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Abstract: In recent years, deep convolutional neural network (CNN)-based image enhancement has
shown outstanding performance. However, due to the problems of uneven illumination and low
contrast existing in endoscopic images, the implementation of medical endoscopic image enhance-
ment using CNN is still an exploratory and challenging task. An endoscopic image enhancement
network (EIEN) based on the Retinex theory is proposed in this paper to solve these problems.
The structure consists of three parts: decomposition network, illumination correction network, and
reflection component enhancement algorithm. First, the decomposition network model of pre-trained
Retinex-Net is retrained on the endoscopic image dataset, and then the images are decomposed into
illumination and reflection components by this decomposition network. Second, the illumination
components are corrected by the proposed self-attention guided multi-scale pyramid structure. The
pyramid structure is used to capture the multi-scale information of the image. The self-attention
mechanism is based on the imaging nature of the endoscopic image, and the inverse image of the
illumination component is fused with the features of the green and blue channels of the image to be
enhanced to generate a weight map that reassigns weights to the spatial dimension of the feature
map, to avoid the loss of details in the process of multi-scale feature fusion and image reconstruction
by the network. The reflection component enhancement is achieved by sub-channel stretching and
weighted fusion, which is used to enhance the vascular information and image contrast. Finally,
the enhanced illumination and reflection components are multiplied to obtain the reconstructed
image. We compare the results of the proposed method with six other methods on a test set. The
experimental results show that EIEN enhances the brightness and contrast of endoscopic images and
highlights vascular and tissue information. At the same time, the method in this paper obtained the
best results in terms of visual perception and objective evaluation.

Keywords: image enhancement; convolutional neural network; endoscopic image; retinex; self-
attention mechanism

1. Introduction

Medical endoscopic images suffer from serious degradation problems such as uneven
illumination and low contrast due to the complexity of the internal structures of the
human body and the limitations of imaging technology [1]. These drawbacks not only
make it inappropriate to observe tiny vessels and lesions with insignificant early color
changes but also seriously affect the physician’s diagnosis and treatment and reduce the
accuracy of some auxiliary diagnostic devices. It is undoubtedly one of the most effective
methods to improve the quality of endoscopic images by image enhancement methods to
improve the accuracy of disease diagnosis and the safety of minimally invasive surgical
operations. Therefore, designing an effective endoscopic image enhancement method
that can assist physicians in detecting suspicious lesions at an early stage is important
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for preventing complications and deterioration of the disease. In order to improve image
quality, a large number of enhancement algorithms have been proposed by early researchers.
Roughly speaking, there are four types of existing methods: histogram equalization-based
methods, gamma correction-based methods, Retinex-based methods, and deep learning-
based methods.

Histogram equalization (HE) [2] is used to achieve contrast enhancement by varying
the dynamic pixel range of an image to be approximately uniformly distributed. However,
because HE does not consider the pixel relationship between images, it leads to information
loss and excessive brightness enhancement problems. To solve the issues arising from
global processing, Ibrahim et al. [3] proposed to process the histogram in regions and
assign a new dynamic range to each partition, allowing the image to maintain the average
brightness while improving the effect. The classical CLAHE [4] algorithm, in which it is
considered that the image should be processed in chunks and constrained using the method
of limiting the contrast, eventually achieves good enhancement results. Although these
methods are simple and convenient, they do not achieve color fidelity when applied to
endoscopic images.

Secondly, Gamma Correction (GC) is also a popular method of contrast enhancement
in the pixel domain, which is suitable for processing images of different luminance but
requires manual setting of the appropriate gamma value. For this reason, the researchers
who proposed adaptive gamma correction [5] (AGC) were inspired by probabilistic and
statistical inference to determine the gamma values using PDF and CDF. Subsequently,
Huang et al. [6] proposed the AGCWD algorithm to fine-tune the statistical histogram by
weighting the distribution function to reduce the generation of adverse effects. Although
the existing adaptive gamma correction methods effectively enhance the contrast and
illumination of images, they all cause distortion and local over-enhancement of images.

Other traditional algorithms are based on the Retinex theory approach, which is a
model of human color perception and assumes that the observed image can be decomposed
into two components: the reflectance component and the illumination component, and
generally, only the illumination component needs to be processed to achieve enhancement.
Earlier single-scale Retinex [7] (SSR) and multi-scale Retinex [8] (MSR) algorithms derived
from Retinex were designed to recover reflected images; however, they may add noise
during enhancement distorting local details and colors of the images. To solve these
problems, Jobson et al. [9] designed a multi-scale Retinex with color recovery (MSRCR)
based on MSR, which shows remarkable results in color fidelity and detail retention, but
leads to the phenomenon of halo artifacts in images due to improper decomposition.
Fu et al. [10] proposed a weighted variational model (SRIE) for simultaneous estimation of
the reflectance and illumination components of the image. Then the corrected illumination
component is re-added to the reflectance component to give better naturalness to the
results. Subsequently, Guo et al. [11] proposed a structure-aware smoothing model to
optimize the initial illumination component and obtain the enhanced image by elemental
division. Wang et al. [12] combined Retinex theory and the inverse square ratio law of
illumination to propose an algorithm for endoscopic image enhancement with good results
in illumination correction.

In recent years, many CNN-based methods have shown outstanding performance
in image denoising, image super-resolution, and low-light image enhancement. They
have contributed significantly to the development of CNN in image enhancement. For
example, a depth autoencoder is proposed in LLNet [13] to enhance images without
over-amplifying image features. Retinex-Net [14] applied Retinex theory to CNN and
designed a decomposition network that can decompose the reflection and illumination
components and combine them with the illumination correction module to enhance low-
light images. To free CNNs from the limitation of training on paired datasets, Jiang et al. [15]
proposed an efficient unsupervised generative adversarial network (EnlightenGAN) for
image enhancement, which uses information extracted from the input itself to normalize
unpaired training without using real datasets for supervised learning. Subsequently, Guo
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et al. [16] designed a learnable curve estimation model to adjust the dynamic pixel range of
the input image with the completed training curve and achieved remarkable results.

Although these existing methods achieve superior results in solving the problem of
partial image degradation, they still have some drawbacks when applied to endoscopic
images, as shown in Figure 1. In addition, endoscopic image datasets of the human body
are difficult to collect and involve privacy issues. To solve this problem, we used a CMOS
(Complementary Metal Oxide Semiconductor) image sensor dedicated to endoscopy and
an endoscope system developed by Hefei Deming Electronics Co., Ltd. (Hefei, China) to
capture images of various parts of the chicken. Since animal endoscopic images and human
endoscopic images have the same imaging characteristics, the completed training model
can be applied to human endoscopic images. Meanwhile, we propose a novel endoscopic
image enhancement network (EIEN), consisting of three parts: decomposition network,
illumination correction network, and reflection component enhancement algorithm.
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Figure 1. An example of image enhancement by different algorithms. The first row is the result
of image enhancement, and the second row is the illumination component of the enhanced image,
where the illuminance component is derived from our decomposition network. The figure shows
that the enhancement results of other algorithms show over-enhancement or smoothing, while the
image enhanced by EIEN has rich details [6,9,11,12,14,16].

The main contributions of this paper are as follows:

1. We use a migration learning approach to retrain a pre-trained Retinex-Net decomposi-
tion network model on an endoscopic image dataset to fine-tune the decomposition
network weights. The generalizability of the decomposition network in endoscopic
images is improved, and suitable decomposition images are provided for illumination
correction and reflection component enhancement.

2. We propose a self-attention guided multi-scale pyramid network to implement illu-
mination correction. It can extract image features at different scales and guide the
network to generate illumination components with balanced illumination and rich
details through a self-attention mechanism.

3. We combine the imaging characteristics of endoscopic images, stretch the green
channel and blue channel in the reflection component, and fuse the stretched reflection
component with the original reflection component by weighting to achieve image
fidelity while highlighting the contrast of blood vessels and tissues.

2. Related Work

Pyramid network structure: Image pyramids are a structure that presents images in
multiple resolutions and with conceptual simplicity. The pyramid structure is divided
into the Gaussian pyramid and the Laplace pyramid, which are combined by two ways of
image downsampling and upsampling, respectively. A typical application of them is image
fusion, where the fusion process can achieve the effect of highlighting features and details.
In recent years, pyramidal structures have played an essential role in convolutional neural
network image enhancement. Li et al. [17] proposed an efficient luminance-aware pyramid
network to extract image features from coarse to fine so that the reconstructed images are
rich in details. Jiang et al. [18] used convolutional neural networks to estimate adaptive
gamma weights for different scale illumination components and then fused the corrected
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illumination components to obtain enhanced images. Fu et al. [19] introduced both Gaus-
sian and Laplace image pyramidal decomposition techniques into neural networks, which
greatly simplified the learning problem of the networks. Inspired by this, we propose an
effective multi-scale pyramid structure for correcting the illumination components. The
structure extracts feature and detail information from low-resolution images. It fuses them
layer by layer toward high-resolution features, allowing the network to achieve correction
of illumination components with relatively few parameters and relatively shallow depth.

Attention Mechanism: In recent years, many attention modules have been proposed.
Their development can be divided into two directions, namely, enhanced feature aggrega-
tion and channel and spatial attention combination, whose function is to suppress redun-
dant features while emphasizing informative features. For example, Hu et al. [20] proposed
a compressive excitation (SE) block that reassigns weights to each channel by analyzing the
dependencies of each channel. Concomitantly, Gao et al. [21] uses two-dimensional averag-
ing pooling for compression and reflects the relationship between channels in the form of
covariance. Wang et al. [22] used nonlocal operations to compute the interaction between
any two positions without considering their distance to maintain each pixel’s position rela-
tionship. Recently, Woo et al. [23] proposed incorporating an attention mechanism in both
feature channel and feature space dimensions to improve the attention of the network to
crucial information by means of two attention cascades. All these approaches are beneficial
for high-level tasks that require accurate feature information, such as target detection and
semantic segmentation, while they may have little impact on image enhancement. To avoid
producing over-enhancement, Lee et al. [24] used the negative image of the luminance
channel in the original image as a self-attention, assigning lower weights to the brighter
regions and higher importance to the darker areas. Inspired by this, we combine the inverse
image of the illumination component and the detail-rich G and B components [25] of the
endoscopic image into three channels and generate a single-channel weight map by atrous
convolution and sigmoid activation function to guide the illumination correction network
to obtain an illumination-balanced and detail-rich illumination components.

3. Methodology

This section illustrates the details of the endoscopic image enhancement network
(EIEN) we designed. Inspired by Retinex theory and endoscopic imaging properties, the
framework of EIEN is shown in Figure 2. The left half is a decomposition network, and
the right half contains three steps of illumination and reflection component enhancement
and reconstruction of enhanced images. First, to obtain the appropriate illumination
and reflection components, we retrain the pre-trained decomposition network model
of Retinex-Net on our endoscopic image dataset using a migration learning approach
to complete the fine-tuning of the decomposition network weights. Secondly, to avoid
detail loss and over-enhancement during illumination correction, feature extraction and
illumination component reconstruction are performed by a self-attention guided multi-
scale pyramid model. The pyramid structure allows feature and detail information to be
extracted at different scales. The self-attention mechanism assigns new weights to the
spatial dimensions of the extracted feature maps at each scale to avoid detail loss in the
process of multi-scale feature fusion and image reconstruction. The enhancement of the
reflection component is to highlight detailed information such as blood vessels. Since the
gain of the blue-green channel of the endoscopic image is conducive to highlighting the
blood vessel information, the green and blue channels of the reflection component are
respectively stretched to obtain the stretched reflection. The stretched reflection component
and the original reflection component are weighted and fused to obtain the reflection
component with prominent details such as blood vessels. Finally, the enhanced illumination
and the reflection component are multiplied to obtain the enhanced result. In the following,
we will illustrate the implementation details of the two sub-networks and the reflection
component enhancement method.
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Figure 2. The framework of the proposed EIEN. The left half is the decomposition network, and
the two images are decomposed with the same values of network weights. f 1–f 7 are the extracted
feature maps, where f 1–f 6 are the features with 64 channels; f 7 are the features with 4 channels, the
first three channels are the reflection components, and the last channel is the illumination component.
The right half is divided into three steps illumination and reflection component enhancement and
reconstruction of the image.

3.1. Decomposition Network

The classical Retinex theory is the modeling of human color perception. This theory
assumes that the observed image can be decomposed into two components: reflectance,
and illumination, as shown in Equation (1):

S = R ◦ I (1)

where S represents the original image, R represents the reflection component, I represents
the illumination component, and ◦ represents element-wise multiplication. However,
decomposing two components from one image is a typical discomfort problem. Still,
convolutional neural networks can use the captured standard image and the loss with
explicit constraints to guide the model to get the correct decomposition. Our decomposition
network benefits from Retinex-Net [14]. In this paper, we migrate the decomposition
network model of Retinex-Net into EIEN and fine-tune the decomposition model using
the collected chicken dataset to make the network applicable to endoscopic images. The
model is shown in the left half of Figure 2, where the first layer of convolution in the model
is a 9 × 9 convolution and the rest of the convolution operations are 3 × 3 convolutions. In
addition, the losses used in the network training are as follows.

1. Invariable Reflectance Loss: According to the Retinex theory, it is known that the
reflection components are invariant by the nature of the object itself, so the reflection
components of the abnormal/normal illumination images are similar. The abnormal
illumination image contains both low-light and high-light images. The decomposition
network uses pairs of images as input. It imposes reflection consistency constraints
between the two images to guide the optimization of the decomposition network,
whose loss is calculated as shown in Equation (2):

Lir = ‖Rabnormal − Rnormal‖1 (2)

where Rabnormal is the reflection component of the abnormal image, Rnormal is the
reflection component of the standard image, ‖·‖1 indicates the L1 norm operation,
and by minimizing Lir, Rabnormal and Rnormal are encouraged to be similar.

2. Illumination Smoothness Loss: Abnormal and normal image decomposition does
not have the same illumination components but should highlight the structure of
the image and local details while maintaining overall smoothness. The direct use
of TV minimization (ToTal Variation Minimization) [26] as a loss function can cause
unsatisfactory results and over-smoothing in areas with uniform pixels or significant
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luminance variations. Therefore, the loss is improved based on the TV to prevent
over-smoothing of the illumination component. The improved TV formula adds
the gradient of the reflectance component as a weight, and the original TV function
is weighted with the gradient of the reflectance component to achieve adaptive
adjustment of the illuminance component structure. The illuminance component
smoothing loss is shown in Equation (3):

Lis = ∑i=abnormal,normal ‖∇Ii ◦ exp
(
−λg∇Ri

)
‖ (3)

where∇ represents the gradient (including horizontal and vertical gradient), λg repre-
sents the gradient-aware balance coefficient, and exp

(
−λg∇Ri

)
relaxes the smoothing

constraint at locations with more complex image structures and illumination disconti-
nuities, where λg is set to 10. The smaller the gradient of the reflection component
(R), the larger the weight assigned, and the smaller the gradient of the illumination
component (I) will become, making the illumination component smooth.

3. Reconstruction Loss: To further constrain the decomposition of the network, we need
to focus not only on the similarity between the reconstructed results of the reflection
and illumination components of the image’s own decomposition and the original
image. It is also necessary to pay attention to the similarity between the combined
reconstruction results of the reflection component and the illuminance component of
the paired image decomposition and the abnormal/normal image. Reconstruction
loss is shown in Equation (4):

Lrecon = ∑i=abnormal,normal ∑j=abnormal,normal λij‖Ri ◦ Ij − Sj‖1 (4)

where S is the original image, R is the reflection component, I is the illumination
component, and λij is the weighting factor, λij = 1 when i = j and λij = 0.1 when i 6= j.

Therefore, the total loss of the decomposition network is defined as follows:

LDecom = Lrecon + 0.1Lis + 0.01Lir (5)

3.2. Illumination Correction Network

After decomposing the network to decompose the reflection and illumination com-
ponents, the next step should be illumination correction. Since we have obtained two
illuminance components, one corresponds to the normal illumination endoscopic image,
and the other corresponds to the abnormal illumination endoscopic image. Therefore,
the design idea of our illuminance correction network is to make it similar to the illumi-
nance component of the normal image by learning the features and detailed information
of the illuminance component in the abnormal image, combined with feature fusion and
attention guidance.

Specifically, the illumination correction is implemented through a self-attention-guided
pyramid module, as shown in Figure 3. The pyramid module is composed of three pyramid
layers, i.e., the input I1 is adjusted to two downsampled versions, which are 1/2 and 1/4
times of the original size, named I2 and I3, respectively. These three inputs first start feature
extraction from the lowest resolution image, then multiply the extracted final feature map
with the attention weight map, and finally perform channel stitching with the features
extracted from the branch of the previous layer, and repeat the above operation in the
branch of the original size image for image reconstruction to get the normal illumination
component. Among them, due to the small resolution of the bottom two branches, they
can have a high perceptual field without special convolution processing. Therefore, the
lower resolution branches consist of a small number of 3 × 3 convolution layers and
residual structures. The residual structure is shown in Figure 4C. In addition, to reduce
the computational effort, we halve the number of channels after each feature stitching
using 1 × 1 convolution. In order to ensure that not only the network receptive field can be
improved, the global feature information can be effectively fused in the feature extraction
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process of the original size image. We not only use a small amount of 3 × 3 convolutional
layer and residual structure in the feature extraction process, but also add Pyramid Pooling
Module [27] (PPM) to this layer, and introduce residual structure in PPM, as shown in
Figure 4B. The module uses adaptive averaging pooling operation to generate four feature
maps of 1 × 1, 2 × 2, 3 × 3, and 6 × 6 sizes, compresses the number of channels of these
size feature maps by 1 × 1 convolution, then uses bilinear interpolation to upsample the
feature maps into the same size as the original map, and finally performs stitching on
the channels so that the network extracts more feature information that is beneficial to
image reconstruction.
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block does not change the number of channels.

Self-attention mechanism: Although the pyramid network model can achieve illumi-
nation correction, the image may be over-enhanced, and details may be lost. For example,
regions with high pixel values in higher exposures may appear over-brightened by network
correction. Areas with lower exposures may not be noticed by the network during correc-
tion and cannot achieve good correction results. One possible solution is to process the
image in chunks to avoid the drawbacks of global processing, but it increases processing
complexity and may also cause block effects. Instead, inspired by Lee et al. [24], we stitched
the inverse image (If) of the illumination component obtained from the decomposition
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network and the G and B channels containing rich detail information in the endoscope
to get a three-channel feature map. Then, three atrous convolutions with convolution
kernels of 3 × 3 and expansion rates of 1, 2, and 5 are used to process this feature map
simultaneously to obtain three single-channel feature maps. Finally, the mean values of the
three feature maps are processed by the sigmoid activation function to obtain the attention
weight map, which is implemented as shown in Figure 4A.

In addition, the corrected illuminance component needs to be considered not only
for its illuminance smoothness but also for the similarity of the reconstructed result with
the normal illuminance image after elemental multiplication of the corrected illuminance
component and the reflected component. Therefore, we use the combination of illuminance
smoothing loss and reconstruction loss as the total loss of the illuminance correction
network, where the illuminance smoothing loss (Li) and reconstruction loss (Lr) of the
illuminance correction network is shown in Equations (6) and (7):

Li = ‖Rabnormal ◦ Î−Sabnormal‖1 (6)

Li = ‖∇ Î ◦ exp
(
−λg∇Rabnormal

)
‖ (7)

where Î is the corrected light component. The total loss of the light component is shown
in Equation (8).

LICN = Lr + 0.1Li (8)

3.3. Reflection Component Enhancement

Since blood vessels are mainly distributed in the mucosal and submucosal layers, and
in terms of penetration ability, the blue and green light bands are weaker than the red
light bands. In terms of absorption ability by hemoglobin, the blue and green light bands
are relatively more robust than the red light bands. Thus the green and blue channels of
the image contain information about the blood vessels in the mucosal layer [25]. At the
same time, the presence of the mucosal layer can lead to blurred imaging of blood vessels
and tissues in the endoscopic image. Therefore, in addition to illumination correction,
further processing of the reflection component is still needed to highlight the information
of blood vessels and tissues in the endoscopic image, and the specific processing flow is
shown in Figure 5.
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The study found that images with a large degree of blur have a small standard
deviation and require a more significant degree of contrast stretching. Therefore, the
mean and standard deviation of the image are introduced, the G channel and B channel
are adaptively stretched, and the R channel is kept unchanged to achieve the effect of
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enhancing the contrast of blood vessels and tissues. The channel stretching method is
shown in Equation (9):

Ic
out(x, y) =

Ic(x, y)− µc

σc + τ (9)

where x and y represent the horizontal and vertical coordinates in the image, respectively, c
represents the image channel containing G and B channels, Ic(x, y) represents the original
image channel, Ic

out(x, y) represents the stretched image channel, µ is the image mean, σ is
the normal image deviation, where τ is a controlled variable, we set it to 0.5. As shown
in Figure 6, when the value of τ gradually increases, the weighted fused image becomes
brighter, and the contrast becomes lower. Therefore, we set the value of τ to 0.5 in order to
make it easier for the human eye to notice and judge.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 19 
 

 

𝐼 𝑥,𝑦 = 𝐼 𝑥,𝑦 − 𝜇𝜎 + τ (9)

where 𝑥 and 𝑦 represent the horizontal and vertical coordinates in the image, respec-
tively, 𝑐 represents the image channel containing G and B channels, 𝐼 𝑥,𝑦  represents 
the original image channel, 𝐼 𝑥,𝑦  represents the stretched image channel, 𝜇 is the 
image mean, 𝜎 is the normal image deviation, where τ is a controlled variable, we set it 
to 0.5. As shown in Figure 6, when the value of τ gradually increases, the weighted fused 
image becomes brighter, and the contrast becomes lower. Therefore, we set the value of τ 
to 0.5 in order to make it easier for the human eye to notice and judge. 

   

 τ = 0.2 
 τ = 0.5 

 τ = 0.8 

Figure 6. The reflection component enhancement results are obtained by setting different values of τ. Images in columns 1 and 3 suffer from visual discomfort or loss of detail, which are highlighted 
by red rectangles. 

Although the stretched reflection component significantly enhances vascular and tis-
sue contrast, reconstructing the image color produces severe color distortion leading to 
visual discomfort. To solve this problem, we retain only part of the detailed information 
of the stretched reflection component and make it weighted with the original reflection 
component to obtain a reflection component with great image fidelity details. The formula 
is as follows: 𝑅 = 𝜎 + 𝜎2 𝑅 + 𝑅 (10)

where 𝑅 is the original reflection component, 𝑅  is the stretched reflection component, 
and 𝑅  is the enhanced reflection component. 

3.4. Network Training 
The experiments were conducted on a dedicated facility in our lab, which was con-

figured with an Intel(R) Core(TM) i7-7700K CPU@4.20GHz and equipped with a 
GTX1080Ti graphics card with 11 GB of video memory. We implemented the model in the 
PyTorch [28] framework, which is accelerated by an NVIDIA GTX1080Ti GPU. All inputs 
are uniformly tuned to 224 × 224, the Adam [29] optimization algorithm is used to opti-
mize the overall parameters, and the learning rate is set to 1 10 . The whole network 
is trained in two steps. First, the decomposition network is trained, and then the illumi-
nation correction network is trained. The batch size is set to 8, and the convergence state 
can be achieved after 30 epochs of training. During the testing process, our network can 
handle images of any size. Overall, the training process involves minimizing the losses 
defined as follows: ℒ = ℒ + ℒ  (11)
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Images in columns 1 and 3 suffer from visual discomfort or loss of detail, which are highlighted by
red rectangles.

Although the stretched reflection component significantly enhances vascular and
tissue contrast, reconstructing the image color produces severe color distortion leading to
visual discomfort. To solve this problem, we retain only part of the detailed information
of the stretched reflection component and make it weighted with the original reflection
component to obtain a reflection component with great image fidelity details. The formula
is as follows:

Rout =
(σG + σB)

2
Rc + R (10)

where R is the original reflection component, Rc is the stretched reflection component, and
Rout is the enhanced reflection component.

3.4. Network Training

The experiments were conducted on a dedicated facility in our lab, which was config-
ured with an Intel(R) Core(TM) i7-7700K CPU@4.20GHz and equipped with a GTX1080Ti
graphics card with 11 GB of video memory. We implemented the model in the PyTorch [28]
framework, which is accelerated by an NVIDIA GTX1080Ti GPU. All inputs are uniformly
tuned to 224 × 224, the Adam [29] optimization algorithm is used to optimize the overall
parameters, and the learning rate is set to 1× 10−4. The whole network is trained in two
steps. First, the decomposition network is trained, and then the illumination correction
network is trained. The batch size is set to 8, and the convergence state can be achieved
after 30 epochs of training. During the testing process, our network can handle images of
any size. Overall, the training process involves minimizing the losses defined as follows:

LTotal = LDecom + LICN (11)
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where LDecom and LICN are the losses of the decomposition network and illumination
correction network, respectively, defined in Equations (5) and (8), respectively.

4. Experiment Results and Discussions

In this section, some experimental results are given. Specifically, we first present the
dataset used for training and testing. Then, we perform a subjective and objective analysis
of the proposed EIEN method and several classical image enhancement methods. Finally,
we perform an ablation study to verify the effectiveness of each component in EIEN.

4.1. Datasets

To our knowledge, there is no human endoscopic image dataset specifically for neural
network enhancement due to constraints involving privacy and difficulty of acquisition.
Based on this consideration, we acquired images with a CMOS (Complementary Metal
Oxide Semiconductor) image sensor dedicated to endoscopy and an endoscopy system
developed by Hefei Deming Electronics Co. A total of 192 low and normal exposure images
of various parts of the chicken, such as lungs, kidneys, and intestines, were captured by
varying the exposure time and sensitivity (ISO) with other configurations fixed. In order
to further constrain the decomposition ability of the decomposition network and prevent
the drawbacks caused by lens dithering, we generate images with higher luminance by
gamma-correcting the luminance channel (Y channel) of the Ycrcb color space of some
normally illuminated images, where the gamma value is 0.5. The final dataset we used
for training was 292 images, i.e., 146 pairs of images; part of the training set is shown in
Figure 7a. In addition, to ensure the accuracy of the model EIEN method, we cooperated
with hospitals such as the First Affiliated Hospital of Anhui Medical University and the
Second Affiliated Hospital of Anhui Medical University to save some poor quality images
from minimally invasive surgery videos using frame-by-frame preservation as the test
set. The test set included 29 images acquired by different endoscopes such as colonoscopy,
cystoscopy, laparoscopy, and enteroscopy. The test set is shown in Figure 7b.
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4.2. Subjective and Objective Analysis

In this section, we compare the results of our proposed EIEN method with the results
of six representative image enhancement methods, including MSRCR [9], AGCWD [6],
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LIME [11], Wang et al. [12], Retinex-Net [14], Zero-DCE [16]. The performance of the
proposed algorithm is evaluated from both subjective and objective aspects. The results
show that the proposed method can achieve better enhancement effects for different medical
endoscopic images.

4.2.1. Subjective Analysis

The quality of images captured by medical endoscopes seriously affects the accuracy
of doctors’ diagnosis of early lesions inside the human body and the safety of operations
in minimally invasive surgery, where natural color and uniform illumination are more
conducive to human eye observation. Therefore, endoscopic image enhancement should
adjust image brightness and contrast while preserving image naturalness and edge details,
thus highlighting blood vessels, tissues, and lesions to assist physicians. As shown in
Figures 8 and 9, we compare the effect of the existing method and the proposed method
in this paper with five sets of images. And some local cases of poor results are also
framed in Figure 9.
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Figure 8. Comparison image of different methods. The three sets of images (a–c) include photos of
different parts of the human body. The classical image enhancement methods and the enhancement
results of the method proposed in this paper are shown [6,9,11,12,14,16].
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Figure 9. Comparison image of different methods. The two sets of images (a,b) include photos of
different parts of the human body. The classical image enhancement methods and the enhancement
results of the method proposed in this paper are shown. The red box is the case where the local
enhancement effect is not good [6,9,11,12,14,16].

MSRCR prevents color distortion in images by introducing a color recovery factor,
but does not entirely prevent color distortion generated by multi-scale feature processing
and fusion.

AGCWD enhanced endoscopic images can appear over-enhanced in localized ar-
eas, and vascular details in dark areas can be blurred. We can clearly see through the
two sets of Figure 8a,b that the enhanced image becomes brighter in local areas causing
visual discomfort.

LIME achieves good results in brightness correction, and dark areas in the image
are visible. Still, the excessive tendency to brightness enhancement does not improve the
contrast of endoscopic images well, resulting in tiny blood vessels and tissues becoming
blurred, which is not conducive to the doctor’s diagnosis and operation in minimally
invasive surgery.

Wang et al. showed significant improvement in both luminance enhancement and
contrast enhancement, and its shortcoming may be due to the lack of universality in the
treatment of illuminance components. These cases are visible in the three sets of Figure 8a–c;
some dark areas are over-enhanced or uncorrected.

Retinex-Net has a significant effect on the correction of the illumination component.
Still, it only denoises the reflection component, which leads to a severe decrease in the
contrast of the endoscopic image and blurs the details of some blood vessels.

Zero-DCE processes each of the three channels of the image separately using curves
estimated by the depth network to be in the appropriate dynamic range, which often
results in color distortion in endoscopic images. As shown in Figures 8 and 9, we can see
significant color distortion and loss of detail, which may result from over-stretching of
the channels.
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From the comparison in Figures 8 and 9, it can be observed that the results obtained
by EIEN highlight the vascular and tissue information. At the same time, the illumination
is improved, making the images more explicit. The results in Figure 9 achieve good
performance in the global enhancement, but the improvement in the local dark areas is
relatively slight, which may be due to the low pixel values in the very dark areas during the
illumination component reconstruction resulting in poor results. In summary, the method
proposed in this paper achieves satisfactory results in illumination correction and blood
vessel and tissue contrast enhancement while avoiding problems such as excessive image
enhancement and color distortion.

4.2.2. Objective Analysis

Objective metrics efficiently evaluate the quality merits of enhanced images and quanti-
tatively discriminate between good and poor image enhancement methods. We chose three
commonly used reference evaluation metrics: PSNR (Peak Signal to Noise Ratio) [30], SSIM
(Structural Similarity) [31], and GMSD (Gradient Magnitude Similarity Deviation) [32],
to measure the similarity of content and structure between the enhanced image and the
ground truth image. The PSNR metric is used to evaluate the image reconstruction quality,
which is the logarithmic value of the mean square error (MSE) between the original image
and the processed image relative to the square of the maximum value of the signal. The
SSIM metric compares three sample and outcome variables (luminance, contrast, and
structure) to determine how similar the improved image and the original image are. The
GMSD metric first calculates the image gradient by the Prewitt operator, then calculates
the gradient amplitude, and finally uses the gradient amplitude as a feature to generate
an image quality prediction score with high accuracy. In general, the higher the value of
PSNR, the better the quality of the reconstructed image, the higher the value of SSIM, the
smaller the change in image structure, and the smaller the value of GMSD, the smaller the
image distortion. In addition, we also use the reference-free evaluation index NIQE [33]
(Natural Image Quality Evaluator) to evaluate the image quality, and the smaller the value,
the better the performance. The NIQE metric extracts feature from the natural landscape to
test on the test image, and these features are fitted to a multivariate Gaussian model. This
model actually measures the difference between an image to be tested on a multivariate
distribution that is constructed from a series of features extracted from a normal image.

As shown in Tables 1–4, we present the metric results for the three image groups a, b,
and c of Figure 8, and the mean values of the metrics for the 29 images in the test set. In the
table, “Average” represents the average value of the index results of the 29 images in the
test set. To observe the metric averages more clearly, we changed the value of PSNR to 1/10
of the original value and the value of GMSD to 10 times the original value, and presented
them in Figure 10. From the average results of each index in Tables 1–4 and Figure 8, we can
see that the method in this paper presents the best results in all three indexes, NIQE, SSIM,
and PSNR. Among them, since the enhanced image has an overall change in illumination
and there is no normal illumination image in the test set as a reference. Therefore, it leads
to lower PSNR values, but the PSNR values obtained by this method are significantly
improved compared to several other methods. SSIM is an evaluation of the distortion of
an image by combining three different factors: luminance, contrast, and structure. Our
method maintains the overall information of the image while enhancing the luminance and
contrast, thus resulting in a higher SSIM value. This indicates that the method in this paper
reconstructs high-quality images while better maintaining the subject information of the
images, which is essential for medical image processing. Although the results of GMSD of
our method are second only to Wang et al., the results are very similar, indicating that our
approach is also guaranteed in terms of image fidelity.
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Table 1. NIQE results for different algorithms. The best result is in red whereas the second best one is
in blue.

Methods
Images

Figure 8a Figure 8b Figure 8c Average

MSRCR [9] 3.439 3.954 3.489 3.598
AGCWD [6] 3.372 3.652 3.547 3.416

LIME [11] 2.892 3.836 2.804 3.244
Wang et al. [12] 3.882 3.848 4.360 3.746
Retinex-Net [14] 2.928 4.180 3.061 3.434
Zero-DCE [16] 3.353 3.905 3.613 3.567

EIEN 3.065 3.577 2.984 3.237

Table 2. SSIM results for different algorithms. The best result is in red whereas the second best one is
in blue.

Methods
Images

Figure 8a Figure 8b Figure 8c Average

MSRCR [9] 0.884 0.870 0.918 0.888
AGCWD [6] 0.941 0.870 0.942 0.908

LIME [11] 0.870 0.866 0.873 0.857
Wang et al. [12] 0.896 0.887 0.906 0.894
Retinex-Net [14] 0.866 0.884 0.888 0.852
Zero-DCE [16] 0.832 0.852 0.858 0.832

EIEN 0.949 0.908 0.967 0.910

Table 3. GMSD results for different algorithms. The best result is in red whereas the second best one
is in blue.

Methods
Images

Figure 8a Figure 8b Figure 8c Average

MSRCR [9] 0.058 0.048 0.042 0.056
AGCWD [6] 0.021 0.061 0.030 0.041

LIME [11] 0.042 0.036 0.045 0.049
Wang et al. [12] 0.030 0.043 0.037 0.040
Retinex-Net [14] 0.060 0.040 0.067 0.067
Zero-DCE [16] 0.040 0.031 0.049 0.042

EIEN 0.031 0.040 0.028 0.041

Table 4. PSNR results for different algorithms. The best result is in red whereas the second best one
is in blue.

Methods
Images

Figure 8a Figure 8b Figure 8c Average

MSRCR [9] 15.684 14.182 20.026 17.086
AGCWD [6] 16.436 15.803 16.444 15.706

LIME [11] 14.516 13.445 14.321 13.723
Wang et al. [12] 13.846 13.29 14.561 14.365
Retinex-Net [14] 13.547 14.265 14.102 13.595
Zero-DCE [16] 11.741 11.626 12.297 11.801

EIEN 21.428 19.648 24.543 20.112
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In addition, to further explore the advantages and disadvantages of the method. We
clearly present the parameters of the three blocks of the proposed method and the running
time on an image of size 600 × 400 in Table 5. As can be seen from the table, all the blocks
except the illumination correction network achieve real-time processing. Therefore, we will
subsequently design the lightweight illumination correction network to achieve real-time
processing while ensuring the improvement of image quality, thus further enhancing the
practical value.

Table 5. The size and running time of each module. The test was performed on GPU. EIEN-Decom
stands for decomposition network, EIEN-ICN stands for illumination correction network, and EIEN-
RCE stands for reflection component enhancement method.

Methods EIEN-Decom EIEN-ICN EIEN-RCE EIEN

SIZE (M) 0.831 1.074 - 1.905
TIME (S) 0.015 0.033 0.005 0.053

4.3. Ablation Studies

This section conducts ablation studies to reveal the impact of some essential steps and
components in our design of the EIEN.

Fine-tuning of the decomposition network model: One of the most critical steps in
implementing the method in this paper is the fine-tuning of the decomposition network
model for endoscopic images, using a dataset of chickens with different illumination
levels. Therefore, it is necessary to compare the decomposition results of the original
Retinex-Net and the fine-tuned decomposition network. The visual comparison results
are shown in Figure 11, where it can be observed that the reflection component of the
EIEN decomposition is more naturalistic. The illumination component is darker in the
dark region and brighter in the light area, more in line with the natural illumination. More
vascular details can be seen in the illumination component of the decomposition after the
weight fine-tuning. This result is soundproof of the effectiveness of decomposition network
fine-tuning.
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Figure 11. The initial decomposition results and the decomposition results after weight fine-tuning.
The second and third columns show the reflectance and illuminance components of the original
Retinex-Net decomposition results, respectively. The fourth and fifth columns show the reflectance
and illuminance components of the decomposition after fine-tuning the weights.

Self-attention mechanism: The critical component in EIEN is that we designed a
self-attention mechanism in the illumination correction network for the light correction of
endoscopic images. Therefore, we compare the results by removing the attention mech-
anism with the final results, which are shown in Figure 12. We can see that the bright
areas of the corrected illuminance components are over-enhanced and have blurred details
when self-attention is not introduced. With the introduction of the attention network, the
corrected illuminance component prevents over-enhancement and has a good detail reten-
tion function. This is because our self-attention mechanism combines the characteristics
of the inverse image of the illumination component and the characteristics of the G and B
channels containing rich, detailed information in the endoscope, which can correctly guide
the network for correction.
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Reflection component enhancement: The primary step for EIEN to generate images
with significant contrast of blood vessels and tissues is to perform reflection component
enhancement; as shown in Figure 13, we can see that the image reconstruction results
without reflection component enhancement will have significant brightness correction,
but the image contrast will be reduced, resulting in unclear images. As can be seen from
d in Figure 13, the details of blood vessels are visible in the reconstructed image after
reflection component enhancement. This is because this step stretches the G and B channels
of the reflectance component and weighted fusion of the stretched reflectance component
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with the original reflectance component, thus highlighting the vascular information in the
mucosal and submucosal layers. In addition, as can be seen from c in Figure 13, when
all three channels of the reflection component are adaptively stretched. The enhancement
results in significant color distortion and blurs the vascular information to the detriment
of observation.
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4.4. Discussion on the Novelty Our Proposed Method

The novelty of our proposed method lies in the following aspects. First, to our knowl-
edge, our proposed network is a new take on endoscopic images. Specifically, we developed
a new network framework based on the Retinex theory. The network consists of a decom-
position network, illumination correction network, and reflection component algorithm.
Among them, the attention mechanism and reflection component enhancement algorithm
are designed specifically for endoscopic images. Different from other methods based on
Retinex theory, we further highlight the vascular and tissue information of the image by
enhancing the reflection component while correcting the illumination component. Sec-
ondly, the designed illumination correction network comprehensively utilizes the pyramid
structure, residual structure, and self-attention mechanism, which reduces the complexity
of the network and avoids excessive enhancement of illumination components and loss
of details. Third, the reflection component enhancement algorithm is designed by com-
bining the imaging characteristics of endoscopic images. It solves the problem of blurred
vascular and tissue imaging due to the presence of the mucosal layer. The presented results
show that our method is qualitatively and quantitatively superior to other methods. This
indicates that our EIEN can effectively enhance endoscopic images to obtain images with
outstanding details and good visual effects.

5. Conclusions and Future Directions

In this paper, a convolutional neural network-based endoscopic image enhancement
method (EIEN) is designed by combining the imaging characteristics of endoscopic images
and the advantages of deep learning methods. The method consists of three parts: a decom-
position network, illumination correction network, and reflection component enhancement
algorithm. Inspired by Retinex theory, the image is decomposed into an illumination com-
ponent and a reflection component by the decomposition network. Then, the illuminance
correction is performed by a designed self-attention guided multiscale pyramid structure,
while the reflection component is enhanced and the enhanced image is reconstructed. In
this paper, the method’s performance is verified on different endoscopic images, and the
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necessity of the steps and components in the method is analyzed. Compared with other
image enhancement algorithms, experimental results show that the technique can enhance
tiny blood vessels and tissue clarity while maintaining image naturalness and solving
uneven illumination and low contrast in medical endoscopic images more effectively. The
method will significantly improve the accuracy of doctors’ diagnosis of diseases and the
safety of minimally invasive surgical operations.

The algorithm proposed in this study also has some shortcomings, and has large room
for improvement. Future research will consider creating unsupervised network models
using physical and generative models, and designing and introducing more appropriate
image quality losses to guide network optimization.
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