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Abstract: As the end execution tool of agricultural robots, the manipulator directly determines
whether the grasping task can be successfully completed. The human hand can adapt to various ob-
jects and achieve stable grasping, which is the highest goal for manipulator design and development.
Thus, this study combines a multi-sensor fusion tactile glove to simulate manual grasping, explores
the mechanism and characteristics of the human hand, and formulates rational grasping plans. Ac-
cording to the shape and size of fruits and vegetables, the grasping gesture library is summarized to
facilitate the matching of optimal grasping gestures. By analyzing inter-finger curvature correlations
and inter-joint pressure correlations, we investigated the synergistic motion characteristics of the
human hand. In addition, the force data were processed by the wavelet transform algorithms and
then the thresholds for sliding detection were set to ensure robust grasping. The acceleration law
under the interaction with the external environment during grasping was also discussed, including
stable movement, accidental collision, and placement of the target position. Finally, according to the
analysis and summary of the manual gripping mechanism, the corresponding pre-gripping planning
was designed to provide theoretical guidance and ideas for the gripping of robots.

Keywords: agricultural manipulator; tactile glove; manual simulation; grasp analysis; grasp planning

1. Introduction

Agriculture is fundamental to human survival, and skilled agricultural labor is grad-
ually becoming one of the most demanding factors in the industry [1]. However, the
increasing trend of population aging has caused a labor force shortage for agricultural
work. Compared with human beings, robots have superior durability and high repeatabil-
ity, and can replace or supplement humans to complete tedious and dangerous tasks, which
provides a potential solution to the above problems [2,3]. With the high requirements of
automation brought by the industrial upgrading of the agriculture and food industry, the
application of agricultural robots will be more extensive. As a result, there has been a
growing interest in using agricultural robots to pick, sort, and pack fruits and vegetables
over the past three decades [4,5]. The development of such platforms involves many
challenging tasks. Grasping, moving, and placing objects are the essential functions and
common operations of robots and manipulators [6]. Since fruits and vegetables are often
fragile, irregular, and slippery, a non-destructive, stable, and firm grasping target remains a
challenge for the manipulator [7–9]. Previous studies have amply proven that appropriate
grasp configuration and reasonable gripping planning are the key factors in ensuring the
safe and steady grasping on target objects [10,11].

In many agricultural tasks, potential slippage and damage risks should be avoided
when grabbing and placing objects due to the large differences in shape, hardness, and
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surface properties of agricultural products [12,13]. Thus, the proper grasping configuration
(that is, the gripping posture of the hand relative to the object) is necessary for the grasping
of the manipulator. Humans can use their hands flexibly to complete various complex
tasks. Understanding the characteristics and mechanism of human grasping has important
guiding significance and reference value for humanoid robotic grabbing. Understanding
how humans grasp fruits and vegetables, understanding the kinematic implications and
limitations associated with each grasp, and understanding common usage patterns are
important in many areas of agricultural picking, sorting, and packaging. In gripping
tasks, it is important to understand not only the gripping shape for normal use, but also
how to adapt the gripping posture to the task requirements. Each grip can be classified
according to the need for precision or power, and the hand posture is very important and
influences many authors. Numerous studies on hand grasping bypass the more complex
biological structure, and the approach of hand grasping posture as the entry point for
research is widely adopted. According to the shape characteristics of hand grasping and
grabbed objects, Schlesinger [14] divided hand grasping posture into six categories from
the functional aspect, including fingertip pinch, side pinch, clamp pinch, hook, spherical
grab, and cylindrical grab. Then, Napier [15] pointed out that the surface characteristics,
size, shape, and other factors of the target object will directly affect the grasping motion
and divided the grasping configuration into the precision grip and power grip. Iberall [16]
first proposed the concept of the virtual finger (VF), in which one or more fingers were
classified as the same functional unit by applying force in similar directions and acting
in a consistent manner in the process of grasping [17]. Grasping posture can thus be
divided into three basic types: lateral finger confrontation, interfinger confrontation, and
palm confrontation. According to different classification basis, Vergara et al. [18] and Feix
et al. [19] divided the grasping posture into 9 and 33 categories, respectively. In addition
to crawling configuration, reasonable and effective grasping planning is also necessary to
ensure robust and successful grasping.

Compared with robots, humans are adept in holding target objects flexibly and ro-
bustly in different backgrounds when performing grasping tasks. Although great progress
has been made in the research of manipulator gripping, achieving the same level of ro-
bustness and versatility as the human hand is still difficult [20]. Therefore, designing and
controlling the manipulator based on the analysis of manual grasping characteristics is
essential for the intelligent planning of the manipulator [21]. Starke et al. [22] investigated
the force synergy effect in human grasping behavior and further understood the hand
dynamic properties of grasping motion by analyzing the correlation between the grasp
forces in fingers and palm. In addition to force synergy, Naceri et al. [23] focused their
research on gripping force control. They investigated unconstrained hand gripping in the
framework of motor synergy theory to reduce motor redundancy and achieve stable grip-
ping. When the manipulator performs grasping task, it needs to interact with the external
environment constantly through various sensors [24]. Additionally, the establishment of a
multi-sensor fusion feedback network plays a crucial role in ensuring the stability of the
target work. With the deepening exploration of the human-hand grab mechanism, the
analysis of grasping characteristics based on tactile information is particularly important.
Coupled with the continuous progress of sensors and sensing technology, tactile sensors
are widely used in the research of grabbing analysis. Nicholas et al. [25] applied pressure
sensors in their research to investigate the relationship between the force and contact area
of a cylinder operated by human hands. Li et al. [26] designed a skin-inspired quadruple
tactile sensors which can integrate the information of pressure, object thermal conductivity,
object temperature, and environment temperature. Its application to robot grippers enables
accurate recognition of objects of different shapes, sizes and materials. Battaglia et al. [27]
developed a wearable fingertip force/moment sensor, which can be used in grasping analy-
sis to accurately measure the contact force between the hand and the target object to further
investigate the sensorimotor control. Sundaram et al. [28] combined tactile gloves with the
sensor array and deep learning technology to recognize target objects and explore tactile
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patterns. The extended sensor array can capture tactile information from almost the entire
hand. Many related studies have also realized data acquisition, object recognition, and
grasping pattern identification based on tactile perception [29–31].

Although previous research on tactile perception and grasp configuration have been
carried out, the studies mentioned above are generally only aimed at specific research
directions. There are few studies on grasp configuration and grasp planning based on the
analysis of manual grasping patterns and haptic perception. Thus, the main purpose of
this paper is to study the mechanism during manual grasping, so as to provide theoretical
guidance for the development of grasping plans for agricultural manipulators that need
to be involved in fruit and vegetable grasping, such as fruit and vegetable picking and
sorting. Specific objectives include the following: (1) design and develop the tactile data
collection glove, and complete related grasping experiments; (2) summarize the grasping
posture library according to manual grasping characteristics and experience; (3) combine
the haptic information to analyze the inter-finger curvature correlation and inter-joint
pressure correlation; (4) investigate the slippage occurrence and external acceleration
interaction during gripping; (5) analyze the multi-finger grasp strategy and make rational
grasping planning to provide theoretical guidance for the manipulator.

2. Materials and Methods
2.1. Physiological Structure of the Human Hand

The human hand is the optimum reference object for manipulator design and devel-
opment [32]. Whether from the structure, function, operational coordination, and other
aspects, the performance of human hand is the supreme target for bionic manipulator re-
search. Analyzing the physiological structure of the human hand is the basis for exploring
its grasping mechanism and providing ideas and guidance for the design, movement, and
control of the manipulator. Generally, a human hand consists of five fingers, including the
thumb, index finger, middle finger, ring finger, and pinky. Except for the thumb, which has
only two knuckles, the other fingers are all three knuckles. As shown in Figure 1, according
to the proximity from the palm, the phalanges are named as the distal phalanx, the middle
phalanx, and the proximal phalanx, respectively. Similarly, the joints between them are
distal inter-phalangeal (DIP), proximal interphalangeal (PIP), and metacarpal phalangeal
(MCP), respectively. Moreover, the structure connecting the proximal phalanx to the wrist
is the metacarpal bone, which constitutes the main part of the palm. Human fingers mainly
include the following motions: bending and extension, outreach and inward movement,
and ring rotation movement. Although the thumb lacks a knuckle structurally compared
with other fingers, the movement is much more complicated. Not only can the thumb
perform flexion and extension movement, but also its inward/outreach, as well as the
opening and closing movement to the palm is incomparable to other fingers. In addition to
flexion and extension, the three joints of the remaining four fingers can only perform small
inward/outreach movements.

2.2. Grab Force Closure and Stability

When agricultural robots perform picking or sorting tasks, it is always expected that
the end manipulator can grasp steadily. Once the robot arm has moved to the target
position, a safe and stable force analysis is a precondition to avoid damage to the object
caused by excessive grasping force or the object slipping due to too little gripping force. Due
to the structure, control conditions, and sensitive perceptual restrictions, the manipulator
cannot complete that flexible work as a human hand. Therefore, to make up for the inherent
deficiencies of manipulator, attention must be paid to the analysis of grasping stability and
thus formulate an effective grasping plan.
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Figure 1. Physiological structure of the human hand [33].

The grasping stability is usually studied by force and form closure theories depending
on whether friction cone constraints are involved in the grasping task. Friction cone is a
fully binding rotating vertebra synthesized by normal binding Fn and static friction force Fs
in an instant of relative sliding of the object (the axis is the common normal, as shown in
Figure 2a) [34]. Form closure is a purely geometric property without considering the effect
of grip force on task stability. This section analyzes the conditions for stable grasping based
on the force closure principle. Force closure is a state in which certain conditions must be
met for the contact between the finger and object for the object to reach static equilibrium
or relative palm movement of freedom is zero [35].

When multiple fingers participate in grasping, according to the Coulomb friction theo-
rem and the force vector in Figure 2a, it can be known that the requirements for avoiding
sliding and maintaining the stability of contact points need to meet the following formula:

Fs < µFn (1)

The above formula indicates that the static friction force at the contact point must be
on the surface or inside of the friction cone, and the angle (friction angle) between the full
binding force and the normal binding force is maximum when it is located on the surface.
Additionally, the friction angle satisfies:

tanα =
Fs

Fn
= µ (2)

For different contact forms, the representation of the friction cone changes depending
on the force constraints.

For the friction-point contact:

FC =
{

f ∈ R3 :
√

f 2
x + f 2

y ≤ µ fz, fz ≥ 0
}

(3)
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For the soft-finger contact:

FC =
{

f ∈ R4 :
√

f 2
x + f 2

y ≤ µ fz, fz ≥ 0, |m| ≤ γ fz

}
(4)

where f is grasping force, fz is normal binding force, fx, fy is the tangential force of f .
µ, m, γ are coulomb friction coefficient, normal torque, and torque friction coefficient,
respectively [36,37].

Thus, the multi-finger contacts conditions based on force closure include normal
binding force unidirectional, the contact point inside the friction cone and satisfying the
force balance condition.

When only two fingers participate in grasping, the contact model is shown in Figure 2b.
A, B are the two contact points, n1 is the normal vector at point A, α1 is the angle between
the line AB and the normal, and the same is true at point B [38].

According to the contact model, the following formula is obtained:

α1 = α2 = arctg
(

d
L

)
(5)

where d is the vertical distance between two points of A and B, and L is the distance of the
horizontal projection of the line AB. Therefore, the contact between two fingers meets the
conditions of force closure:

α > α1 = α2 (6)

In conclusion, the stability analysis of contact forces is a prerequisite to ensure ro-
bust grasping. Exploring the multi-finger and two-finger gripping laws based on the
force closure principle contributes to rational gripping planning and gripping control
of manipulators.

2.3. Grasping Posture Analysis

Currently, the in-depth studies on the analysis of manual grabbing modes have been
extensive. This study summarizes the grasping patterns of fruits and vegetables with
different shapes and sizes in agricultural scenarios. Since most fruits and vegetables are
convex and relatively regular in shape, they can be classified into three categories according
to their geometric characteristics: spheres, cones, and cylinders, which can be referred
to analyze the appropriate grasping mode. The spherical, cylindrical, and conical types
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of fruits and vegetables are the most common and representative and are the ones most
studies choose to study. These shapes make up the vast majority of fruits and vegetables.
Spherical products have the characteristics of the symmetrical structure and smooth surface
curvature. As shown in Figure 3a, the five fingers combined with the palm for power
grasping can stably envelop the target object in the largest range. However, due to the
constraints of the geometric radius of the finger and the object, not all spheres are suitable
for this method (as shown in Figure 3b). When the target object is small in diameter, using
the power grip of palm and fingers can cause the fingers to collide with the table during
bending and thus unable to bend to fit the surface of the object. Therefore, the power grip
is subdivided into a palm-aligned power grip and a proximal phalanx-aligned power grip
for spherical target objects, as shown in Figure 3.
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The gripping mode is determined by analyzing the relationship between the radius
of the target object and the length of the finger. The corresponding grasping posture is
shown in Table 1. Suppose the middle finger length is L and the object radius is r, when
L < πr/3, the palm-aligned power grasp method will be used to envelop the object. When
πr/3 < L < 2πr/3, the proximal phalanx-aligned power grasp is adopted, which uses the
proximal phalanges to replace the palm function and increases the contact length between
the fingers and the object. For the objects with L > 2πr/3 such as kumquats or saints, a
precision gripping pattern such as the two-finger pinch can be used, and the clamping
angle is bounded by the diameter of the target object. Cylindrical fruits and vegetables have
a circular cross-section. For larger volumes, such as cylinders with a cross-sectional radius
satisfying L < πr/3 and the product length satisfying s > width (width of mechanical
palm), the palm-aligned five-finger power gripping can be performed. Additionally, when
s < width, the n + 1 finger-palm-aligned power grasping is performed according to its
length ratio (n = 5s/width, where width/5 is approximately equal to the width of the
middle finger). Similarly, when r satisfies πr/3 < L < 2πr/3 and is captured in the same
way as above. For cylindrical products, the thumb is often positioned at the center of the
cylinder to reduce the risk of slipping caused by the unstable and tilting center of gravity
of the object during the grabbing process. For smaller-sized cones of fruit and vegetables,
such as strawberries, the three-finger pinch pattern can be used.
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Table 1. The summary of grasping posture library based on human hands.

Shape Size Gesture Finger VF Allocation

Sphere

L <
πr
3

Palm-aligned power grab 5
VF1: T

VF2: I + M + R
VF3: L

πr
3

< L <
2πr

3
Proximal phalanx-aligned power grab 5

VF1: T
VF2: I + M + R

VF3: L

L >
2πr

3
Precision grab 2 VF1: T

VF2: I

cylinder

L <
πr
3

s > width Palm-aligned power grab 5
VF1: T

VF2: I + M + R
VF3: L

s < width Palm-aligned power grab (
5s

width
) + 1

VF2: T
VF2: I (M/R/L)

πr
3

< L <
2πr

3

s > width Proximal phalanx-aligned power grab 5
VF1: T

VF2: I + M + R
VF3: L

s < width Proximal phalanx-aligned power grab (
5s

width
) + 1

VF2: T
VF2: I (M/R/L)

L >
2πr

3

s > width Precision grab 5
VF1: T

VF2: I + M + R
VF3: L

s < width Precision grab (
5s

width
) + 1

VF2: T
VF2: I (M/R/L)

cone L <
2πr

3
Palm-aligned power grab 5

VF1: T
VF2: I + M + R

VF3: L

L >
2πr

3
Precision grab (

5s
width

) + 1
VF2: T

VF2: I (M/R/L)

2.4. Tactile Glove and Multi-Sensor System
2.4.1. Tactile Glove Design

The human hand can perceive external objects and perform various operations. Mean-
while, hand grasping can be regarded as a composite operating system integrating sensors
and clamping tools [5]. The tactile glove designed in this paper was used to collect various
haptic information in manual grasping simulation analysis. The data acquisition glove
takes the canvas glove as a carrier and fixes the sensor group on it. The specific sensors
distribution can be referred to in Figure 4, five bending sensors are attached to the back
of fingers, which effectively constitutes the bending sensing module. Similarly, in order
to measure the grasping force, eleven pressure sensors are installed at the corresponding
part of the finger belly and form the pressure sensing module. The reasonable layout of the
sensors makes the user wearing tactile glove to grab the target object without affecting the
normal movement of the hand joints. As a wearable virtual reality medium of exchange, the
tactile glove is responsible for touch perception and sending collected data to the computer.
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2.4.2. Bending Sensing System

The Flex 2.2 flexible bending sensors with the length of 2.2 inches were adopted in
the experiment. To prevent interference with the perception of the force sensor, they are
equipped on the upper side of the five fingers of the data glove. The resistance value of the
bending sensor changes depending on the bending. When the substrate is in the bending
state, the resistance output depends on the bending radius, and the smaller the radius, the
higher the resistance value. Additionally, when it is in a horizontal non-bending state, its
resistance value is about 9k ohms. When the sensor is bent at 90 degrees, the resistance is
about 14k ohms. When it reaches 180 degrees of bending, the corresponding resistance
is about 22k ohms. The bending sensing circuit on the glove is connected to the BLE4.2
Bluetooth circuit, and the computer reads the real-time curvature via Arduino.

2.4.3. Force Sensing System

Proper grasping force is a key factor for safe fruit grasping without potential slippage
and damage. The fifteen force sensors applied in this study are FSR (Force Sensing Resistors)
resistive film pressure sensors with the model of IMS-C10A. As shown in Figure 4, they
are arranged at the abdomen and palm of the tactile glove, which helps to make the forces-
sensing module cover almost the entire palm. The FSR sensor comprises two molecular
films (PVDF film) separated by a thin air gap and has the advantage of small size and
ultra-thin without affecting the hand movement when grabbing. As a series of FSR, IMS
(I-Motion) is a single-area force-sensitive resistor whose output resistance decreases as the
pressure on the effective surface increases. The FSR series are capable of measuring both
dynamic and static forces exerted on contact surface as well as providing favorable active
compliant control. More information about FSR sensors can be found in a compendium of
Sadun et al. [39].

2.4.4. IMU Interactive Perception System

Inertial Measurement Unit (IMU) is a medium for measuring the axial attitude angle
(or angular rate) and the acceleration, which can obtain information about the velocity,
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posture, and displacement of the carrier. The IMU placed at the wrist is a HWT906 nine-
axis attitude sensor containing three monoaxial accelerometers, gyroscopes as well as
magnetometers to measure three-dimensional acceleration, angular velocity, magnetic field,
and angle. For the gripping and placing operation of the robot, it is necessary to perceive
the interaction between objects and the external environment, such as the object has been
placed in a specified position or colliding with an obstacle in the grasping process. When
performing the grasp operation, IMU mostly combines with other sensors to realize the
position and state judgment of the hand, further improving the grasp control and motion
planning of the manipulator. In this study, the IMU was applied to collect the variation
information of the acceleration signal during an experiment, which is helpful to understand
and judge the interaction as well as provides a theoretical basis for the grasping judgment
of the robot.

3. Results and Discussion
3.1. Finger Correlation and Cooperation Analysis

The human hand has always been the best source of inspiration for manipulator
development, and the kinematics as well as dynamics of hands are the research focus of
grasping behavior. In the grab operation, the hand fingers are coordinated with movement
and cooperate differently for different target objects. In many tasks, multiple fingers will
work collaboratively as the same functional unit (virtual finger (VF) for manipulator).
Investigating the work allocation between fingers can not only benefit the selection of
optimal grasping mode, but also facilitate the optimization of anthropomorphic movement
and cooperative control of the manipulator.

3.1.1. Curvature Correlation

Therefore, in this paper, the correlation and partnerships of the human fingers are
explored by the grasping experiments, including the bending correlation between fingers
and the pressure correlation between joints. The experimental procedure is as follows:
Wear data gloves to grasp each group of fruit placed on the plane. Specific actions include
spreading the palm near the target object, bending the fingers for envelope grasping (or
pinching), lifting the target object for five seconds and keeping it stable, placing the object
in another position in the plane, and ending the grasp. For different diameters of fruits
and vegetables, the bending degree of the five fingers under the stable grasping condition
is shown in Table 2. To observe the finger coordination manner more intuitively, the
representative grasping with all five fingers involved is chosen in the following analysis.
Figure 5 shows the bending information of the five fingers for an apple (sphere) with the
diameter of 8.4 cm captured by the enveloping method. As can be seen from Figure 5a, a
lot of noise exists in the original curvature data. Therefore, it is necessary to de-noise the
experimental data before analyzing the correlation of finger curvature, the denoised picture
is presented in Figure 5b.
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Table 2. Finger curvature under stable grasping of objects with different diameters.

Diameter
(cm)

Thumb
(◦)

Index Finger
(◦)

Middle
Finger (◦)

Ring Finger
(◦)

Little Finger
(◦)

5.8 67.0804 84.6916 84.84 90.6295 110.0556
6 63.385 85.3011 89.8706 98.9282 104.8757

6.5 62.5786 83.1954 85.3294 87.2685 68.1654
6.8 62.4524 81.5481 81.1659 84.06 66.1351
7.0 50.1655 75.2654 78.6145 45.2645 60.1874
7.4 38.8601 71.8594 74.6515 70.3559 50.0897
7.5 39.1324 71.8624 70.1338 70.6458 54.2648
7.7 39.7285 71.8795 67.8881 70.2586 58.893
8.4 34.1429 55.5814 53.9732 46.116 32.4522
9.1 36.5123 65.8141 65.0091 69.5407 45.0819
9.5 14.7934 75.9312 70.5472 73.6385 41.8194

After reading in the data from the bending sensors and obtaining the bending value in
the steady grasp state after signal processing, the angle of each finger was formed into a set
of data. Suppose there are two data sets, sequence A and sequence B, where A and Ai are
the average value and the ith value of sequence A, respectively (the same with B). Then,
the correlation coefficient r of the two data sets can be calculated by the following formula:

r =
∑n

i=1
(

Ai − A
)(

Bi − B
)√

∑n
i=1
(

Ai − A
)2
√

∑n
i=1
(

Bi − B
)2

(7)

The histogram of curvature correlation between different fingers is shown in Figure 6,
where 1 represents the thumb, 2 the index finger, 3 the middle finger, 4 the ring finger, and
5 the little finger. The calculation results illustrate that the correlation coefficient between
the thumb and other four fingers is relatively lower, indicating that the thumb is more
independent in its movement. This can be a difficulty in researching the coordinated motion
of the manipulator because the thumb has higher freedom and is more engaging than the
other fingers. Moreover, the thumb is also the most flexible of all fingers with the widest
range of fingertip workspace. Similarly, the little finger showed a lower correlation. This
may be related to the power provision and object support of the little finger in grasping
objects, which plays an important stabilizing role to ensure the stability and balance of the
holding object. Conversely, the highest correlation is found between the index, middle, and
ring fingers. The phenomenon suggests that the synergistic motion between these three
fingers is the most significant in human grasping operation. The effective cooperation and
association between fingers during stable handgrip can also be used as one of the judgment
conditions for a stable grip. Therefore, referring to the curvature correlation between the
fingers, the virtual fingers can be allocated reasonably in the grasp control and planning of
the manipulator. By controlling the collaborated movement between the interconnected
fingers, a better manipulator grip can be controlled.

To investigate the relationship between the change in curvature and the diameter of
the object during manual grasping, the functional relationship between the five fingers and
the diameter was derived by the second-order polynomial fitting. This function can be used
as the initial value of the curvature to guide the grasping of the manipulator. According
to the fitting function image (Figure 7), as the diameter of the object increases, the finger
curvature decreases, which is consistent with the actual situation.
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3.1.2. Force Correlation

In addition to collecting the bending information during the grasping process by the
bending sensors, we also collected the force signals of each joint in a grasping experiment
by the force sensors. Figure 8 shows the force signals of the three knuckles of the middle
finger and little finger in a certain hand-grabbing simulation. Through many experiments,
it is found that the force at MCP is the lowest among the three joints in the stable grasping
state. The relative force of PIP and DIP joints is higher, and the force of the DIP joint is
basically greater than or equal to the force at PIP. The pressure relationship between the
three finger joints can be used as an initial judgment condition for stable grasping. Similarly,
by solving the correlation coefficient of grasping force of three joints, the knuckle force
correlation in the manual grasping process can be obtained. As can be seen from Table 3,
the independence of MCP joint force is the highest overall, and the index, middle, ring, and
little fingers all meet the highest PIP-DIP force correlation. In fact, the index finger, middle
finger, and thumb usually provide the pinching and gripping power, while the ring finger
and little finger cooperate in providing the gripping power. The tacit cooperation between
fingers and knuckles is also a key factor to ensure stable grasping.

Table 3. Pressure correlation coefficient of the three-finger joint.

Finger MCP-PIP MCP-DIP PIP-DIP

Thumb 0.756522(IP) \ \
Index finger 0.399683 0.369631 0.593295

Middle finger 0.531877 0.192749 0.651953
Ring finger 0.271122 0.432492 0.837198
Little finger 0.795578 0.607841 0.670623
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3.2. Slippage Detection

Since fruits and vegetables generally have diverse shapes and are fragile, the appropri-
ate grasping force is particularly crucial to secure and avoid potential slippage. Insufficient
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grasping force may easily lead to slippage, at which point the pressure will generally con-
tinue to increase, but excessive pressure often causes fruit damage. Thus, proper pressure is
a necessary condition for safe grasping. Humans can obtain interactive information based
on the force receptors on the skin surface and adjust the grasping force timely according
to the actual situation, which is a challenge for robots. Therefore, slippage detection is
an important prerequisite for robust crawling and timely adjustment of grasping force.
The slippage occurrence can be detected based on the force signal. As shown in Figure 9,
the output pressure changes relatively stable when the object is statically placed on the
force sensor, while when the object slides, its pressure value will generate an instantaneous
pulse. Eventually, when the object slips to separate from the force sensor, the pressure value
rapidly decreases to zero, and the slip signal is obvious. However, due to irresistible human
factors and environmental factors, the force data will fluctuate and cause interference when
the pressure information is collected by wearing the data glove, which makes it difficult
to analyze the sliding signals from a single time domain. Studies have shown that the
sliding phenomenon is accompanied by the high-frequency electrical signals output from
the pressure sensor, and the high-frequency component can be an important factor in
judging whether the slip occurs. Currently, common methods for efficient acquisition of
high-frequency signals include Fourier transform, high-pass filter, wavelet transform, and
so on. In these methods, such as high-pass filters, s difficult to select appropriate cutoff
frequency to distinguish interference frequency from slip frequency. The Fourier transform
has theoretically infinitesimal resolution in the frequency domain, but it also loses all the
time domain information and suffers from problems such as the inability to locate the time
period when the slip occurs. Moreover, Fourier transform has a high requirement on the
accuracy of the original signal, and its image in the frequency domain is easily affected by
external interference. Therefore, Fourier transform is not strong in analyzing non-stationary
signals. However, the wavelet transform can obtain the time-frequency domain information
and has a high frequency resolution for the characterization results of the low-frequency
components of the analyzed signal, and a high time resolution for the characterization
results of the high-frequency components. Additionally, it achieves better performance
for sudden and drastic distortion signals such as slip signals with attenuated finite length
wavelet bases. Therefore, in this study, we choose wavelet transform to judge the occur-
rence of slip. In Figure 10, d1, d2, and d3 are the first-order, second-order, and third-order
wavelet transform results of the original voltage signal, respectively. It can be found that
with the generation of slippage, the wavelet transform shows clear coefficient peaks, which
can judge the occurrence of sliding during gripping by setting the amplitude threshold.
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Figure 9. Slippage detection based on force signal. (a) The target object is stably placed on the target
sensor. (b) The target object slides away from the pressure sensor.
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3.3. External Interaction Judgment

For the grasping and placing operation of the robot, it is necessary to perceive the
interaction between the object and the external environment, such as the object has been
placed in a specified position or collided with obstacles during the grasping process. This
paper analyzes the acceleration signal changes during the grasping operation and tries to
understand and judge the interaction, thus providing a theoretical basis for the grasping
judgment of the robot. In this section, we launched two related experiments, one is the
desktop interaction experiment, and the other is the obstacle collision experiment. The
specific procedure of the desktop interaction experiment is as follows: attach the IMU
sensor to the wrist and keep the hand slowly close to the target object. Then, hold the
object and lift it 15cm high, keep the vertical height unchanged and move evenly to the
target position. Finally, drop the object at a constant speed until it contacts with the table.
Similarly, the first two steps of the obstacle collision experiment are the same as the desktop
interaction experiment. Then, simulate the action of encountering the preset obstacle in
the Y and Z directions and stop the movement. It is worth stating that the precision and
accumulated error of IMU is indeed an issue that should be considered if the fine-grained
operation or movement trajectory of human hand is studied. However, in this paper,
the main purpose is to study the mechanism during manual grasping, so as to provide
theoretical guidance for the development of grasping plans for agricultural manipulators
that need to be involved in fruit and vegetable grasping, such as fruit and vegetable picking
and sorting. Therefore, there is no high requirement for the accuracy of IMU, it only needs
to be able to reflect the movement pattern and response action characteristics of human
hands, and the accuracy of the IMU used now is sufficient to complete our research.

The experimental results are shown in Figure 11. When hands maintain static or move
at a uniform speed, the acceleration in X, Y, and Z directions is 0 (Figure 11a). As shown in
Figure 11b, the acceleration in the Y and Z directions produces large perturbations, while
the acceleration transformation in the X direction changes relatively gentle. So, it can be
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judged that the obstacle is located in the Y and Z axis of the object, and there is no obstacle
in the X-direction. When a collision occurs during grasping, the acceleration amplitude in
the direction of the collision will fluctuate greatly, which can serve as a symbol of collision
detection. Figure 11c shows the acceleration change of the Z-axis when the object was
placed on the desktop after the grasping operation was completed. At the 18 s point, the
object collides with the desktop, and the acceleration increases instantly. The analysis above
facilitates replanning the grasping path after the collision of mechanical grasping.
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Figure 11. External interaction perception based on acceleration. (a) The hand maintains static or
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3.4. Grasping Control and Planning for Manipulator

According to the analysis and relevant conclusions in the preceding sections, the
control and planning of manipulator grasping are carried out based on the understanding
of manual grasping mechanism. The following content makes a general plan for the
manipulator grasping mainly from three parts: gripping configuration and bending control,
pressure perception and slippage detection, and interaction judgment. In the grasping
configuration stage, the robot will first select the grasping pattern according to the geometric
shape and feature size of the target object. It includes grasping posture (power grasping
or precision grasping), effective mechanical finger allocation (actual number of fingers
involved in the grip), and virtual finger planning. A reasonable allocation of virtual fingers
can improve the cooperative motion mechanism of each finger and reduce the complexity
of motor control. Combined with the grasping gesture library collated in Section 2.2, the
corresponding virtual finger assignments are shown in Table 1, where T, I, M, R, and L
represent the thumb, index finger, middle finger, ring finger, and little finger, respectively.
Once the pattern is determined, the robotic arm will move to the target position with the
manipulator ready to grasp.

After the preparation grab, it enters the bending control stage. The relative task is to
set the initial value of mechanical grasp curvature based on the geometry, radius, and the
curvature model established with the previous grasp analysis. When the contact signal
appears as the manipulator approaches the target object, the mechanical finger bends to the
specified initial bending value according to the signal generated in different situations. The
contact signals here can be divided into three categories, the first of which is the palm-type
power grip contact signal. In this case, the data M of the pressure sensor at the palm is
used as the trigger symbol, and when M is unequal to 0, the contact has been triggered.
According to the law of hand grasping, the manipulator successively bends the MCP, PIP,
and DIP, and the control sequence of each joint is shown in Figure 12. The second category
is the power grasp of the proximal interphalangeal joint, with the pressure signal MP of
proximal interfinger joint as the trigger signal. When the MP is nonzero, the remaining
two joint can be bent for grasping. The last one is precision grasping. When the pressure
signal 1_PIP at the distal knuckles of the thumb is nonzero, indicating that grasping can
be performed. Then, the index finger (or effective fingers assigned according to the actual
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situation) will be bent to cooperate with the thumb for force confrontation to achieve an
accurate pinching operation.
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After the mechanical finger makes full contact with the object, the surface force will be
sensed through the FSR pressure sensor. According to the research in Section 3.1, there is
a certain correlation between the forces of the three joints in a stable grasping state. The
pressure decreases sequentially from the distal phalangeal joint to the metacarpal joint,
which can be used as an initial judgment for attempted grasping. Once the joint force meets
the initial grasping criteria, the robotic arm moves upward, and the manipulator tries to
grab objects. When power grasping is adopted, the trigger flag (M, MP) will jump to 0
instantaneously at the moment of grasping to trigger the wavelet transform algorithm.
In the precision capture mode, the wavelet transform can be triggered when the 1_PIP
joint is nonzero. The signal obtained by the pressure sensor is processed with the wavelet
amplification algorithm. When the threshold exceeds the set sliding threshold, it is judged
that sliding occurs. Meanwhile, the motor is continued to increase the bending degree
of the mechanical finger, thereby increase the grasping force. When the threshold is less
than the set sliding threshold, it is judged that the slip is terminated, and the manipulator
immediately stops the execution of the action and no longer increases the grasping force.
Therefore, the manipulator will not continuously increase the gripping force, so as to ensure
the nondestructive grasp of fruits and vegetables.

Finally, it is crucial to judge the interaction between the manipulator and the outside
environment by the IMU sensor. The acceleration of XYZ axes can reflect the motion state
of the manipulator. When the z-axis directional acceleration exceeds the collision threshold,
it indicates that the grasping operation has been completed and the object is placed on the
desktop. An obstacle collision was estimated to have occurred when the acceleration in
ax, ay is greater than the collision threshold, and then the path is re-planned in reverse
motion in accordance with the original motion direction of the manipulator. All the above
control selection and planning processes are presented in Figure 13 clearly. The overall
planning is mainly based on the tactile sensing and position perception system, analyzing
and summarizing the mechanism, as well as characteristics of the human hand grasping
and mapping to the manipulator grasping.
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4. Conclusions

Aiming at the grasping, moving, and placing operations of agricultural manipulators,
this paper proposes a pre-grabbing planning method based on the understanding of the
manual grasping mechanism. Firstly, we designed and fabricated a haptic data acquisition
glove incorporating multiple sensors to perform manual grasping simulation. According
to the geometric classification of various fruits and vegetables, a grasping gesture library
was established and the allocation of virtual fingers in each mode was collated. Then, the
mechanism and characteristics during manual gripping were studied in combination with
the bending sensors, pressure sensors, and IMU sensor. It includes finger co-movement
characteristics (such as inter-finger curvature correlation and inter-joint pressure correla-
tion), slippage detection, and the external interaction law. The conclusion shows that the
index, middle, and ring fingers of the human hand have the highest correlation, while
the thumb has the highest independence, and there is a linear relationship between the
curvature and the radius of the target object. In stable gripping, the gripping force of the
DIP joint, PIP joint, and MCP joint decreased sequentially, and the PIP and DIP joints are
the most correlated. Mastering the cooperative movement characteristics of the fingers is
helpful for the coordinated control of motors. To investigate the law of slip appearance and
gripping force signal during gripping, the force signal was processed by wavelet transform
to analyze the detailed information in both time and frequency domains. When slip gen-
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erates, the wavelet transform result will produce significant high-frequency information,
which can be used as an important basis for judging whether slip occurs. The real-time slip-
page detection facilitates timely control of the force and avoids slippage. The data collected
by the IMU sensor can be used to analyze the interaction with the external environment
during the capture process. When the object is placed in the target plane, a significant pulse
signal is generated in the z-axis direction, and when a collision occurs, a significant pulse
is generated in the acceleration located in the collision direction. Real-time interaction
perception is also a key factor in ensuring smooth crawling and placement operations.

Finally, the robotic gripping planning is developed based on the laws of bending, pres-
sure, and acceleration during manual gripping. According to human grasping experience
and object geometric classification, the optimal gripping posture of the manipulator is
obtained, and then the initial value of finger bending is set through the curvature model.
Meanwhile, the force sensors were used to judge the contact state of the manipulator
and the object. The initial grasping force is judged by the force relationship of the three
knuckles, and the wavelet transform algorithm is used to detect the occurrence of sliding
during the grasping process. Control the servo based on the results of force feedback
and sliding feedback, continue to increase the degree of finger curvature, and increase
the grasping force without satisfying the three-knuckle force constraint and generating
sliding. Otherwise, move the robotic arm to move and place the target object. Finally, judge
the external interaction situation according to the acceleration feedback, replan the route
when encountering obstacles, and end the capture when placed at the target position. The
proposed method is mainly for the flexible and safe non-destructive grasping of fragile
and deformable fruits and vegetables, but it can also be applied to non-agricultural robots
such as industrial robots and home robots for grasping. The grasping mechanism and the
proposed grasping planning method are also common to the above robots.

In the future, the influence of finger surface shape and material on the safe and non-
destructive grasping of the manipulator can be further explored. Additionally, the real-time
deformation of fruit and vegetable grasping could be combined to build a multi-mode
information feedback control model of fragile and easily deformed fruit and vegetable
adaptive non-destructive grasping. Meanwhile, we will consider more fruits and vegetables
with other shapes or even irregular shapes, so as to improve the robustness of grasping by
agricultural manipulator, and further apply the planning strategy to the control research of
agricultural manipulators.
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