncontrollable, so it is difficult to completely eliminate the output error by improving
the hardware.

MEMS sensor errors include white noise, random drift errors, trend term errors, and
constant value errors. After the white noise is separated from the original signal, the resid-
ual trend term, constant term, and random drift are modeled as a whole. The advantage of
this method over time series modeling methods is that it avoids the complicated process
of transforming the original signal into a stationary, random, zero-mean signal through
multi-order difference.

Through the analysis of the above research status, it can be seen that first, the modeling
effect of global neural network is better than that of local neural network. Second, the
noise in the random drift signal of sensor will affect the modeling effect of neural network.
Therefore, this paper considers the global neural network GRNN for error modeling after
denoising the original signal output by the sensor.

The methods of separating noise from the original signal mainly include Fourier
transform, wavelet multi-scale decomposition, moving average filter, and EMD (empirical
mode decomposition). When the real signal is linear and has a different time or frequency
scale from the noise, the Fourier filter can be used to separate the noise from the real signal.
However, if the original signal is non-stationary, the filtering method will fail. Even if
the real signal and noise have different fundamental frequencies, the harmonics of the
fundamental frequency can still be mixed with the noise. This mixing of harmonic and
noise will make Fourier filter an invalid noise separation method. The principle of noise
reduction using wavelet multi-scale decomposition and EMD is to decompose the original
signal into multiple components and remove the noise component. Although the wavelet
multi-scale analysis method can decompose the signal and remove the noise signal, it needs
to select a certain wavelet basis before the wavelet decomposition. The choice of wavelet
basis function has great influence on the result of the whole wavelet analysis because the
whole analysis process cannot be replaced after the wavelet basis function is determined.
In addition, even though the wavelet base may be optimal globally, it may not be optimal
locally [36–39]. Therefore, wavelet analysis lacks adaptability. The moving average filtering
method is indeed a relatively easy and computationally inexpensive method. However, one
obvious drawback is that the size of the sliding window has a significant impact on white
noise removal. If the window length is larger, the locally averaged data will be more, and
the smoothing effect will be larger. This is beneficial to suppress random errors of frequent
random fluctuations, but it may also average and weaken the deterministic components of
high frequency changes. Conversely, if the sliding window is small, it may be unfavorable
to suppress low-frequency random errors. The above analysis shows that it is difficult for
us to determine the size of the sliding window so as to eliminate noise precisely. Improper
window size may eliminate useful signals other than white noise.

EMD is an adaptive signal decomposition method in the time domain and does not
require the choice of basis functions, so EMD is very suitable for analyzing data from
non-stationary and nonlinear processes [40]. The ensemble empirical mode decomposition
method is developed on the basis of the EMD method. EEMD has many advantages
over EMD in signal processing [41,42]. Therefore, this paper considers using EEMD to
decompose the signal and then recombine the signal to achieve the purpose of noise
reduction. The method of eliminating white noise based on EEMD has specific criteria.
That is, after the white noise signal is decomposed by EEMD, multiple components will be
obtained. The average period of each component is two times that of the previous one. In
addition, in the process of decomposing the signal, the EEMD method does not need to
subjectively set the decomposition parameters such as wavelet decomposition, etc. EEMD
is a simple adaptive signal decomposition method, which has specific criteria compared to
other methods for removing white noise. The specific principles and steps are described in
detail in Section 3.3 below.
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Since white noise will affect the modeling ability of the system, the white noise is first
separated from the original signal by EEMD method according to certain principles. After
denoising the original signal, GRNN can be used for error modeling. The optimal parameter
model of GRNN can be obtained by cross-validation idea and parameter optimization
algorithm. Therefore, the drift error modeling method based on EEMD-GRNN is finally
proposed in this paper. This modeling method can improve the modeling effect of neural
network, and has low requirement on the original random drift signal of sensor. The EEMD
method for separating white noise and the characteristics of GRNN will be discussed in the
following chapters.

This section will introduce the structural framework of this paper except the introduc-
tion part. The first part introduces the GRNN neural network algorithm and the method of
GRNN parameter adjustment through optimization algorithm and cross validation. The
second part introduces the EEMD algorithm and the principle of white noise separation.
The third part introduces the application of EEMD-GRNN algorithm through a generated
drift signal. The fourth part introduces the displacement measurement experiment based on
acceleration integral. The influence of the sensor output error on the measurement results
was analyzed and the measurement results were compensated. The last part summarizes
the paper and presents the conclusion of the paper.

2. GRNN Structure and Parameter Optimization Algorithm

GRNN is an artificial neural network model based on nonlinear regression theory
proposed by Professor Donald F. Specht of the United States in 1991. GRNN has strong
nonlinear mapping ability and learning speed. GRNN can also achieve better prediction
results when the sample data are small, and can also deal with unstable data. Although
GRNN looks less accurate than radial basis, it actually has great advantages in classification
and fitting, especially when the data accuracy is poor. GRNN is more suitable for solving
curve fitting problems. In addition, the computational efficiency of GRNN is much faster
than that of feed-forward neural network due to its simple structure [43]. Based on the
above reasons, we choose GRNN to model and fit the sensor drift data.

2.1. The Structure of GRNN

The GRNN network structure includes input layer, mode layer, summation layer,
and output layer as shown in Figure 1. The input of the sample to the network is
X = [x1, x2 . . . xm]

T . The output of the sample from the network is Y = [y1, y2 . . . yk]
T .
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2.1.1. Input Layer 

Figure 1. Schematic diagram of GRNN network structure model.

2.1.1. Input Layer

The number of neurons in the input layer is equal to the dimension m of the input
vector. Each neuron is a simple distribution unit whose role is to pass input variables
directly to the mode layer.
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2.1.2. Mode Layer

The number of neurons in the mode layer is equal to the number of training samples
n, and each neuron corresponds to a different training sample. The transfer function of the
i-th neuron is:

Pi = exp

[
−(X− Xi)

T(X− Xi)

2σ2

]
i = 1, 2, ..., n (1)

In the above formula, X is the input sample of the neural network. Xi is the training
sample corresponding to the i-th neuron. σ is the smoothing factor of the neural network.
The square of Euclid distance between X and Xi is shown in formula (2).

D2
i = (X− Xi)

T(X− Xi) (2)

2.1.3. Summation Layer

Two types of neurons are used for summation in the summation layer. One is the
arithmetic sum of the outputs of all neurons in the mode layer. The weight value of neurons
from the mode layer to the summation layer in the summation process is 1. The expression
of its transfer function is:

SD =
n

∑
i=1

Pi (3)

The other is a weighted sum of neuron outputs in the mode layer. The transfer function
of such neurons is:

SNj =
n

∑
i=1

yijPi, j = 1, 2, . . . k (4)

In the above formula, yij is the connection weight of neuron i in the mode layer and
neuron j in the summation layer.

2.1.4. Output Layer

The number of neurons in the output layer is equal to the output dimension k of the
training sample. The output of each neuron is the quotient of the two types of neurons in
the summation layer as shown in the following formula:

Yj =
SNj

SD
, j = 1, 2, . . . , k (5)

2.2. GRNN Parameter Optimization Algorithm

Although GRNN does not need training, the size of the smoothing factor σ has a
great influence on the approximation accuracy of the network. The smaller the value of
σ is, the stronger the network’s approximation capability to the sample is. However, the
generalization ability of the network will become worse. The larger the value of σ is, the
smoother the approximation process of the network to the sample data is, but the error
also increases correspondingly. Therefore, constant adjustment is required to get the best σ
value. In order to solve this problem, an optimization algorithm to find the best parameters
of GRNN was designed.

The overall idea is to first conduct cross-validation to group the sample data, and then
find the minimum prediction error value through the parameter cycle under each divided
data set. The corresponding optimal parameter σ can be obtained through the minimum
prediction error value finally obtained.

Cross-validation allows each sample to be used as a test set and training set. The
neural network model can make full use of sample information through cross validation,
which can ensure the robustness of neural network and prevent over fitting. There are
many ways to perform cross validation, and k-fold cross validation was used in this article.
The data set can be divided into K subsets by k-fold cross-validation, which enables each
subset to be a test set and the rest to be a training set.
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First, we normalized the divided training data and test data. Then GRNN model with
parameter σ can be established by MATLAB. The MSE (mean squared error) of the sample
real value and GRNN predicted value under different parameters σ are continuously
searched by cyclic instructions. The optimal σ value can be found by the minimum mean
square error. The execution flow chart of parameter optimization algorithm is shown in
Figure 2. The expression for MSE is shown in the following formula:

MSE =
1
M

M

∑
m=1

(ym − ŷm)
2 (6)
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In the above formula, M represents the number of input samples. ym represents sample
output data, and ŷm represents neural network prediction data.

3. White Noise Separation Method Based on EEMD

This part first analyzes the influence of noise on neural network modeling. Then
the principle and function of EEMD in signal decomposition are introduced. Finally, the
principle of separating white noise signal from original signal is given.

3.1. Influence of White Noise on Neural Network Modeling

The output signal of MEMS sensor usually consists of white noise and random drift
trend. The neural network is used to model a random drift signal, as shown in Figure 3. As
can be seen from Figure 3, the neural network appears the phenomenon of “over-learning”
due to the existence of white noise and unreasonable input and output data settings. The
existence of noise will reduce the effect and efficiency of neural network modeling. In other
words, the output of the neural network is polluted by the white noise of complex variation.
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Since noise has a certain impact on neural network modeling, the best way is to separate
noise from the original signal before modeling the original signal.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 19 
 

 

3.1. Influence of White Noise on Neural Network Modeling 

The output signal of MEMS sensor usually consists of white noise and random drift 

trend. The neural network is used to model a random drift signal, as shown in Figure 3. 

As can be seen from Figure 3, the neural network appears the phenomenon of “over-learn-

ing” due to the existence of white noise and unreasonable input and output data settings. 

The existence of noise will reduce the effect and efficiency of neural network modeling. In 

other words, the output of the neural network is polluted by the white noise of complex 

variation. Since noise has a certain impact on neural network modeling, the best way is to 

separate noise from the original signal before modeling the original signal. 

 

Figure 3. The output of the neural network is “polluted” by noise. 

3.2. EEMD Introduction and Principle of Signal Decomposition 

EMD is a new adaptive time-frequency signal processing method suitable for the 

analysis and processing of nonlinear and non-stationary signals. EMD can perform signal 

adaptive decomposition according to the time scale characteristics of the data itself with-

out the need to set the basis function in advance like wavelet decomposition. However, 

traditional EMD cannot decompose signals without enough extreme points, which further 

leads to the phenomenon of mode aliasing. In order to solve this problem, a signal decom-

position method of EEMD has been proposed. 

In recent years, EEMD is developed on the basis of EMD. In the process of signal 

decomposition, EEMD introduces the white noise with uniform spectral distribution into 

the signal to be analyzed, which can automatically distribute the signal to the appropriate 

reference scale. Because noise has the property of zero mean, it will cancel each other out 

after many times of averaging [44]. Therefore, the calculation result of the integrated mean 

can be directly regarded as the final result. EEMD can suppress mode aliasing effectively, 

so the decomposition effect is better than EMD. Based on the above reasons, this paper 

uses EEMD method to decompose the original signal in this paper. 

The steps of the EEMD algorithm are as follows: 

Step 1: Add normal distributed white noise to the original signal. 

Step 2 Take the signal with white noise as a whole, and then perform EMD decom-

position to obtain each IMF ( Intrinsic Mode Function) component. 

Step 3: Repeat Step 1 and Step 2, adding a new normal distributed white noise se-

quence each time. 

Step 4: The result of IMF integration averaging is taken as the final result. 

Ultimately EEMD can decompose arbitrarily complex signals into a finite number of 

intrinsic mode functions.  

  

Figure 3. The output of the neural network is “polluted” by noise.

3.2. EEMD Introduction and Principle of Signal Decomposition

EMD is a new adaptive time-frequency signal processing method suitable for the
analysis and processing of nonlinear and non-stationary signals. EMD can perform signal
adaptive decomposition according to the time scale characteristics of the data itself without
the need to set the basis function in advance like wavelet decomposition. However, tradi-
tional EMD cannot decompose signals without enough extreme points, which further leads
to the phenomenon of mode aliasing. In order to solve this problem, a signal decomposition
method of EEMD has been proposed.

In recent years, EEMD is developed on the basis of EMD. In the process of signal
decomposition, EEMD introduces the white noise with uniform spectral distribution into
the signal to be analyzed, which can automatically distribute the signal to the appropriate
reference scale. Because noise has the property of zero mean, it will cancel each other out
after many times of averaging [44]. Therefore, the calculation result of the integrated mean
can be directly regarded as the final result. EEMD can suppress mode aliasing effectively,
so the decomposition effect is better than EMD. Based on the above reasons, this paper uses
EEMD method to decompose the original signal in this paper.

The steps of the EEMD algorithm are as follows:
Step 1: Add normal distributed white noise to the original signal.
Step 2: Take the signal with white noise as a whole, and then perform EMD decompo-

sition to obtain each IMF (Intrinsic Mode Function) component.
Step 3: Repeat Step 1 and Step 2, adding a new normal distributed white noise

sequence each time.
Step 4: The result of IMF integration averaging is taken as the final result.
Ultimately EEMD can decompose arbitrarily complex signals into a finite number of

intrinsic mode functions.

3.3. Separation Method of White Noise

The white noise after EEMD decomposition is still a normally distributed signal, and
each IMF is guaranteed to correspond to only one frequency value at each instant. That is,
the IMF is a single-component signal. According to this feature, the different frequency
components of the white noise signal can be decomposed into different IMF components.

It is generally believed that white noise is distributed in the first K IMF components,
but there is no specific standard for the value of K. Therefore, certain criteria need to be
established to separate white noise from the original signal. The statistical properties of
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white noise can be studied using the concept of averaging period [45]. The formula for the
average period is:

T =
N

nmax
(7)

In the above formula, N is the number of sampling points and nmax is the number of
maximum points of the k-th order IMF. By calling the function “findpeaks” in MATLAB,
the maximum number nmax of the sequence can be obtained.

Since EEMD is a dichotomous filter [46], the average period of the IMF components
obtained by decomposing signals with the same characteristics by EEMD can be followed
regularly. That is, after white noise is decomposed by EEMD, the average cycle of each
IMF is nearly twice that of the previous one. The original signal is decomposed by EEMD
to obtain each IMF component. Based on the period of the first IMF component, if the
subsequent IMF cycle is twice that of the previous one, the IMF component can be judged
as a component of white noise.

4. Application of EEMD-GRNN Algorithm

The application of EEMD-GRNN algorithm is introduced by processing a generated
drift signal. First, the original signal is decomposed into multiple IMF components by
EEMD signal decomposition method. The IMF component corresponding to white noise
is found according to the criterion proposed in this paper. The drift signal without noise
can be obtained by recombining the remaining signals. Then the optimal GRNN can be
established by using cross validation and parameter optimization algorithm. The complex
nonlinear drift signals can be modeled and fitted by using the optimal GRNN. A generated
random drift signal is shown in Figure 4. Random drift signal contains white noise and
random drift trend.
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White Noise Separation Method Based on EEMD

Each IMF component can be obtained after EEMD decomposition of the original drift
signal. Each signal component after decomposition is shown in Figure 5. The original
signal was decomposed by EEMD to obtain 10 IMF components. Due to space limitations,
only the first 5 IMF components are shown in the figure.

After the original signal is decomposed by EEMD, the peak number and average
period of each IMF component can be obtained by programming. The original signal
was decomposed by EEMD to obtain 10 IMF components. The average period and peak
number of each IMF component are shown in Table 1. In addition, the multiple relationship
between the period of each IMF component and the period of the IMF1 component is also
listed in the table.
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Figure 5. The first five component diagrams of the original signal after EEMD decomposition.

Table 1. The relationship between the average period of each IMF and the multiple of IMF1.

IMF Component Average Period Number of Peaks Multiple

IMF1 2.69 446 1.00
IMF2 5.50 218 2.04
IMF3 10.81 111 4.01
IMF4 21.81 55 8.10
IMF5 46.15 26 17.10
IMF6 100.00 12 37.17
IMF7 240.00 5 89.22
IMF8 600.00 2 223.05
IMF9 1200.00 1 446.09

IMF10 1200.00 1 446.09

From Table 1, it can be clearly seen that from IMF1 to IMF4, the average period of each
component is almost twice that of the previous one. According to the theory described
above, it can be concluded that the first four IMF components are obtained by EEMD
decomposition of white noise. Therefore, the drift trend without noise can be obtained by
subtracting the first four IMF components from the original signal, as shown in Figure 6. It
can be seen from Figure 6 that the drift signal after denoising has strong regularity.
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5. Recognition Method of Denoising Signal

This part introduces the modeling method and process based on GA-BP and GRNN in
detail, which is the application of some relevant theories and algorithms proposed above.
In addition, the modeling effects of the two methods are compared in this section.

5.1. Moeling Method Based on GA-BP

BP neural network is also one of the neural networks often used for regression and
prediction. However, due to the random selection of initial weights and thresholds in the
training process, it is easy to fall into the problem of local optimal solution. In order to
improve the prediction accuracy, genetic algorithm is usually used to optimize the initial
weights and thresholds [47]. First, a BP neural network is constructed and its parameters
are initialized by genetic algorithm. Genetic algorithm can generate the initial weights
and thresholds of BP neural network according to certain rules. The initial population
was coded and the prediction error of BP neural network was used as fitness function.
The optimal weights and thresholds of BP neural network can be found after the genetic
algorithm stops according to the specified criteria. Taking the best weights and thresholds
as the initial values of BP neural network parameters for training can achieve the best
prediction effect. The whole GA-BP algorithm flow is shown in Figure 7.

GA-BP is used to fit the complex nonlinear drift signal after denoising, as shown in
Figure 8. Figure 8 shows the modeling effect of the GA-BP neural network as the number
of neurons and layers increase. Although the modeling effect of the GA-BP neural network
becomes better with the increase of the number of neurons and layers, there is still a local
modeling error as indicated by the yellow circle in the figure. It is worth noting that as the
number of neurons and layers increases, the processor needs to pay more running time. In
addition, multinomial fitting was also used for fitting. It is found that although the fitting
polynomial order is very high, the fitting effect is still very unsatisfactory. Due to space
constraints, polynomial fitting renderings are not listed here.
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Figure 8. Modeling effect of GA-BP neural network on denoising signals. (a) A three-layer neural
network with five neurons in the middle layer is used to model the denoised signal; (b) a three-layer
neural network with 15 neurons in the middle layer is used to model the denoised signal; (c) a
four-layer neural network with 25 and 10 neurons in the middle layer is used to model the denoised
signal; (d) a four-layer neural network with 25 neurons in the middle layer is used to model the
denoised signal.
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5.2. Modeling Method Based on GRNN

First, the best GRNN model is obtained through cross-validation and parameter
optimization algorithm. The original signal after noise removal is then fitted by this
optimal GRNN model. The signal fitted by the best GRNN model is compared with the
signal with noise removed from the original signal as shown in Figure 9. From Figure 9, it
can be found that the signal fitted by GRNN better reflects the drift trend of the signal after
noise reduction.
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Figure 9. The fitting effect of GRNN on the drift signal after denoising.

In order to reflect the effect of GRNN modeling after noise reduction, the original data
and the modeling output data of GRNN are compared, as shown in Figure 10. Compared
with Figure 3, it is obvious that the output data after GRNN modeling is no longer affected
by noise.
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In order to have a more intuitive understanding of the modeling effect of GA-BP
neural network and GRNN, the mean and standard deviation of the compensated signals
and the running time of the processor in the operation process were compared, as shown
in Table 2.

Through calculation, it can be obtained that the mean of the original signal is changed
from 0.1130 m/s2 to −1.2646 × 10−7 m/s2, and the variance is reduced from 0.0133 m/s2

to 1.0975 × 10−5 m/s2.
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Table 2. Comparison of compensation effects between BPNN (back propagation neural networks)
and GRNN.

Method Mean (m/s2) Variance (m/s2) Runtime (s)

Three-layer BPNN with 5 neurons −6.3801 × 10−4 7.2346 × 10−4 0.3689
Three-layer BPNN with 15 neurons −2.7316 × 10−4 2.4139 × 10−4 0.5988

Four-layer BPNN with 25 and 10 neurons 2.2853 × 10−4 7.2478 × 10−4 1.1990
Four-layer BPNN with 25 and 25neurons 1.1045 × 10−4 6.9435 × 10−4 3.7996

GRNN −1.2646 × 10−4 1.0975 × 10−4 0.2567

6. Acceleration-Based Displacement Measurement Experiment

In order to check the effect of sensor error compensation before and after, a displace-
ment test based on acceleration integral was carried out. This section first introduces the
hardware system of acceleration data acquisition. Second, the displacement algorithm
based on acceleration integral and the influence of sensor output error on the integral are
introduced. Finally, the measurement accuracy of displacement after compensating sensor
output error is given.

6.1. Design of Acceleration Acquisition System

The system consists of DSP microprocessor, MEMS acceleration sensor, power supply
module and peripheral circuit. As the acquisition module of the system, the MEMS
acceleration sensor is mainly used to sense the acceleration of the object in real time and
transmit the acceleration data to the DSP through the IIC interface. In order to reduce
system error, two sensors are integrated on the circuit board to collect data at the same
time. A pair of accelerometers are located symmetrically on either side of the board. As
the control module of the system, DSP microprocessor is mainly used for data processing
and data storage. When the acceleration data is collected by the system, it can be further
transmitted to the upper computer through SCI (serial communication interface) for data
analysis. The hardware structure of the whole measurement system is shown in Figure 11.
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The sensor can be adjusted to horizontal position by high precision dial and level
for random drift test. In order to improve the stability of data acquisition process, the
measuring board is positioned and clamped by a special fixture. The test device and data
acquisition process of zero random drift test are shown in Figure 12. In order to reduce
the error in the measurement process, the sampling system sampled at two horizontal
positions of 0 degrees and 180 degrees respectively and took the average value as the drift
error of the sensor.
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6.2. Displacement Measurement Method Based on Acceleration Integral

Acceleration-based displacement measurement technology has a long history and has
been applied in engineering practice [48]. The accelerometer based on MEMS technology
has the advantages of small size, light weight, and strong impact resistance. Therefore,
based on the need of measuring displacement in a research project, we adopt MEMS
acceleration sensor to collect acceleration. DSP samples acceleration at a sampling frequency
of 100 HZ, so the acceleration data collected are discrete. So, the displacement of the object
can be calculated according to the discrete acceleration value.

According to the integral relationship between acceleration and velocity, the following
equation can be obtained [49]:

v(t) =
∫ t

t0

a(t)dt + v(t0) (8)

If the acceleration is a discrete value, the velocity value of any point can be obtained
as follows:

v[n] =
n

∑
k=1

a[k] + a[k− 1]
2

∆t + v[0] (9)

In the above formula, v[n] is the velocity of the object at any point, and a[k] is the
discrete acceleration value at any point. ∆t represents the time interval between two
adjacent sampling points, and a[0] represents the initial acceleration of the object.

Similarly, according to the integral relationship between velocity and displacement,
the following formula can be obtained:

s(t) =
∫ t

t0

v(t)dt + s(t0) (10)

When the discrete velocity value is obtained, the discrete displacement value can be
further obtained as shown in the formula below:

s[n] =
n

∑
k=1

v[k] + v[k− 1]
2

∆t + s[0] (11)

The velocity and displacement of a moving object at any time can be calculated by
cyclic iteration algorithm.
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6.3. Measurement Error Analysis

Although the displacement measurement method based on acceleration has been
applied in many fields, the accuracy of measurement is severely restricted by the existence
of sensor output errors. Therefore, it is necessary to explore the influence of sensor output
error on displacement measurement. This section analyzes the influence of sensor output
error on displacement based on displacement calculation formula. Assuming the sensor
has a fixed output error ξ, the acceleration at any point becomes a[n] + ξ. The velocity with
error can be obtained by substituting the acceleration with error into the discrete velocity
calculation formula.

v[n]
′
=

n

∑
k=1

a[k] + a[k− 1] + 2ξ

2
∆t + v[0]= v[n] + v[0] +

1
2

nξ∆t (12)

It can be found from the above formula that if there is an error ξ in the sensor output,
the velocity error through one integration is nξ∆t/2. Furthermore, the velocity expression
with error is substituted into the discrete displacement formula to obtain the displacement
expression with error.

s[n]
′
= s[n] + s[0] +

1
2

n2∆t2ξ (13)

The displacement error of acceleration error after quadratic integration is n2∆t2ξ/2. It
can be concluded that when the sensor has output error, the error will participate in the
integral calculation and be gradually amplified in the process. Therefore, it is necessary to
compensate the output error.

6.4. Experiment

First the data acquisition system is placed on the horizontal slider as shown in
Figure 13. A laser level is used to adjust the slide to a horizontal position. A small lithium
battery is used to power the acceleration acquisition system during the test. When the
slider starts to move with a certain acceleration from the rest, the acceleration sensor will
collect the acceleration of the slider at a certain frequency in real time.
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Figure 13. Device and process for acceleration acquisition by slider motion.

After the test, the acceleration data during the slider movement can be obtained
through the SCI of the DSP. The motion displacement of the slider can be obtained by
the algorithm based on the acceleration integral given above. In addition, we present the
original signal output by the sensor, the denoised signal and the comparison between
them in Figure 14. At the same time, through MATLAB calculation we can get the optimal
smoothing factor of GRNN is 0.01.
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Figure 14. The original signal and its noise reduction results and the GRNN modeling process.
(a) Original output signal of MEMS sensor; (b) random drift signal after denoising the original
signal; (c) modeling random drift signals with GRNN; (d) comparison of original signal and GRNN-
fitted signal.

A total of five tests were carried out, and the actual movement displacement of the
slider was set to 5 m during the test. Table 3 shows two displacement calculation results,
one of which is calculated by the acceleration directly output by the sensor, and the other is
calculated by the error compensation of the acceleration.

Table 3. Calculation results of displacement before and after acceleration compensation.

Actual
Displacement

Before
Compensation

Measurement
Accuracy

After
Compensation

Measurement
Accuracy

5 m 5.23 m 95.4% 5.10 m 98%
5 m 5.20 m 96% 5.09 m 98.2%
5 m 5.18 m 96.4% 5.11 m 97.8%
5 m 5.23 m 95.4% 5.08 m 98.4%
5 m 5.25 m 95% 5.12 m 97.6%

The test results show that the measurement accuracy of displacement is improved
after compensating the output error of acceleration. Due to errors in the manufacturing
process, the sensor sensitive axis and PCB board are not absolutely parallel, which may also
cause errors in the displacement measurement. In addition, due to the sampling frequency
of acceleration and other uncontrollable factors, the displacement measurement results still
have certain errors. Due to the limited space of the experimental site, the displacement
test distance is short, which leads to the compensation effect of the sensor output error
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which is not obvious. However, according to the expression of displacement error deduced
above, we have reason to believe that the compensation effect will be more obvious with
the longer working time of the sensor. In addition, we have done experiments with other
sensors and found that the error output characteristics of different sensors are different.

7. Discussion and Conclusions

In this paper, the compensation method of random drift error of MEMS acceleration
sensor was studied. The idea of neural network recognition and modeling after denoising
the original signal was proposed in this paper. The measurement noise in drift signal
is separated effectively by EEMD method. In addition, the optimal prediction model of
GRNN was obtained by cross validation and parameter optimization algorithm. Compared
with GA-BP neural network and polynomial fitting method, GRNN can effectively identify
complex nonlinear random drift signals. Finally, the effectiveness of the compensation
algorithm is verified by the displacement measurement experiment based on acceleration
integration. Based on the research content of this paper, the following information and
conclusions can be obtained:

1. Due to the unreasonable setting of input and output samples of neural network, the
existence of noise will affect the modeling effect of neural network.

2. According to the characteristic of EEMD with binary filter, white noise can be sepa-
rated from the original signal.

3. Neural network has better modeling effect for denoised signals.
4. The best GRNN model based on cross validation and parameter optimization algorithm

has better fitting effect on complex nonlinear drift signals than BP neural network.
5. If the output error of the acceleration sensor participates in the integration process, it

will be gradually amplified in the integration process.
6. The error compensation algorithm based on EEMD-GRNN can compensate the sensor

output error to a certain extent. The low requirement for the raw output data of the sensor
is also an advantage of this algorithm compared with other compensation algorithms.

7. Different sensors have different drift characteristics. The drift process of some sensors
is more intense, while the drift process of other sensors is more gentle.

This paper only studies the compensation method of random drift error of sensor
at normal temperature. The random errors of MEMS sensors may be affected by the
temperature in extreme environments in addition to their own fabrication materials and
physical structures. Therefore, the next step is to use the temperature control box to
conduct experiments to study the error characteristics of the sensor at different working
temperatures. If the sensor is significantly affected by temperature, it may be a good idea to
incorporate random drift errors into temperature errors to compensate. In addition, other
factors that cause sensor output errors still need to be further explored. The characteristics
of the error signal output by different types of sensors may be different, so choosing the
appropriate signal processing method can achieve the best compensation effect.
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