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Abstract: Spherical targets are widely used in coordinate unification of large-scale combined mea-
surements. Through its central coordinates, scanned point cloud data from different locations can
be converted into a unified coordinate reference system. However, point cloud sphere detection
has the disadvantages of errors and slow detection time. For this reason, a novel method of spher-
ical object detection and parameter estimation based on an improved random sample consensus
(RANSAC) algorithm is proposed. The method is based on the RANSAC algorithm. Firstly, the
principal curvature of point cloud data is calculated. Combined with the k-d nearest neighbor search
algorithm, the principal curvature constraint of random sampling points is implemented to improve
the quality of sample points selected by RANSAC and increase the detection speed. Secondly, the
RANSAC method is combined with the total least squares method. The total least squares method is
used to estimate the inner point set of spherical objects obtained by the RANSAC algorithm. The
experimental results demonstrate that the method outperforms the conventional RANSAC algorithm
in terms of accuracy and detection speed in estimating sphere parameters.

Keywords: 3D point cloud; spherical target detection; sphere parameter estimation; RANSAC;
large-scale combined measurement

1. Introduction

During the maintenance of aircraft landing gear, it is necessary to detect assembly
errors, such as parallelism of the front and rear axles of the frame and axiality between
the shock absorber prop and sleeve. Because of the sizeable measurement space range
and the complex structure of measured parts, they need to be measured by a combined
measurement method. Combined measurement is a method to select a measurement
method with large-scale precision characteristics to achieve global measurement and control
and to select a precise and an efficient morphology measurement method as the terminal
measurement to collect high-density point clouds [1,2]. Its key principle is to transform
the terminal scan data from different locations into a unified global coordinate reference
system with the help of auxiliary targets [3]. Three-dimensional structured light scanning
technology is often used as the terminal measurement device in combined measurements
due to its good collimation, non-contact mode, high accuracy, and fast measurement [4,5].

Because the sphere is used as the target of detection, any error of the sphere center that
it determines will be propagated as an error in the coordinate system transformation. In
order to improve the efficiency and accuracy of coordinate system unification during mea-
surement, many studies have been devoted to improving the sphere detection accuracy and
shortening the calculation time. Three-dimensional point cloud sphere detection includes
the 3D Hough transform [6], registration [7], random sample consensus (RANSAC) [8],
region growing [9], and other methods. For example, Schnabel et al. [10] proposed the
RANSAC method for 3D sphere detection. This method can effectively detect spherical
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regions in a point cloud. It has high detection accuracy and can suppress the effect of noise.
However, the traditional RANSAC has high computational complexity and relatively
high time consumption [11]. Other researchers [12,13] have put forward some improved
RANSAC methods. These improved RANSAC algorithms can effectively segment targets,
but they do not delve into precise target fitting. Camurri et al. [14] applied the 3D Hough
transform of three-dimensional space for sphere identification and the detection of point
cloud data. It can calculate sphere parameter values from point clouds containing noise
and suppress noise points. However, in practical application, the 3D Hough transform
is more complicated in three-dimensional space, with large computation and high time
consumption. Abizaina et al. [15] proposed a method based on the 3D Hough transform to
detect spherical point clouds in 3D point cloud data generated by the Kinect sensor, and it
has higher computational efficiency than traditional algorithms. Other researchers [16,17]
also proposed methods to improve the sphere detection efficiency and robustness of 3D
Hough detection. These methods based on the 3D Hough transform can effectively detect
the sphere in the point cloud and suppress noise. However, their detection accuracy is
based on the resolution of discrete space, so the calculation cost will increase sharply with
the improvement of accuracy. In many improved methods, the sphere’s radius in the point
cloud needs to be determined in advance, and the spherical point cloud must reach the
hemisphere to be feasible. Anh-vu et al. [18] applied the region growing method for sphere
detection, selected seed points to expand according to the criteria of surface membership,
and divided point clouds into different surfaces through iteration. Nurunnabi et al. [19]
improved the region growing method. This method sets the selection region of seed points
to the area near the artificial filter edge and selects the points with the least curvature in the
region as seed points. The method can detect the spherical model in the point cloud quickly,
but the accuracy of detection depends mainly on the pre-selected seed points. When the
scene contains many noise point clouds, it is challenging to select seed points, and the
detection accuracy is low. Wang et al. [20] proposed an automatic method of laser point
cloud registration based on spherical target detection, which can quickly detect spherical
targets in the point cloud. Huang et al. [21] proposed a registration method based on
an auxiliary spherical target combined with the ICP algorithm, and the spherical target
is used to provide spherical constraints for registration. These registration methods can
quickly detect spherical objects after scene segmentation, but they lack a noise suppression
mechanism after scene segmentation with noise.

When 3D structured light scanning is used as a large-scale combined measurement
terminal, the scanned point cloud data contain the spherical point cloud below but close
to the hemisphere, environmental point, outlier point and regular point clouds of the
measured object. That is, non-spherical point clouds account for a relatively high proportion
of point clouds. The RANSAC algorithm can suppress the influence of point cloud noise
on spherical feature recognition, and it has high robustness and efficiency. Therefore, it is
suitable for large-scale measurement coordinate unification scenarios.

However, due to the random selection of sample points in the detection process of
traditional RANSAC, the model established by the random selection of sample points in
the presence of a lot of noise point clouds is often an error model, and the error model can
only be determined after calculating the inner point set every time, which wastes a lot of
time. To address this problem, Shuyang Shang et al. [22] proposed an improved RANSAC
point cloud sphere detection method based on irrelevant point markers. Triangulation
and statistics are used to mark irrelevant points of spherical shapes according to point
cloud spacing, which cannot be regarded as sample points, thus improving the iteration
efficiency. However, this method is suitable for scenes where noise only disperses the
clutter. In addition to discrete outliers, there are also measured points with regular point
cloud n large-scale combined measurement point cloud data, so this method is unstable for
detection. There is another problem with the traditional RANSAC. The algorithm uses the
least squares method to correct the parameters of the spherical model, which considers the
coefficient matrix to be constant. There are errors in point cloud data, and the coefficient
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matrix is also affected by errors [23]. Therefore, a better-fitting result cannot be obtained
when the threshold value is large.

This paper proposes an improved RANSAC method based on principal curvature
constraint (PC-RANSAC) point cloud spherical target detection and parameter estimation
to solve the above problems. It mainly improves the traditional RANSAC algorithm by
first adding a constraint condition based on the principal curvature of the point cloud. Four
points of random nearest neighbors are searched according to the k-d nearest neighbor
algorithm and then constrained according to their principal curvatures to improve the
sample quality. Secondly, the traditional RANSAC algorithm only considers the error in
the Z direction but ignores the errors in the X and Y directions. This improved method uses
the total least squares method to optimize the estimation of spherical target parameters.

2. Systems and Methods
2.1. System Design

As shown in Figure 1, the hardware of the combined measurement system includes
a flexible joint arm, a 3D scanner, a manipulator, and two sets of spherical targets. The
spherical target consists of multiple (at least three) ceramic standard spheres fixed in
relative positions. The flexible joint arm is the global measurement coordinate system
in the combined measurement system. The manipulator drives the 3D scanner as the
measurement terminal to obtain the point cloud on the measured object’s surface. The two
groups of spherical targets are placed in measurement areas 1 and 2 of the measured object,
respectively. The position of the spherical target in the global measurement coordinate
system can be measured by the flexible joint arm. During the measurement, the 3D
scanner at the end of the manipulator is controlled to scan the two measurement areas. The
measured element point clouds and target point clouds in the two regions are each obtained.
In this way, the coordinates of the target in the global measurement coordinate system and
the coordinates of the 3D scanner measurement terminal are known. Then, the point cloud
data of the measured elements in the region where the spherical target is located can be
converted to the global measurement coordinate system. Finally, coordinate unification of
the measured elements is achieved. The key factors affecting the measurement accuracy
of the system are the detection of spherical targets and the estimation of parameters. This
paper elaborates on this.
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2.2. PC-RANSAC Point Cloud Sphere Detection Algorithm

The process based on the fast, robust PC-RANSAC point cloud sphere detection
algorithm is shown in Figure 2. It is divided into two parts: sphere detection and sphere
parameter estimation. In spherical target detection, four random neighboring points are
searched as the current sample points by the K-D nearest neighbor search algorithm. Point
selection is constrained by the principal curvature of the sample point. If the condition is
not satisfied, a sample point is selected again to improve the quality of the sample point. In
sphere parameter estimation, it considers point cloud data coefficient matrix errors and
the observation vector. The total least squares algorithm optimizes the estimation of the
spherical target center coordinates.
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2.2.1. Principal curvature constraint for sample point selection

At any point P on a continuous smooth surface S, there exist an infinite number of
regular curves passing through that point that have different normal curvatures at point
P [24,25]. The two maximum and minimum extreme values K1 and K2 are called the
principal curvature of the point. If all points of continuous surface S satisfy K1 = K2 6= 0,
surface S must belong to the same sphere, and the normal curvature of all points is equal
to the sphere’s radius [26,27]. If adjacent points with the same principal curvature are
found, the surface constructed by these field points is the sphere in the point cloud. Let
its normal unit vector at point P be N for each point P in the point cloud. The method to
estimate the normal curvature at point P using point coordinates and normal phase vectors
is as follows.

Let us assume that there are m neighboring points near P, qi is the ith nearest neighbor
point of point P, and the normal vector of qi is Mi. Let the orthogonal coordinate system
(X, Y, Z) be the local coordinate system L with point P as the origin, and let N denote the
normal vector of point P. In L, X and Y are orthogonal unit vectors, and the coordinates
of P are (x, y, z), those of qi are (xi, yi, zi), and those of Mi are

(
nxi, nyi, nzi

)
. Let point

P have a normal vector N = (nxp, nyp, nzp). Suppose that the three axes X, Y, Z are
X = (− sin φ, cos φ, 0), Y = (cos ϕ cos φ, cos ϕ sin φ,− sin ϕ), and Z = N = (nxp, nyp, nzp),
where φ = arctan(nxp/nxp)φ = arc cos(nzp).

Then, the normal curvature ki
n of point P can be estimated by constructing approximate

triangles using each point P and its normal vector, the nearest neighbor, and the normal
vector of the nearest neighbor. Figure 3 shows the geometric relationships of these variables.
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Then, the normal curvature of P with respect to qi is estimated as follows:

ki
n = − sin β

|pqi|sin α
(1)

where α is the angle between vectors N and pqi, β is the angle between vectors N and Mi,
and ki

n denotes the normal curvature of the normal intercept line corresponding to the ith
nearest neighbor point.

The following equation gives the approximation of Equation (1):

ki
n = −

nxy√
n2

xy + n2
zi.
√

x2
i + y2

i

(2)

where nxy =
xi ·nxi+yi ·nyi√

x2
i +y2

i
.

As shown in Figure 3, let e1 and e2 be the principal directions corresponding to the
principal curvature of point P. Supposed that θ is the angle between the X-axis in the local
coordinate system and the principal direction corresponding to the maximum principal
curvature e1, Qi is the projection point of the nearest neighbor qi on the tangent plane S,
and θi is the angle between vector Pθi and the X-axis in the local coordinate system.

According to the Euler Equation, the normal curvature and the principal curvature
are related as follows:

ki
n = k1cos(θi + θ) + k2sin2(θi + θ), (i = 1, 2, . . . , m) (3)

The task can be written as an optimization problem:

min
k1,k2,q

m

∑
i=0

[k1cos2(θi + θ) + k2sin2(θi + θ)− ki
n]

2
(4)

Equation (4) can be translated into the following least squares problem.

min
µ

∣∣∣∣∣
∣∣∣∣∣Mm,3

µ
3,1
− r

m,1

∣∣∣∣∣
∣∣∣∣∣
2

(5)

In Equation (5): Mm×3 =



cos2 θ1 2 cos θ1 sin θ1 sin2 θ1
...

...
...

cos2 θi 2 cos θi sin θi sin2 θi
...

...
...

cos2 θm 2 cos θm sin θm sin2 θm

; rm×1 =



k1
n
...

ki
n
...

km
n

; µ =

(A, B, C)T ; A = k1 cos2 θ + k2 sin2 θ; B = (k2−k1) cos θ sin θ; C = k1 sin2 θ + k2 cos2 θ.
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After the least squares fit of Equation (5), estimates of µ can be obtained accord-
ingly, and using the derived values of A, B, and C, the Weingarten matrix can be inferred
as follows:

W =

[
A B
B C

]
=

[
k1 cos2 θ + k2 sin2 θ (k2 − k1) cos θ sin θ

(k2 − k1) cos θ sin θ k1 sin2 θ + k2 cos2 θ

]
=

[
cos θ sin θ
− sin θ cos θ

][
k1 0
0 k2

][
cos θ − sin θ
sin θ cos θ

]
It can be concluded that the principal curvature points k1 and k2 are the eigenvalues

of the matrix W.
From the above, it can be seen that the points satisfying k1 = k2 6= 0 are identified as

spherical points, but due to the measurement error of the point cloud, the spherical spacing
error, and the existence of local fitting error, the derived principal curvature value will
deviate from the actual value. The values of k1 and k2 are rarely guaranteed to be exactly
equal. Therefore, when the absolute value of their difference ∆ does not exceed some limit
ξ, the point can be recognized as a spherical point. However, differences in the radii of
different target spheres will lead to differences in the curvatures of the respective spherical
points. In the case that the radii of target spheres in the scene are unknown and different, it
is not suitable to choose a constant value of ξ.

This paper is designed to identify spherical points by the relative deviation of the
principal curvature ∂∆ = ∆

H , where H is the mean curvature, H = k1+k2
2 , and ∆ =|k1 − k2|.

A point in the point cloud is identified as a spherical point when it satisfies the following
two conditions.

Condition 1: ∂∆ < α, where α is the critical value, which is set to 0.4 in the experiments
described in this paper.

Condition 2: k1 = k2 > 0, and it is possible to exclude plane points and hyperbolic
points.

2.2.2. Total Least Squares Algorithm-Corrected Sphere Parameters

The set of interior points corresponding to the optimal model parameters M* is ob-
tained: (xi, yi, zi), i = 1, 2, · · · , n, and the spatial spherical equation is established as:

(x− a0)
2 + (y− b0)

2 + (z− c0)
2 = r2 (6)

where a0, b0, and c0 are the coordinates of the center of the sphere, and r is the radius of the
sphere. Considering that there are errors in the three directions x, y, and z, let vx, vy, and vz
be the error correction numbers in the three directions x, y, z, respectively. We can rewrite
the spherical equation as follows:

(x− vx)
2 + (y− vy

)2
+ (z− vz)

2 = 2(x− vx)a0 + 2(y− vy)b0 + 2(z− vz)c0 + r2 − a2
0 − b2

0 − c2
0 (7)

After rearranging Equation (7), the following equation is obtained.

y
n,1

+ ey = ( A
n,m

+ EA
n,m

) X
m,1

(8)

EA and ey in Equation (8) denote the errors of the coefficient matrix A and the observa-
tion matrix y, respectively.

where yn×1 =


x2

1 + y2
1 + z2

1
x2

2 + y2
2 + z2

2
...

x2
n + y2

n + z2
n

; An×4 =


2x1 2y1 2z1 1
2x2 2y2 2z2 1

...
...

...
...

2xn 2yn 2zn 1

; en×1 =


v2

x1 + v2
y1 + v2

z1
v2

x2 + v2
y2 + v2

z2
...

v2
xn + v2

yn + v2
zn

;
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EAn×4 =


2vX1 2vy1 2vz1 1
2vX2 2vy2 2vz2 1

...
...

...
...

2vXn 2vyn 2vzn 1

;X4×1 =


a0
b0
c0

r2 − a2
0 − b2

0 − c2
0

.

It is generally solved by the singular value decomposition of the matrix. Firstly,
singular value decomposition of the augmented matrix

[
A y

]
is performed:[

A y
]
= UΣVT (9)

The resulting model parameter estimation is obtained as:

X = − 1
vn+1,n+1

[v1,n+1, · · · , vn,n+1]
T (10)

According to Equation (10), the spherical target parameter
X =

[
a0 b0 c0 r2 − a2

0 − b2
0 − c2

0
]T is the optimal target estimate.

The PC-RANSAC point cloud sphere detection algorithm exploits the properties of
the differential geometry of spherical point clouds. It uses point cloud principal curvature
constraints to improve the quality of RANSAC sample points. The current optimal set
of interior points obtained at the termination of the iteration is also corrected by the total
least squares algorithm. This method reduces the influence of point cloud data coefficient
matrix and observation vector errors on the fitted spherical surface results. The following
experiments illustrate the effectiveness and practicality of the method.

3. Experimental Results and Analysis

The experimental operating environment was an Intel Core 2.4 GHz CPU and MAT-
LAB 2020 platform. Numerous experiments with synthetic and real data were performed
to validate the proposed method. Efficiency and accuracy comparisons and large-scale
measurement experiments were carried out. The detection efficiency and accuracy compar-
isons were divided into a simulation data experiment and an actual acquisition standard
ball experiment.

3.1. Detection Efficiency and Accuracy Verification Experiments
3.1.1. Simulation Experiments

Because the spherical target captured by the surface structured light camera is usually
below but close to the hemisphere, a standard hemispherical surface point cloud of 3000
points was generated by MATLAB. The coordinates of the center of the sphere were (20,
30, 40), and the radius of the sphere was 15. The noise in the point cloud was randomly
generated, and the ratio of the number of spherical model point clouds to the number of
noise points was set as W. Point clouds with W = 10% to W = 40% (with an interval of 10%)
were generated respectively, which are called noisy spherical point clouds. The noise-laden
spherical point cloud is shown in Figure 4.
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Figure 4. Point cloud of noisy spherical surface at different scales. (a) The proportion of the number
of point clouds to noise points in the spherical model is 10%; (b) the proportion of the number of
point clouds to noise points in the spherical model is 20%; (c) the proportion of the number of point
clouds to noise points in the spherical model is 30%; (d) the proportion of the number of point clouds
to noise points in the spherical model is 40%.

Spherical point detection was performed on the simulated point cloud data by the
RANSAC algorithm, 3D Hough algorithm, and PC-RANSAC algorithm. The experimental
results are given as the mean and standard deviation of the sphere center coordinates and
sphere radius after repeating 20 independent experiments. In this paper, the standard
deviations of the detected center coordinates and radius of the spherical model from the
actual values are used to represent the accuracy of the algorithm. The standard deviation is
a measurement concept of the degree of dispersion of a set of values from the mean value.
The standard deviation represents the magnitude of the calculated accuracy. The standard
deviation calculation formula is shown in Equation (11), and the experimental results are
shown in Table 1 and Figure 5.

s =

√
(x− x)2 + (y− y)2 + (z− z)2 + (r− r)2

4
(11)

where (x, y, z) and r are the estimated sphere center coordinates and radius of the spherical
surface, respectively.
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Table 1. Sphere detection results of simulation data for each method.

W Fitting Method Sphere Parameter (mm)
Time (s)

x y z r

40
RANSAC 19.951 30.017 39.907 14.890 5.24
3D Hough 20.158 30.087 39.887 14.841 10.25

PC-RANSAC 20.158 29.989 40.059 14.947 3.85

30
RANSAC 20.120 29.881 40.156 15.145 9.35
3D Hough 20.461 29.438 40.379 15.438 15.24

PC-RANSAC 20.114 29.956 39.979 14.925 4.22

20
RANSAC 19.819 29.776 40.294 14.575 13.45
3D Hough 20.755 29.312 39.324 14.152 17.35

PC-RANSAC 19.924 30.018 39.857 14.883 5.31

10
RANSAC 20.855 29.437 39.322 14.447 15.45
3D Hough 21.755 28.532 41.204 13.682 20.54

PC-RANSAC 20.149 29.836 39.843 14.855 7.53
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Table 1 shows that the detection time of the three algorithms starts to increase as
the proportion of noise in the point cloud increases. The detection time of the 3D Hough
algorithm increases more, the RANSAC algorithm is better than the 3D Hough algorithm
in terms of speed, and the detection time of the PC-RANSAC algorithm is always less than
that of the traditional RANSAC algorithm. Figure 5 shows that when the noise is low,
the accuracy of the three methods in detecting the spherical model is not much different.
However, as the noise increases, the accuracy of the RANSAC algorithm becomes better
than that of 3D Hough. The accuracy of the RANSAC algorithm is better than that of the
3D Hough algorithm in detecting spherical targets in point clouds containing noise, and
the results of the PC-RANSAC algorithm are closer to the real values and are always much
better than those of the RANSAC algorithm and 3D Hough algorithm. The experimental
results show that the PC-RANSAC algorithm can improve the efficiency and accuracy of
the traditional RANSAC algorithm for detecting spherical surfaces with better robustness
and accuracy.

3.1.2. Standard Ball Experiment

In this experiment, the point cloud data of standard ball and shaft parts were obtained
by a XUNHENG 3D scanner, as shown in Figure 6a. The scanner performs photographic
smooth surface scanning of the structure, and its adaptive range is from 40 mm to 2000 mm.
Its scanning range is 200 mm, and its accuracy is 0.04 mm. In the original point cloud data,
there are two ceramic standard balls and a shaft part. The diameter of the two standard
balls is 30 mm, and the center distance of the two balls is 60 mm, as shown in Figure 6b. The
original number of point clouds was 1 million, and after voxel downsampling, the number
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dropped to 82,340. The standard balls were measured using a global classic SR 05-07-05
CMM from HEXAGON. The diameters of the two standard balls were measured to be 30.004
mm and 30.005 mm, respectively, and the center distance of the two standard balls was
60.010 mm. Since the above experiment confirmed that the RANSAC algorithm outperforms
the 3D Hough algorithm in detecting spherical surfaces in point clouds containing noise,
a comparison experiment was conducted using RANSAC and PC-RANSAC to detect
spherical surfaces.
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To verify the robustness of this algorithm, a more relaxed threshold was chosen. The
number of iterations in the experiment was set at k = 20,000, and the distance threshold was
chosen to be 0.4. The experimental results were obtained after repeating 20 independent
experiments to detect the spherical surface, as shown in Table 2; the sphere center distance
between the two spherical surfaces, as shown in Table 3; and the average radius difference
between the spherical surfaces, as shown in Figure 7. The total time required to detect the
spherical surface is shown in Table 4.

Table 2. Sphere detection results of the data for each method.

Sphere Detection
Method

Estimated Sphere Parameters (mm)

x y z r

Sphere 1 RANSAC −47.625 15.835 587.507 14.903
PC-RANSAC −47.387 16.021 587.681 15.021

Sphere 2 RANSAC −45.029 −43.562 583.516 14.885
PC-RANSAC −45.352 −43.806 583.752 14.972

Table 3. Average sphere center distance detected by each algorithm.

Detection Method Distance between the Centers of the Two
Spheres (mm)

RANSAC 59.587
PC-RANSAC 59.990



Sensors 2022, 22, 5850 11 of 15

Sensors 2022, 22, x FOR PEER REVIEW 11 of 15 
 

 

Table 2. Sphere detection results of the data for each method. 

Sphere Detection Method 
Estimated Sphere Parameters (mm) 

x y z r 

Sphere 1 
RANSAC −47.625 15.835 587.507 14.903 

PC-RANSAC −47.387 16.021 587.681 15.021 

Sphere 2 
RANSAC −45.029 −43.562 583.516 14.885 

PC-RANSAC −45.352 −43.806 583.752 14.972 

Table 3. Average sphere center distance detected by each algorithm. 

Detection Method Distance between the Centers of the Two 
Spheres (mm) 

RANSAC 59.587 
PC-RANSAC 59.990 

 
Figure 7. The average radius difference obtained by each algorithm in detecting the spherical sur-
face. 

Table 4. Detection time of spherical surface for each algorithm. 

Detection Method Time (s) 
RANSAC 8.58 

PC-RANSAC 4.62 

As shown in Figure 7 and Tables 3 and 4, the PC-RANSAC algorithm detected the 
average sphere center distance of the standard ball as 59.990 mm with a detection time of 
4.62 s. The RANSAC algorithm detected the average sphere center distance of the stand-
ard ball as 59.587 mm with a detection time of 8.58 s. The experimental results show that 
the PC-RANSAC algorithm can effectively detect the spherical surface in the point cloud 
model, and the detection accuracy and speed are improved compared to the traditional 
RANSAC. The experimental results fully demonstrate the effectiveness and feasibility of 
the method. 

3.2. Large-Scale Measurement Experiment 
In order to verify the practicality of the proposed algorithm in large-scale coordinate 

conversion, the experiment used a spherical target and a robotic arm-driven 3D scanner 
as the measurement tool and a standard rod as the measurement object. A standard sphere 
fixed the standard rod fitting at both ends of the aluminum profile, and the sphere center 
distance measured by the articulated arm was used as the standard value. The sphere 
center distance of the two ends of the standard rod was obtained as 861.890 ± 0.008 mm, 
and the two sphere diameters were 30.007 ± 0.025 mm and 29.990 ± 0.025 mm, respectively. 

The experimental procedure was as follows: (1) The positions of the two sets of tar-
gets were calibrated with the articulated arm before the measurement; the target positions 

Figure 7. The average radius difference obtained by each algorithm in detecting the spherical surface.

Table 4. Detection time of spherical surface for each algorithm.

Detection Method Time (s)

RANSAC 8.58
PC-RANSAC 4.62

As shown in Figure 7 and Tables 3 and 4, the PC-RANSAC algorithm detected the
average sphere center distance of the standard ball as 59.990 mm with a detection time of
4.62 s. The RANSAC algorithm detected the average sphere center distance of the standard
ball as 59.587 mm with a detection time of 8.58 s. The experimental results show that
the PC-RANSAC algorithm can effectively detect the spherical surface in the point cloud
model, and the detection accuracy and speed are improved compared to the traditional
RANSAC. The experimental results fully demonstrate the effectiveness and feasibility of
the method.

3.2. Large-Scale Measurement Experiment

In order to verify the practicality of the proposed algorithm in large-scale coordinate
conversion, the experiment used a spherical target and a robotic arm-driven 3D scanner as
the measurement tool and a standard rod as the measurement object. A standard sphere
fixed the standard rod fitting at both ends of the aluminum profile, and the sphere center
distance measured by the articulated arm was used as the standard value. The sphere
center distance of the two ends of the standard rod was obtained as 861.890 ± 0.008 mm,
and the two sphere diameters were 30.007± 0.025 mm and 29.990± 0.025 mm, respectively.

The experimental procedure was as follows: (1) The positions of the two sets of targets
were calibrated with the articulated arm before the measurement; the target positions are
shown in the boxed parts in Figure 8a, and their measurement data are shown in Table 5.
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Table 5. Target ball center values for articulated arm calibration.

Group Serial Number
The Coordinates of Sphere Centers (mm)

x y z

Target 1
Sphere 1 386.703 −15.863 239.877
Sphere 2 425.466 −10.260 265.832
Sphere 3 368.809 −10.346 285.568

Target 2
Sphere 1 116.247 −15.956 −561.551
Sphere 2 126.015 9.198 −616.762
Sphere 3 76.307 −8.218 −600.384

(2) The standard rod fitting was placed on the horizontal surface of the adjacent target
and fixed. Standard rod sphere 1 and target 1 and standard rod sphere 2 and target 2 were
each scanned by operating the 3D scanner driven by the robotic arm, as shown in the square
boxed area in Figure 8b. The improved RANSAC algorithm was used to automatically
detect the target sphere point cloud and standard rod sphere point cloud in the point cloud
data and fit them to obtain each sphere parameter. The measured data are shown in Table 6.

Table 6. Sphere center values of the scanner’s detection target.

Group Serial Number
The Coordinates of Sphere Centers (mm)

x y z

Target 1
Sphere 1 386.703 −15.863 239.877
Sphere 2 425.466 −10.260 265.832
Sphere 3 368.809 −10.346 285.568

Target 2
Sphere 1 116.247 −15.956 −561.551
Sphere 2 126.015 9.198 −616.762
Sphere 3 76.307 −8.218 −600.384

Standard rod sphere Sphere 1 78.436 −33.811 −437.573
Sphere 2 70.601 −22.050 −435.581

(3) For coordinate unification of point cloud data using the coordinates of the same
spherical target in different measurement coordinate systems, the RT matrices of targets 1
and 2 converted to the joint arm coordinate system were obtained.

The RT matrix of target 1:R1 =

 0.929 −0.331 −0.166
0.180 0.013 0.984
−0.323 −0.944 0.072

, T1 =

 65.718
431.829
−548.694

.

The RT matrix of target 2:R2 =

 0.922 −0.349 −0.167
0.181 0.007 0.984
−0.342 −0.937 0.069

, T2 =

328.124
431.778
259.960

.

(4) The rotation translation matrix of the point cloud data of targets 1 and 2 derived
from step (3) converted and unified the two parts of the point cloud data into the joint arm
coordinate system. The unified point cloud data are shown in Table 7, and the unified effect
is shown in Figure 9.
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Table 7. Measurement data after coordinate unification.

Group Serial Number
The Coordinates of Sphere Centers (mm)

x y z

Target 1
Sphere 1 386.729 −15.868 239.832
Sphere 2 425.442 −10.260 265.833
Sphere 3 368.806 −10.34 285.612

Target 2
Sphere 1 116.37 −15.935 −561.539
Sphere 2 126.056 9.176 −616.689
Sphere 3 76.143 −8.217 −600.469

Standard rod sphere Sphere 1 485.284 15.305 234.505
Sphere 2 210.394 15.931 −582.346
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(5) As shown in Table 7, the spherical surface was detected by the improved RANSAC
algorithm, and the length of the sphere distance between the two ends of the standard rod
obtained by coordinate unification is 861.865 mm. The experiment was repeated ten times
with the mobile robot, and the measured value of the joint contact arm was used as the real
value of the sphere distance. The single measurement result was compared with the real
value, and the experimental results and data are shown in Table 8.

Table 8. Data of ball center distance after coordinate unification.

Serial Number Distance between the Centers of the Two Spheres (mm)

1 861.865
2 861.793
3 861.926
4 861.966
5 861.864
6 861.926
7 861.842
8 861.867
9 861.836
10 861.872

After the point cloud data coordinates were unified, the sphere distance data between
the two ends of the standard rod were obtained, as shown in Table 8. The maximum
deviation was 0.097 mm, the minimum deviation was 0.018 mm, and the average was
861.876 mm. The standard deviation was 0.0481 mm, and the standard uncertainty of the
measurement mean was 0. 01521 mm. With degrees of freedom v = 9 and confidence
probability p = 95%, querying the t-distribution table yielded k = 2.821, so the mean
extended uncertainty U = 0.045 mm. Then, the measurement result of the ball center
distance after coordinate unification was 861.876 ± 0.045 mm. The results show the
practicality of the proposed algorithm in large-scale coordinate unification.

According to the above experiments, the PC-RANSAC algorithm is better than the
traditional algorithm and 3D Hough algorithm in terms of detection accuracy and speed.
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The PC-RANSAC algorithm uses the point cloud principal curvature to constrain the
selection of sample points. The efficiency of the traditional RANSAC algorithm is improved,
so the algorithm running time can be shortened. The PC-RANSAC algorithm also uses the
total least squares algorithm to optimize the interior point set of the current optimal sphere
obtained by fitting. It can reduce the influence of the coefficient matrix and observation
vector error of the point cloud data on the sphere fitting result so that it can improve the
accuracy of fitting sphere parameters.

4. Conclusions

This paper proposes a novel method to automatically detect sphere targets in point
clouds and improve the accuracy of estimating sphere parameters. The main contributions
and novelty of this paper are as follows:

(1) We propose an improved RANSAC point cloud spherical target detection and
parameter estimation method based on principal curvature constraint. The method applies
to the automatic extraction of spherical targets when the coordinates of large-scale combined
measurements are unified. The algorithm improves the iteration efficiency by constraining
the sample point quality through the principal curvature. Considering the errors in both
the coefficient matrix and observation matrix when fitting the point cloud data, the method
uses the total least squares algorithm to optimally estimate the sphere parameters.

(2) Experimental results show that this method can automatically detect spherical
objects in point clouds. The experimental results show that the proposed method has
better detection accuracy and detection speed than the traditional RANSAC algorithm. The
method was also applied to the coordinate unification of large-scale combined measure-
ments. The practicability of the proposed algorithm is proved.
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