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Abstract: Diagnosis of most neuropsychiatric disorders relies on subjective measures, which makes
the reliability of final clinical decisions questionable. The aim of this study was to propose a machine
learning-based classification approach for objective diagnosis of three disorders of neuropsychiatric
or neurological origin with functional near-infrared spectroscopy (fNIRS) derived biomarkers. Thir-
teen healthy adolescents and sixty-seven patients who were clinically diagnosed with migraine,
obsessive compulsive disorder, or schizophrenia performed a Stroop task, while prefrontal cortex
hemodynamics were monitored with fNIRS. Hemodynamic and cognitive features were extracted for
training three supervised learning algorithms (naïve bayes (NB), linear discriminant analysis (LDA),
and support vector machines (SVM)). The performance of each algorithm in correctly predicting the
class of each participant across the four classes was tested with ten runs of a ten-fold cross-validation
procedure. All algorithms achieved four-class classification performances with accuracies above 81%
and specificities above 94%. SVM had the highest performance in terms of accuracy (85.1 ± 1.77%),
sensitivity (84 ± 1.7%), specificity (95 ± 0.5%), precision (86 ± 1.6%), and F1-score (85 ± 1.7%). fNIRS-
derived features have no subjective report bias when used for automated classification purposes. The
presented methodology might have significant potential for assisting in the objective diagnosis of
neuropsychiatric disorders associated with frontal lobe dysfunction.

Keywords: fNIRS; BCI; classification; schizophrenia; obsessive compulsive disorder; migraine;
Stroop test

1. Introduction

In clinical practice, the majority of neuropsychiatric disorders are diagnosed with a
clinician-dependent interpretation of patient information, which is obtained through a
variety of subjectively biased sources such as clinical interviews, self-reports, observational
data, and behavioral measures [1–5]. The potential of introducing subjectivity during both
interpretation and acquisition of these diagnostic measures may have a prominent impact
on the final clinical decision and highlights the critical need for developing accurate, objec-
tive, and reliable clinical decision support systems. Such decision support systems should
ideally analyze objective and quantitative measures of the distinct characteristics of the
neurobiological changes that are gradually induced by each neuropsychiatric disorder [6,7].

Within this context, various functional brain imaging modalities, such as functional
magnetic resonance imaging (fMRI), positron emission tomography (PET), electroen-
cephalography (EEG), and functional near-infrared spectroscopy (fNIRS), have been uti-
lized for characterizing the neurobiological underpinnings of a variety of neuropsychiatric
disorders [8–10]. Among these modalities, fNIRS systems have stepped forward for extract-
ing informative, neuronally induced hemodynamic markers of cognition during altered
brain states in naturalistic settings [11,12]. Consequently, fNIRS systems have also received
increasing interest in the field of psychiatry for assisting diagnosis, prognosis, and follow-up
of treatment procedures thanks to their: (1) portability, (2) non-invasive nature, (3) modest
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equipment size, (4) robustness to electrogenic or motion artifacts, (5) low operating cost,
(6) quick set-up time and calibration, (7) ability to collect biological information at any
desired frequency and duration, and (8) ease of application in ecologically valid settings to
a broad range of patient populations involving children and elderly adults [13].

Indeed, recent studies have presented compelling evidence that a wide variety of neu-
ropsychiatric disorders can be characterized by functional alterations in the hemodynamic
activity of the prefrontal cortex (PFC), which can be detected with fNIRS [13]. For instance,
hypoactivation in frontal lobe regions has been detected in patients with schizophrenia
(SCZ) and major depressive disorder (MDD) during verbal fluency tasks when compared
to their healthy counterparts [5,14]. Similarly, hyper- and hypo-connectivity between differ-
ent brain regions during resting state have been identified in patients with schizophrenia
(SCZ) [15–19] and major depressive disorder (MDD) [8,9,14], while decreased cerebral blood
flow in bilateral symmetric regions of the inferior PFC has been detected in patients with
obsessive compulsive disorder (OCD) when compared to their healthy counterparts [20,21].
PFC dysfunction in the form of hypo- or hyper-connectivity during resting state or hy-
poactivation during various cognitive tests (e.g., Stroop and verbal fluency test) has been
extensively observed and reported in patient groups diagnosed with a variety of major neu-
ropsychiatric disorders, which include SCZ, MDD, bipolar disorder (BD), post-traumatic
stress disorder (PTSD), and attention deficiency and hyperactivity disorder (ADHD). Re-
sults from meta-analysis studies indicated that the topographical distributions of functional
abnormalities observed in these patient groups are likely to have disorder-specific pat-
terns [14]. Overall, these studies have highlighted the potential of exploring PFC-based
neurofunctional features as objective and distinctive biomarkers of various major neuropsy-
chiatric disorder states. They also showed that information from practical and preferably
field-deployable cerebral physiology monitoring tools such as fNIRS systems can quantify
and parameterize abnormalities in frontal lobe function and may have a great potential for
assisting in the objective diagnosis and classification of major psychiatric disorders which,
in most cases, have overlapping behavioral symptoms across each other and are difficult to
distinguish when decisions are based solely on observation, self-report, interview, and/or
rating scales.

Considering the critical demand to integrate more objective measures of neurophysio-
logical alterations into diagnostic clinical decision processes, the presented study aimed
to assess the feasibility and applicability of an fNIRS-based automated classification ap-
proach for accurate prediction and objective identification of the presence of three distinct
neuropsychiatric or neurological disorder states which are known to induce alterations in
frontal lobe function. In our recent work, we demonstrated the feasibility and applicabil-
ity of an fNIRS-assisted automated classification approach for accurate prediction of the
presence of impulsivity in adolescents [22]. More specifically, our results suggested that
training computationally efficient supervised learning algorithms with informative features
obtained from clinical, behavioral, and fNIRS-derived hemodynamic measures could serve
as a decision support system for recognizing the presence of impulsivity in individuals.
However, the clinical features included in the feature sets still had the potential to present
subjective bias when used for algorithm training purposes because there always existed
some probability that the subjects could provide false reports in the clinical interviews.

Based on the promising performance of integrating fNIRS-derived features and clinical
features for recognizing the presence of impulsivity in our recent work, the objective of this
study was to introduce a more reliable, machine learning-based classification approach
for correct identification of the presence of three distinct neuropsychiatric and/or neu-
rological disorder states. The proposed machine learning-based classification approach
involved training three supervised learning algorithms with (i) fNIRS-derived informative
biomarkers only and (ii) a combination of fNIRS-derived biomarkers and performance
measures obtained during a cognitive test, named the Stroop task. We tested the feasibil-
ity of the proposed approach with three distinct supervised learning algorithms and by
extending our classification problem to include four classes of subjects. The ultimate goal
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was to demonstrate the feasibility of an fNIRS-based automated classification methodol-
ogy for predicting the presence of a neuropsychiatric disease, where input features are
of pure biological origin and can be derived non-invasively in naturalistic settings by
use of ergonomic fNIRS probes. For this purpose, hemodynamic information obtained
from concurrent fNIRS recordings during a Stroop task was processed to extract global
efficiency metrics which are indicative of the strength of functional connectivity among
different PFC regions. The efficacy of training three distinct supervised machine learning
algorithms, namely naive Bayes (NB), linear discriminant analysis (LDA), and support
vector machines (SVM), with (a) fNIRS-derived neuronally induced biomarkers and (b) a
combination of fNIRS-derived biomarkers and cognitive performance measures obtained
during the Stroop task, was evaluated. The performance metrics of possible combinations
of each classification algorithm and feature set combination were assessed by whether each
subject was correctly labeled among the four classes, which included healthy controls (HC),
patients diagnosed with migraine without aura (MIG), schizophrenia (SCZ), and obsessive
compulsive disorder (OCD).

Our study presents the following novelties with respect to the current literature: To
date, there have been no studies that attempted to identify the presence of a neuropsy-
chiatric or neurological disorder by use of a four-class automated classification scheme
based on a combination of fNIRS-derived neuronally induced metrics obtained during
a neuropsychological test and supervised machine learning methods. The efficacy of an
automated classification approach which aims to correctly label a neuropsychiatric disorder
into one of four categories has not been evaluated before with structural or functional
neuroimaging measures. The efficacy of combining fNIRS-derived global efficiency metrics
of the PFC as sole informative features of a neuropsychiatric and/or neurological disorder
with supervised learning methods has also not been evaluated before.

2. Materials and Methods
2.1. Subjects

In this study, 13 healthy control (HC) subjects (6 female (F), mean age 26), 20 migraine
(MIG) patients without aura (12 F, mean age 27), 26 patients with obsessive compulsive
disorder (OCD) (11 F, mean age 29), and 21 schizophrenia (SCZ) patients (10 F, mean age 28)
participated. Each subject provided informed consent before participating in the experi-
ment. The study protocol was approved by the Ethics Committee of Pamukkale University,
Denizli, Turkey. All experiments were conducted according to the latest Declaration of
Helsinki. Parts of these datasets have been utilized in previous works performed by our
group and coworkers [23–29].

2.2. Experimental Protocol

During the experiments, subjects sat on a comfortable chair in front of a computer
screen which was placed approximately 1 m away from their eyes. All experiments were
carried out in a dimly illuminated, silent room. The experimental protocol was briefly
explained to each subject prior to the onset of each experiment. They were requested
to sit relaxed and refrain from moving their head during the fNIRS recordings. During
the experiment, their task was to carefully complete a color–word Stroop task which was
adapted to Turkish from a pioneer protocol proposed by Zysset et al. [30]. Each experiment
began with 30 s of a baseline recording followed by presentation of alternating blocks
of 3 stimulus conditions which consisted of neutral (N), congruent (C), and incongruent
(IC) stimuli (Figures 1 and 2). There was a total of 5 stimulus blocks for each condition
(i.e., N, C, IC) and all task blocks were presented in a randomized order that changed for
every experimental session. Each stimulus block consisted of 6 different trials of the same
condition. Within a block, each trial appeared on the screen for 2.5 s followed by a 4 s blank
screen. Task blocks were separated with 20 s periods of rest (Figure 2).
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Figure 1. Types of stimuli that were presented within the color–word Stroop experiment. Samples
of trial presentations are schematically represented for match (top row) and non-match conditions
(bottom row) of (A) neutral, (B) congruent, and (C) incongruent stimuli.
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Figure 2. Experimental protocol depicting stimuli timing for neutral, congruent, and incongruent
stimuli blocks in a sample session. HBO time series from a representative channel of a subject are
plotted before (black) and after an 8th order Butterworth high-pass filter is applied with a cut-off
frequency of 0.009 Hz (blue). a.u: arbitrary units.

During each stimulus presentation, two rows of letters were displayed on the screen.
The task was to evaluate whether the color of the letters displayed at the top row matched
with the meaning of the word displayed at the bottom row. Subjects were asked to press
the left button of the mouse if the color of the upper row letters matched with the meaning
of the bottom row word. These cases were called match cases (Figure 1, top panel). They
were asked to press the right button if the color of the upper row letters did not match with
the meaning of the bottom row word for non-match cases (Figure 1, bottom panel). The
letters in all trials were printed in one of four basic colors, which were yellow, red, blue, or
green. In N trials, top row letters were written in yellow, red, blue, or green but did not
form a meaningful word, and a color name was typed in black on the bottom row. For C
trials, a word with the meaning of a color was typed in the same congruent color in the
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top row. For the IC trials, a word with the meaning of a color was typed in another color
(i.e., incongruent) in the top row. Hence, subjects had to suppress processing the color
information and evaluate the meaning information of the top row letters while making a
comparison with the meaning information of the bottom row letters to provide a correct
answer for the IC trials. Such an interference between two competing cognitive inputs
induced a Stroop effect [23–27,30]. The number of match and non-match cases for each trial
type was balanced during the experiment. The average reaction time and error rate were
calculated for N, IC, and C trials separately.

2.3. fNIRS Data Acquisition

Hemodynamic signals were collected from the prefrontal cortex region with a wireless
ARGES-CEREBRO system (Hemosoft Information Technology and Training Services Inc.,
Ankara, Turkey) [24–26,31–33] which has a flexible forehead probe equipped with 4 light
emitting diodes (LEDs) and 10 photodetectors (Figure 3A). The LED–photodetector pairs
with 2.5 cm distance were accepted as channels and a total of 16 equidistant channels were
formed which covered parts medial, orbitofrontal, and dorsolateral cortices (Figure 3B).
Each LED emits near-infrared light at 750 and 850 nm in continuous wave mode and the
sampling rate of the system is 1.77 Hz. The ability of this probe design to allow light pene-
tration through the cortical tissue and collect hemodynamic information from the anterior
part of the PFC has been discussed extensively in previous work by our group [23,33].
Wavelength-specific light intensity changes were detected at each detector separately, and
this information was converted to optical density (OD) changes of each wavelength for
each channel. Channels whose raw light intensity signals presented coefficient of vari-
ability (C.V) above 7.5% (C.V = 100 × standard deviation(signal)/mean(signal)) were
not included in the analyses [34]. Time series of OD changes were provided as inputs to
the modified Beer–Lambert law to compute channel-specific changes in localized HBO
and HBR concentrations [10,11,35,36]. The partial pathlength factor was taken as 6 for
both wavelengths [37–39]. HBO signals were visually inspected to exclude trial blocks
which had motion artifacts within a time window spanning 5 s pre- and post-stimulus
duration. Changes in HBO concentration have been reported to be a better indicator of
alterations in neuronal metabolism induced by cognitive tasks [40–44], while having a
higher signal-to-noise ratio when compared to HBR signals [40,41,44]. Hence, the efficacy
of only HBO-derived hemodynamic features was tested for classification purposes.
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2.4. Data Analysis
2.4.1. Processing of fNIRS Signals

The fNIRS-HBO signals are composed of neuronally and systemically induced hemo-
dynamic components which are intermixed with each other over a broad range of fre-
quencies. The neuronally induced hemodynamic variations in the HBO signal are caused
by both spontaneous and task-related neuronal activity, while the systemic physiological
activity-related hemodynamic components have multiple origins, which include variations
in heartbeat, respiration, blood pressure, and vascular tone. Hence, prior to obtaining
correlation-based functional connectivity metrics between HBO signals of different channel
pairs, the impact of common, global systemic effects of non-neuronal origin inherent in
both channel data had to be reduced. Such a procedure is necessary to isolate the extent
of correlation caused by only neuronally induced hemodynamic effects, since common
physiological effects of non-neuronal origin could inflate the correlation between signals of
channel pairs. A partial correlation approach was adapted from the works of Akin [28] and
Akin [29] to reduce the impact of common systemic interference to Pearson’s correlation
coefficients calculated between HBO signals of each channel pair. Similar to these works,
HBO signals of all channels were initially high-pass-filtered with a cut-off frequency of
0.009 Hz using an 8th order Butterworth filter. The high-pass-filtered HBO signals were
then averaged to have a single global signal regressor, which was utilized as the partial
regressor for modeling and removing the impact of common systemic noise from the
correlations between each channel pair in the subsequent step of the analysis [22,24–29].

Time traces used for computing the correlation between each channel pair were
obtained as follows. For each channel, HBO signals corresponding to each stimulus
block were truncated from the onset to the end of that block. These time segments were
then concatenated in time to obtain a single task-related HBO signal for each channel
of each subject. Similarly, the partial correlation regressor was obtained by truncating
and concatenating the time segments belonging to all task blocks in the global signal
regressor. Then, 16-by-16 partial correlation (PC)-corrected functional connectivity (FC)
matrices for each subject were generated after removing the impact of this partial correlation
regressor [22,29].

2.4.2. Computation of Cognitive Quotient and Global Efficiency Features

Two groups of features were extracted from the behavioral and hemodynamic data
obtained during the Stroop task. Similar to our previous work [22], the behavioral perfor-
mance was quantified with a feature named the cognitive quotient (CQ), which could be
considered as a generalized cognitive performance indicator of each subject during the
Stroop task. The accuracy and reaction time metrics obtained from all trials of the Stroop
experiment were fused in this single metric by dividing the overall accuracy performance
(i.e., percentage of correct answers over all trials) with the average reaction time for all trials.

Regarding the hemodynamic features, a relatively novel functional connectivity metric
called global efficiency (GE) was obtained from the 16-by-16 partial correlation-corrected
FC matrices obtained for each subject. The GE metric was obtained from a graph theoretical
network analysis approach, and its efficacy in demonstrating the degree of connectedness
and information transfer between cortical regions during various cognitive tasks has been
shown in previous studies [22,27–29].

After the partial correlation-corrected FC matrices were obtained for each subject, these
matrices were decomposed into two matrices, which represent the degree of connectedness
of the default mode (DM) and the cognitive mode (CM) networks of the brain. This
decomposition was established by applying principal component analysis to the FC matrix,
the details of which are extensively explained in the recent work of Akin [29]. Briefly,
principal component (PC) decomposition was applied to the 16 by 16 FC matrices and the
weights of the PCs were thresholded using an optimization procedure described in [29].
The DM and CM components of the FC matrices were reconstructed by weighting and
summing the PC regressors that had weights below and above the threshold, separately.
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GE values of the DM and the CM components were computed separately for each subject
by using the formula of Latora and Marchiori [45]. The GE feature for the DM network was
named GEdm, and similarly, the GE feature for the CM was named GEcm (Figure 4).
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Figure 4. Pipeline for extracting fNIRS derived features.

2.4.3. Classification Methods

The feasibility of training fNIRS-derived GE features with machine learning classifiers
for correct identification of the presence of a disorder in each subject was evaluated and
compared for three distinct algorithms. These algorithms were naive Bayes (NB), linear
discriminant analysis (LDA), and support vector machines (SVM). These algorithms were
selected for several reasons: (1) They have been shown to perform well with small sample
sizes (n < 200) [5,15,22,46–57]. (2) Their computational cost is low. (3) They have performed
successfully in a variety of classification problems where fNIRS features extracted during
cognitive and motor tasks were utilized [25,26,28–31]. (4) Their good performance for
classification at the single subject level has been reported for previous neuropsychiatry
studies with similar sample sizes, but a lower number of classes [1,5,15,58–62]. The mathe-
matical architecture of these algorithms has been extensively explained in previous work
performed by our group [22,46] and others [52–56].

Each classification algorithm was constructed by using the libraries of the WEKA
platform (version 3.8.5) [63]. The sequential minimal optimization (SMO) algorithm was
utilized for training the SVM classifier [64]. SMO was run with the Pearson VII univer-
sal kernel [65], also known as the PUK kernel. To avoid overfitting, the regularization
parameter (C) of SMO and PUK kernel parameters (i.e., omega (ω) and sigma (σ)) was
optimized by maximizing the accuracy with a grid-search procedure. Assigning C = 10
andω = σ = 1 yielded the best results. LDA and NB classifiers were constructed with the
default parameters implemented in the WEKA software. A brief flowchart of the processing
pipeline is demonstrated in Figure 5.
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Figure 5. Flowchart of the system design.

2.4.4. Performance Evaluation

To evaluate and compare the classification performances of each algorithm, accuracy,
precision, sensitivity, specificity, and F1-score were calculated through a comparison of the
actual and predicted labels of test data [61]. For each algorithm, performance metrics were
obtained after 10 runs of a 10-fold cross-validation (C.V) procedure, where in each run,
1/10th of the subject data were separated for testing the algorithm and the remainder of
subject data were used for training, and this procedure was repeated 10 times. For each
performance metric, the mean scores across all runs and their standard deviation were
computed (Tables 1 and 2). This procedure was conducted for cases when each algorithm
was trained with (i) fNIRS only features (i.e., GEcm and GEdm) and (ii) a combination of
fNIRS-derived features (i.e., GEcm, GEdm) and a behavioral feature (i.e., CQ). All features
were computed for each subject separately.

Table 1. Four-class classification performances of NB, LDA, and SVM algorithms when trained with
fNIRS only features (i.e., GEcm and GEdm). Each performance metric is represented in percentages
(%) as the mean value across all runs ± standard deviation of the mean.

Method Accuracy Precision Recall Specificity F1-Score

NB 81.77 ± 1.06 82.1 ± 1 81 ± 0.01 94 ± 0.004 81 ± 1

LDA 83.8 ± 1 85 ± 0.01 83 ± 0.01 95 ± 0.01 84 ± 0.01

SVM 81 ± 0.84 80 ± 0.01 79 ± 0.01 94 ± 0.003 80 ± 0.008

Pairwise comparisons between the performance metrics obtained from each possible
algorithm (i.e., NB, LDA, SVM) and feature set (i.e., GEcm + GEdm or GEcm + GEdm + CQ)
combination were performed with two-tailed, two-sample t-tests. Comparisons of each per-
formance metric (i.e., accuracy, precision, recall, specificity, and F1-score) among different
combinations of algorithm and feature set choices aimed to assess: (i) whether training each
algorithm with only fNIRS features resulted in a statistically significantly different classifi-
cation performance when compared to training the same algorithm with a combination
of fNIRS and behavioral features, and (ii) whether there exists an algorithm and feature
set combination with a statistically significantly higher performance when compared to all
other options.
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Table 2. Four-class classification performances of NB, LDA, and SVM when trained with fNIRS
and behavioral features (i.e., GEcm, GEdm, and CQ). Each performance metric is represented in
percentages (%) as the mean value across all runs ± standard deviation of the mean. Bold-typed
results denote significantly higher performance of the corresponding algorithm with respect to the
results when the algorithm is fed with fNIRS only features.

Method Accuracy Precision Recall Specificity F1-Score

NB 84.68 ± 1.3 85 ± 0.01 83 ± 0.01 95 ± 0.01 84 ± 0.01

LDA 83.8 ± 1.6 84 ± 1.1 83 ± 1.4 94 ± 0.04 84 ± 1.2

SVM 85 ± 1.77 86 ± 1.6 84 ± 1.7 95 ± 0.5 85 ± 1.7

3. Results

Table 1 presents the four-class classification performances of NB, LDA, and SVM classi-
fiers when they were trained with two fNIRS-derived features (i.e., GEcm, GEdm). All algo-
rithms achieved accuracy, precision, recall, and F1-score performances above 81%, while the
specificity scores were all above 94%. It should be noted that LDA performed significantly
higher than both SVM and NB (Figure 6) in terms of accuracy (83.8 ± 1%, p < 0.05), preci-
sion (85 ± 0.01%, p < 0.05), recall (83 ± 0.01%, p < 0.05), specificity (95 ± 0.01%, p < 0.05),
and F1-score (84 ± 0.01%, p < 0.05). The performances of NB and SVM were not statistically
significantly different in terms of the reported metrics.
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Figure 6. Classification performances of NB, LDA, and SVM algorithms after being trained with
fNIRS-derived features (i.e., GEcm and GEdm). Horizontal lines depict statistically significant differ-
ences between performances of different algorithm pairs. All algorithms achieved accuracy, precision,
recall, and F1-score performances above 80%, while the specificity scores were above 94%. LDA per-
formed significantly higher than both SVM and NB in terms of accuracy, precision, recall, specificity,
and F1-score. The error bars represent standard error of the mean performance after 10 runs of a
10-fold C.V.

Table 2 presents the four-class classification performances of NB, LDA, and SVM
classifiers when they were trained with fNIRS and behavioral features (i.e., GEcm, GEdm,
and CQ). Comparisons between the performance of each tabulated algorithm with respect
to the corresponding performance obtained with fNIRS only features (Table 1) were per-
formed with paired t-tests, and bold-typed results (Table 2) denote significantly higher
performance of the corresponding algorithm when compared to the results when the same
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algorithm is fed with fNIRS only features. All algorithms achieved accuracy, precision,
recall, and F1-score performances above 83%, while the specificity scores were all above
94%. Feeding NB and SVM with a combination of fNIRS and behavioral features resulted
in a statistically significantly higher performance in each metric when compared to the
performance obtained by training the same algorithm with fNIRS only features. However,
LDA achieved a similar performance in each metric regardless of the type of feature set
combination utilized for training. There were no statistically significant differences in
accuracy, recall, specificity, and F1-scores among the three algorithms. Nonetheless, the
precision score obtained with SVM was statistically significantly higher than both LDA and
NB (86 ± 1.6%, p < 0.05, Table 2 and Figure 7).
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specificity, and F1-score performances of the three algorithms. The error bars represent standard error
of the mean performance after 10 runs of a 10-fold C.V.

Training LDA with fNIRS only features resulted in a comparable performance with the
performance metrics obtained when the same algorithm was trained with a combination
of fNIRS and behavioral features. A statistical comparison of the performance of the best-
performing algorithm (LDA) and fNIRS only feature set combination of Table 1 with the
performance metrics of NB and SVM of Table 2 demonstrated that no significant difference
existed between any algorithm pair for accuracy, recall, specificity, and F1-scores.

To sum up, we conclude that training LDA with fNIRS only features results in a
comparable performance with training the three supervised algorithms with a combination
of fNIRS and behavioral features. Regarding the best performance, although there were
no statistically significant differences among the three algorithms for accuracy, recall,
specificity, and F1-scores (Figure 6), we should still note that SVM had the best performance
in all metrics when trained with a combination of fNIRS and behavioral features obtained
during the Stroop task (Tables 1 and 2 and Figure 7).

Figure 8 presents the confusion matrices for each algorithm, which demonstrate
the true-positive and false-negative predictions attributed to each class. All algorithms
achieved classification accuracies above 70% for each class. All algorithms demonstrated
the highest true-positive prediction rate for SCZ patients, which was followed by OCD, HC,
and MIG. SCZ and OCD subjects were not misclassified as HCs for any of the algorithms.
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This result is significant as these two patient groups are expected to have the most distinct
alterations in cognitive performance and cerebral hemodynamic activity during the Stroop
task when compared to the HC group [13,17,66–71]. The fact that HC subjects were
not misclassified as OCD or SCZ for any of the algorithms suggests the distinctive and
physiology-related informative power of the selected features. However, HC subjects could
be falsely attributed to the MIG class (SVM: 1.05%, NB: 4.74%, LDA: 4.21%) regardless of
the algorithm type. This result is not surprising as MIG subjects were tested during the
interictal period while they were exempt from attacks, hence their cognitive performance
and the relevant spatial and topographic distribution of functional activation might have
been similar to HCs during the interictal period. The consistencies in the classification
performance patterns of the three algorithms as well as the consistency of performance
results with physiology-related information highlight the distinctive power and biologically
informative nature of the fNIRS-derived features utilized in the study. It can be concluded
that training NB, LDA, and SVM with fNIRS-derived metrics demonstrates a differential
diagnosis potential, regardless of the mathematical architecture of the algorithm.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 8. Confusion matrices depicting the true-positive (shaded in yellow) and false-negative pre-
dictions of (A) SVM, (B) NB, (C) LDA when they are trained with a combination of fNIRS and be-
havioral features. 

4. Discussion 
The current diagnostic model for a majority of neuropsychiatric disorders relies on 

evaluation of measures which include clinical, observational, and/or behavioral scales that 
are obtained through interviews, questionnaires, observations, self-reports, and/or neuro-
psychiatric test batteries [3–5]. However, subjectivity introduced during both collection 
and clinical interpretation of these multi-domain measures brings forth the demand for 
more objective diagnostic markers. The high variability in clinical decisions for similar 
cases observed across different clinicians, cultures, and countries highlights the critical 
need for developing more objective decision support systems for diagnosis, which should 
ideally be based on quantitative measures of the neurophysiological alterations underly-
ing each disorder. 

Taking this critical demand into consideration, the presented study aimed to assess 
the feasibility and applicability of an fNIRS-based automated classification approach for 
accurate prediction and objective identification of the presence of three distinct neuropsy-
chiatric or neurological disorder states which are known to induce alterations in frontal 
lobe function. The proposed machine learning-based classification approach involved 
training various supervised learning algorithms with (i) novel fNIRS-derived informative 
biomarkers and (ii) a combination of fNIRS-derived biomarkers and performance 
measures obtained during a neuro-cognitive test, named the Stroop task. We tested and 
compared the efficacy of training three commonly employed and computationally effi-
cient supervised learning algorithms with these neuronally induced biomarkers, and their 
comparably high performances were demonstrated with accuracy, precision, recall, spec-
ificity, and F1-scores. The performance of each algorithm in the correct identification of 
the presence of a disorder in each subject was evaluated by whether the subject was cor-
rectly labeled among the four classes, which included HCs, MIG, SCZ, and OCD. Hence, 
four-class brain–computer interface system designs were formulated which simply in-
cluded the collection of hemodynamic signals with an fNIRS system while the subject was 
engaged in a Stroop task. Two global efficiency features were obtained from the PFC HBO 
signals, and accuracy and reaction rate performance obtained during the Stroop task were 
fused in a single behavioral feature, named the cognitive quotient (CQ). The comparably 
high performance scores obtained with the three classification algorithms, which have 
distinct mathematical architectures, highlighted the informative nature of these neu-
ronally induced features. They also demonstrated the promising nature of integrating 
fNIRS-derived features together with cognitive performance scores from neuropsychiatric 
test measures and multivariate pattern analysis (MVPA) approaches for accurate 

Class HC MIG OCD SCH

HC 83.85% 16.15% 0.00% 0.00%

MIG 1.05% 70.53% 17.89% 10.53%

OCD 0.00% 14.29% 80.95% 4.76%

SCZ 0.00% 0.38% 0.00% 99.62%

SVM

Class HC MIG OCD SCH

HC 77.69% 22.31% 0.00% 0.00%

MIG 4.74% 79.47% 10.53% 5.26%

OCD 0.00% 11.90% 83.33% 4.76%

SCZ 0.00% 3.08% 3.85% 93.08%

Class HC MIG OCD SCH

HC 87.69% 12.31% 0.00% 0.00%

MIG 4.21% 70.53% 17.37% 7.89%

OCD 0.00% 17.14% 78.10% 4.76%

SCZ 0.00% 0.00% 3.85% 96.15%

NB LDA

Predicted Label Predicted Label Predicted Label(A) (B) (C)

Figure 8. Confusion matrices depicting the true-positive (shaded in yellow) and false-negative
predictions of (A) SVM, (B) NB, (C) LDA when they are trained with a combination of fNIRS and
behavioral features.

4. Discussion

The current diagnostic model for a majority of neuropsychiatric disorders relies on
evaluation of measures which include clinical, observational, and/or behavioral scales that
are obtained through interviews, questionnaires, observations, self-reports, and/or neu-
ropsychiatric test batteries [3–5]. However, subjectivity introduced during both collection
and clinical interpretation of these multi-domain measures brings forth the demand for
more objective diagnostic markers. The high variability in clinical decisions for similar
cases observed across different clinicians, cultures, and countries highlights the critical
need for developing more objective decision support systems for diagnosis, which should
ideally be based on quantitative measures of the neurophysiological alterations underlying
each disorder.

Taking this critical demand into consideration, the presented study aimed to assess
the feasibility and applicability of an fNIRS-based automated classification approach for
accurate prediction and objective identification of the presence of three distinct neuropsy-
chiatric or neurological disorder states which are known to induce alterations in frontal
lobe function. The proposed machine learning-based classification approach involved
training various supervised learning algorithms with (i) novel fNIRS-derived informative
biomarkers and (ii) a combination of fNIRS-derived biomarkers and performance measures
obtained during a neuro-cognitive test, named the Stroop task. We tested and compared
the efficacy of training three commonly employed and computationally efficient supervised
learning algorithms with these neuronally induced biomarkers, and their comparably high
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performances were demonstrated with accuracy, precision, recall, specificity, and F1-scores.
The performance of each algorithm in the correct identification of the presence of a disorder
in each subject was evaluated by whether the subject was correctly labeled among the
four classes, which included HCs, MIG, SCZ, and OCD. Hence, four-class brain–computer
interface system designs were formulated which simply included the collection of hemo-
dynamic signals with an fNIRS system while the subject was engaged in a Stroop task.
Two global efficiency features were obtained from the PFC HBO signals, and accuracy and
reaction rate performance obtained during the Stroop task were fused in a single behavioral
feature, named the cognitive quotient (CQ). The comparably high performance scores
obtained with the three classification algorithms, which have distinct mathematical archi-
tectures, highlighted the informative nature of these neuronally induced features. They
also demonstrated the promising nature of integrating fNIRS-derived features together
with cognitive performance scores from neuropsychiatric test measures and multivariate
pattern analysis (MVPA) approaches for accurate recognition of neuropsychiatric disorder
states. Our methodological approach resulted in increased classification accuracy when
compared to the brain–computer interface (BCI) study designs conducted with fNIRS for
other classification purposes, such as decoding mental thought processes or motor imagery
signals [71,72].

In the following sections, we first evaluate the efficacy of NB, LDA, and SVM in correct
identification of the presence of a disorder at the single subject level and we discuss the
differential diagnostic potential of the proposed approach. We then highlight the impor-
tance of our findings, discuss the limitations of our study, and propose recommendations
for future work.

4.1. Comparison of the Classification Performances of LDA, NB, and SVM

Training NB, LDA, and SVM with two fNIRS-derived functional connectivity metrics
resulted in accuracy, precision, recall, and F1-score performances above 81%, while the
specificity scores were all above 94%. While the performance metrics obtained with each
algorithm had a very close range, it should be noted that LDA performed significantly
higher than both SVM and NB in terms of accuracy (83.8 ± 1%, p < 0.05), precision
(85 ± 0.01%, p < 0.05), recall (83 ± 0.01%, p < 0.05), specificity (95 ± 0.01%, p < 0.05),
and F1-score (84 ± 0.01%, p < 0.05) when trained with fNIRS only features. A statistical
comparison of the performance of the best-performing algorithm (LDA) and fNIRS only
feature set combination of Table 1 with the performance metrics obtained by training
each algorithm with a combination of fNIRS and behavioral features demonstrated that
no significant difference existed between the performances of any algorithm pair for
accuracy, recall, specificity, and F1-scores. Hence, we conclude that training LDA with
fNIRS only features results in a comparable performance with training the three supervised
algorithms with a combination of fNIRS and behavioral metrics. Regarding the best
performance, we should note that SVM had the best performance in all metrics when
trained with a combination of fNIRS and behavioral features obtained during a Stroop
task (Tables 1 and 2 and Figure 6). However, we should also note that SVM did not have a
statistically significantly higher performance than the rest of the algorithms for the majority
of the performance metrics (i.e., accuracy, recall, specificity, and F1-scores reported in
Figure 6). Hence, we can conclude that the utilized features are distinctive in nature as
they performed well with all three classifiers regardless of the mathematical architecture of
the algorithm. Obtaining a high classification performance with all classifiers highlights
the feasibility and applicability of feeding machine learning-based methods with fNIRS-
derived neuro-cognitive biomarkers for classification of disorder states associated with
alterations in frontal lobe function.

With the recent advances in the computational power of daily used computers, MVPA
methods have received increasing interest for automated identification and objective recog-
nition of neurological and neuropsychiatric disorder states by use of structural and func-
tional neuroimaging features. The majority of these studies examined the diagnostic
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potential of utilizing multivariate features for: (i) correct identification of the presence of
a disease state, (ii) rating the severity of a clinical state, or (iii) differentiating subgroups
of patients. Arabshirani et al. provided an excellent review of previous neuroimaging
studies that aimed at single-subject prediction of neurological, neurodegenerative, or neu-
ropsychiatric disorders by use of structural and functional imaging features [61], while
Orru et al. presented an extensive summary of the previous studies that utilized SVM
for differentiating a neuropsychiatric disease state from a healthy state [73]. Regarding
automated recognition of SCZ, Steardo et al. provided a review of classification studies
that utilized a combination of SVM and neuroimaging markers [58]. The majority of these
studies reported binary classification performances for differentiating a disorder state
from a healthy state and the reported accuracies ranged from 67% to 100%. Regarding
differentiation of OCD from a healthy state, the highest performance metrics were reported
by Sen et al., who proposed the utility of resting state functional connectivity-derived
network features with SVM [74]. They achieved 80% accuracy, 81% sensitivity, and 77%
specificity with a relatively small sample size (n = 16 for OCD and n = 13 for HC). Similarly,
three studies utilized MVPA methods and MRI-based neuroimaging markers for accurate
prediction of the presence of migraine by use of two-class classification schemes, and the
reported accuracies ranged between 80% and 96% [75–77].

Among three-class classification studies, Yu et al. reported a study where they used
several MVPA methods to discriminate healthy controls (n = 38), schizophrenic patients
(n = 32), and patients diagnosed with major depression disorder (n = 19). They achieved a
correct classification rate of 81% using functional connectivity features from resting state
fMRI scans [59]. Their sample size was also similar to our study. Kawazaki et al. built
a binary classification model for differentiating SCZ from HC utilizing voxel-based mor-
phometry features from MRI with a small dataset (n = 30 per class). Their classification
accuracy performance was 80% [78]. Yassin et al. performed a three-class classification
study where they trained several machine learning algorithms for accurate identification
of autism spectrum disorder, healthy controls, and SCZ patients. The best results were
achieved with MRI-derived cortical thickness parameters using a logistic regression (LR)
classifier. Their overall maximum classification accuracy was reported as 69%. The maxi-
mum binary classification accuracies between different class pairs were less than 80% when
tested with several classifiers, including SVM [79].

We should note that an objective comparison of our performance results with the
performances reported in previous studies is complicated since the study designs differed
in terms of sample size, number of classes, type and number of features, disorder types,
C.V procedure, and the selected classifiers (Table 3). Nonetheless, we can still conclude
that the performance metrics achieved with our four-class classification methodology fall
in the high-performance spectrum among the performance metrics reported in previous
studies, which targeted classification of various neuropsychiatric populations from healthy
counterparts by use of structural and functional neuroimaging measures.

Table 3. Comparison of the classification performances of the discussed studies.

Author/s (Year) Sample Size Classifier(s) Number of Classes Features Mean Accuracy (%)

Sen et al. (2017) [74] 16 OCD, 13 HC SVM 2
Resting state network
features derived from
fMRI data

80

Chong et al. (2016) [75] 58 MIG, 50 HC Quadratic
Discriminate Analysis 2

Resting state network
features derived from
fMRI data

86

Yang et al. (2018) [76]
21 MIG without aura,
15 MIG with aura,
28 HC

Convolutional
Neural Networks 2 and 3

Resting state network
features derived from
fMRI data

85–99 (2 class),
87(3 class)

Hernandez et al. (2014) [77] 15 HC, 20 MIG, 19
Medication Abuse SVM 2

Graph theoretical
features derived from
fMRI data

87
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Table 3. Cont.

Author/s (Year) Sample Size Classifier(s) Number of Classes Features Mean Accuracy (%)

Yu et al.(2013) [59] 32 SCZ, 19 MDD, 38 HC SVM 3
Resting state network
features derived from
fMRI data

81

Kawasaki et al.(2007) [78] 30 SCZ, 30 HC Multivariate Linear
Model 2

Voxel based
morphometry features
extracted from MRI data

80

Yassin et al. (2020) [79] 64 SCZ, 36 ASD, 106 HC Logistic Regression 3

Cortical thickness and
subcortical volume
features derived from
MRI data

69

Pardo et al. (2006) [80] 10 SCZ, 10 BP, 8 HC LDA 3

Neuropsychiatric test
scores and structural
metrics derived from
MRI data

96

Present work 20 MIG, 26 OCD,
21 SCZ, 13 HC LDA, SVM, NB 4

Cognitive quotient and
Global Efficiency
metrics derived from
fNIRS data

84.7 (LDA), 83.8(NB),
85 (SVM)

4.2. Potential of the Proposed Methodology for Differential Diagnosis

Comorbidities often exist among major neuropsychiatric disorders in the form of
overlapping behavioral symptoms and similar neurobiological alterations. Hence, one of
the major challenges for a precise diagnostic decision is to be able to differentially diagnose
neuropsychiatric disorders which have overlapping symptoms, such as SCZ, MDD, and
BD [14,57]. While differential diagnosis of the patient groups presented in this study would
be easy to decipher at the clinical stage, we should emphasize the fact that our work
serves as a proof-of-concept study to demonstrate the utility of combining fNIRS-derived
functional connectivity metrics obtained during a cognitive test with machine learning-
based classification methods for assisting accurate classification and objective identification
of neuropsychiatric disorder states associated with frontal lobe functional abnormalities.

Recent studies have presented compelling evidence that a wide variety of neuropsy-
chiatric disorders are characterized with alterations in the neural activity of the PFC [13].
However, whether there exists a distinct topographical distribution of functional abnormal-
ities specific to each neuropsychiatric disorder and whether each neuropsychiatric disorder
can be associated with a distinct abnormality in cerebral activation that can be recognized
by fNIRS during a cognitive test remains unclear. In our study, all algorithms achieved
classification accuracies above 70% for each class. All algorithms demonstrated the highest
true-positive prediction rate for SCZ patients, which was followed by OCD, HC, and MIG.
HC subjects were not misclassified as OCD or SCZ for any of the algorithms. These two
patient groups are expected to have the most distinct alterations in cognitive performance
and cerebral hemodynamic activity during the Stroop tasks when compared to the HC
group [13,17,66–70]. Hence, the fact that HC subjects were not misclassified as OCD or SCZ
for any of the algorithms suggests the distinctive and physiology-related informative power
of the selected features. HC subjects could be falsely attributed to the MIG class. This result
is not surprising as MIG subjects were tested during the interictal period which might be
cognitively similar to a healthy state, and hence the spatial and topographic distribution of
their functional activation might not be significantly different from HCs during the Stroop
task. OCD and SCZ subjects were not misclassified as HCs for any of the algorithms. The
consistencies in the classification performance patterns of the three algorithms as well as
the consistency of performance results with physiology-related information highlight the
distinctive power and biologically informative nature of the fNIRS-derived features utilized
in the study.

To sum up, our results suggest that training NB, SVM, or LDA with the fNIRS-derived
global efficiency metrics obtained during a Stroop task demonstrates a differential diagnosis
potential, regardless of the mathematical architecture of the algorithm. Our findings
also support the notion that some novel neuro-biological features obtained with fNIRS
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methodology during cognitive tasks might serve as distinct signatures of the spatiotemporal
characteristics of different neuropsychiatric disorder states which are associated with frontal
lobe function abnormalities. Exploration of such informative and biologically derived
features and combining them with machine learning-based classification approaches may
have significant potential for differential diagnoses of psychopathologies which have
comorbidities and overlapping symptoms.

4.3. Limitations of the Study and Recommendations for Future Work

We should note that the sample sizes of our subject groups were still small, although
they exceeded the sample sizes reported in many of the previously reported classification
studies in neuropsychiatry literature [58,61,73–80]. As a continuation of this study, we will
test the performance of our methodology on a larger subject cohort. Our classification
problems will include a higher number of disorder types and we will test the efficacy
of identifying patients with comorbidities. We will also test the informative power of
extracting hemodynamic and cognitive features from concurrent fNIRS recordings taken
during a variety of neuropsychological tests which target different aspects of cognition.

Deep learning (DL) techniques have a great potential to improve the performance of
fNIRS-based BCI systems if sufficiently large training sets are available [81,82]. The major
advantages of these techniques rely on their ability to capture the complexity of neural
information embedded in the HBO signal patterns through optimization of the network
structures [81]. Indeed, there exists some successfully implemented DL classifiers with
fNIRS and EEG signals [82–86]. However, we avoided testing the utility of DL algorithms
in the presented work because of the limited cohort size of each group. Models constructed
with DL algorithms have a tendency to overfit data when they are trained with small sample
sizes (i.e., n < 5000) [81]. Future work will involve testing the efficacy of DL algorithms for
addressing the presented classification problem in a larger cohort size and by utilizing data
augmentation procedures.

In the presented study, clinical diagnosis of each participant was performed by expe-
rienced psychiatrists after careful follow-up procedures, and their final clinical decision
was considered the golden standard. Hence, we could test and report the performance
of each algorithm by whether it could correctly predict the final clinical decision of an
experienced psychiatrist whose decision is considered as ground truth. Although the
participants included in the study were reported to have strong and distinct symptoms
and the clinicians had good clinical expertise for making a correct diagnosis, there still
exists a possibility that some of the patients might have been given a different diagnosis
by a different group of clinicians and might be incorrectly labeled. Hence, we can only
report the value and high performance of combining fNIRS only markers and supervised
learning algorithms in correctly predicting the clinical decision of an experienced clinician.
Nonetheless, such a decision support system still might assist young clinicians who have
not gained enough expertise with patients.

While the differential diagnosis of the patient classes reported in this study might not
be a difficult problem in the clinics, we should note that this is a proof-of-concept study for
demonstrating the potential of predicting a clinical decision through analysis of informative
hemodynamic features obtained noninvasively in a clinical setting with a wearable and
ergonomic fNIRS system design. Hemodynamic information can be collected with similar
system designs during similar cognitive tests or vasomechanical challenges and can be
processed to extract biomarkers which can be used for differential diagnosis of neurological
or neuropsychiatric disorders that are known to induce abnormalities in PFC function.

5. Conclusions

The overarching goal of this study was to test the feasibility of an fNIRS-based BCI
system design for accurate and objective identification of the presence of neuropsychiatric
or neurological disorders. Our results demonstrate the potential of training supervised
learning algorithms with fNIRS-derived hemodynamic and cognitive features for precise
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recognition of the presence of a neurological or neuropsychiatric disorder at the single-
subject level. They also highlight the promise of exploring PFC-based neurofunctional
features as distinctive and objective biomarkers of neuropsychiatric or neurological dis-
orders which are associated with alterations in frontal lobe function. Neuronally induced
biomarkers can be easily obtained in clinical settings with portable, wearable fNIRS sys-
tems. Such system designs might also have great potential for objective classification
and differential diagnosis of major neuropsychiatric disorders which, in most cases, have
overlapping behavioral symptoms across each other and are hard to distinguish when
decisions are based solely on observation, self-report, interview, and/or rating scales.
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