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Abstract: Facial emotion recognition from facial images is considered a challenging task due to the
unpredictable nature of human facial expressions. The current literature on emotion classification
has achieved high performance over deep learning (DL)-based models. However, the issue of perfor-
mance degradation occurs in these models due to the poor selection of layers in the convolutional
neural network (CNN) model. To address this issue, we propose an efficient DL technique using a
CNN model to classify emotions from facial images. The proposed algorithm is an improved network
architecture of its kind developed to process aggregated expressions produced by the Viola–Jones
(VJ) face detector. The internal architecture of the proposed model was finalised after performing a
set of experiments to determine the optimal model. The results of this work were generated through
subjective and objective performance. An analysis of the results presented herein establishes the
reliability of each type of emotion, along with its intensity and classification. The proposed model is
benchmarked against state-of-the-art techniques and evaluated on the FER-2013, CK+, and KDEF
datasets. The utility of these findings lies in their application by law-enforcing bodies in smart cities.

Keywords: deep learning; facial expression recognition; law enforcement; smart cities; smart security;
CNN; verbal communication

1. Introduction

Facial expressions play a very significant role in nonverbal communication. Nonverbal
cues can be categorised as facial expressions of a non-communicative nature. It is natural
and reflects not only emotions, but also several mental activities, physical gestures, and
social interactions [1]. Facial expression recognition (FER) is widely used in several applica-
tions, including customer satisfaction recognition, human–computer interaction, medical
diagnostics (disease), elderly care, criminal justice systems, security monitoring, smart card
applications, and increased law enforcement services in smart cities [2–4]. Vision sensor-
based FER has attracted attention in current research and has great potential in real-time
FER recognition. In vision-based FER, the researchers focused on seven basic expressions,
i.e., anger, disgust, fear, happy, neutral, sad, and surprise [5,6], and they categorised the
FER into two sub-categories as conventional and deep learning (DL)-based methods.

Conventional FER systems comprise three major steps: face detection, feature extrac-
tion, and classification [7]. Several researchers have used conventional feature extraction
mechanisms based on clustering methods [8], such as Local Binary Patterns (LBP) [9], prin-
cipal component analysis (PCA) [10], Histogram-Oriented Gradient (HoG) [11], Oriented
FAST and Rotated BRIEF (ORB) [4], feature-level fusion techniques [12], etc. Afterward, the
extracted features are fed to the classifiers for classification, such as K-nearest neighbours
(KNN) [13], Hidden Markov Models (HMM) [14], Support Vector Machines (SVM) [15],
Decision trees, and Naïve Bayes [16]. In conventional vision-based FER, independent
feature extraction and classification are the major concerns, require domain experts for
prominent feature selection and classification, and are time-consuming and error-prone
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techniques [17], making it challenging to improve the system performance of conven-
tional FER. Therefore, the researcher investigated DL-based strategies for FER, providing
comparatively better accuracy.

Inspired by the recent performance of DL approaches, several researchers used CNN-
based methods in different domains, such as fire disaster [18], time-series analysis [19,20],
medical image analysis [21], video analysis [22], photovoltaics [23], sentiment analysis from
text data [24], and energy management [20,25,26], and they achieved promising results. In
recent years, DL-based methods have shown promising results for FER over conventional
methods by blending end-to-end automatic feature extraction and classification into one
step [27,28]. In particular, convolutional neural networks (CNNs) have been used in
several research studies to address the limitations of conventional FER [29,30]. Therefore,
the researcher used different CNN models for FER, such as the ensemble convolutional
neural network (ECNN) for FER used in [31], VGG [5,32], AlexNet [33], ResNet50 [34], and
Xception [35]. These methods improve the performance over conventional FER; however,
the accuracy of FER needs further improvement, and the time complexity, model size,
inferencing speed, and performance on unseen data restrict the system from real-world
implementation; as such, an efficient and accurate model has yet to be developed.

In this paper, we propose an improved CNN-based architecture for FER and improve
the performance of FER to increase its usability in several applications, such as human–
computer interaction, customer reviews, and elderly care, and especially to increase law
enforcement services in smart cities. We used the Viola–Jones (VJ) face detection algorithm,
which was created based on considerable research into facial recognition and detection
and which can segment and recognise elements such as the nose, mouth, and eyes [36].
The detected faces were passed to our proposed model for FER. The proposed model is
lightweight and can be deployed over a cost-effective, resource-constrained device. The
performance of the proposed model was evaluated using three benchmark datasets to
check the model’s effectiveness in a real-world environment. The key contributions of our
work are summarised as follows:

1. We propose an efficient framework for FER that can be deployed over resource-
constrained hardware to identify and monitor suspicious activities that can assist law
enforcement agencies in smart cities by providing a cost-effective solution to ensure
better security.

2. The proposed framework is based on a lightweight CNN model for FER and uses the
VJ algorithm for face detection.

3. We performed cross-validation of the proposed model to fully assess its generalisa-
tion abilities.

4. The performance of the proposed model is evaluated on several benchmark datasets
and the results reveal significant improvements in accuracy compared to state-of-the-
art approaches.

The rest of the work is presented as follows: Section 2 describes related work, Section 3
explains the methodology, Section 4 presents the results, and Section 5 concludes the paper.

2. Related Work

FER is currently the subject of considerable active research, and several cutting-edge
techniques have been proposed over the past two decades. However, due to the infinitely
varied level of facial features in people of different ages, cultures, genders, scales, and
perspectives, the procedure requires techniques of better accuracy. The relevant literature
includes numerous studies on the use of facial expressions to identify feelings and emotions.
Several researchers have proposed different techniques based on conventional and DL-
based methods. However, conventional vision-based FER methods have achieved limited
performance in extracting features from the given input images and classifying them
accordingly. For instance, Kumar et al. [8] proposed a three-tier framework for FER. In
the first tier, Otsu’s thresholding approach is used to remove the background using the
YCbCr colour scheme; in the second tier, the max–min algorithms are used to select the
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initial cluster values of K-means algorithms to segment the most important regions from the
image nose, mouth, forehead, eye gap, and eye; and in the third tier, different shape features
are extracted from these segmented regions and fed into a two-level rule-based classifier for
FER. Shan et al. [9] employed LBP and discriminant LBP features for the given input images
and fed them to the SVM classifier for effective FER. Mansour et al. applied a PCA-based
method for efficient FER [10], while Kumar et al. [11] presented a real-time system for FER.
The authors used the HoG features descriptor to extract the most prominent facial features
and the SVM classifier to differentiate the extracted features into seven different emotions.
Sajjad et al. [4] developed an FER-based system for detecting suspicious activity. The
authors used the VJ algorithm for face detection; the detected face was then preprocessed
by the median and Gabor filters. The ORB features were then extracted and the SVM
classifier was trained to classify the seven basic emotions. Wang et al. [14] used geometric
LBP and Gabor feature descriptors for salient facial feature extraction; the extracted features
were then classified by HMM. Abdulrahman et al. [15] employed the PCA and LBP feature
extraction mechanism, using SVM as a classifier to differentiate the extracted features in the
seven basic emotions. They used a VJ algorithm for face detection, a Supervised Descent
Method to extract prominent features from the detected face, and a decision tree algorithm
to classify the seven basic emotions. In conventional vision-based FER, independent feature
extraction and classification are the major concerns, require domain experts for prominent
feature selection and classification, and are time-consuming and error-prone techniques.

DL-based methods are applied to overcome the challenges of a conventional vision-
based system for FER. Numerous research studies have been done to examine FER, and
some of the most recent work has focused on developing an effective and efficient training
model. For instance, Mayya et al. [37] presented an approach for FER using DCNN
features. The authors employed a pretrained DCNN model, which used the pretrained
weight of ImageNet [38], and obtained a 9216-dimensional vector for validation with SVM
to recognise the seven basic emotions. Sajjad et al. [30] proposed an FER method for
behaviour analysis by considering some serious famous TV videos. In this approach, the
VJ algorithm is used for face detection, and then Hog, SVM, and a CNN model are used for
features extraction and classification. Al-Shabi et al. [7] used a hybrid model for FER. They
fused the features of SIFT and CNN for facial feature analysis. Yu et al. [39] investigated the
performance of CNNs for FER by employing an assembly of CNNs with five convolutional
layers. The authors used a stochastic pooling strategy instead of maximum pooling to
achieve better performance. Jain et al. [40] proposed a new DL model containing deep
residual blocks and convolution layers for accurate FER. Some DL models, such as the VGG,
AlexNet, four-layer CNN, ResNet, and MobileNet, are used in [5,27,33,34,41,42] for accurate
FER. However, the time complexity, model size, inferencing speed, and performance on
unseen data restrict these systems from real-world implementation; therefore, an efficient
and accurate model has yet to be developed. The framework proposed in this paper takes
advantage of techniques used to address concerns about increased computational costs and
feature extraction from low-resolution images in poor-quality scenarios.

3. Materials and Methods

FER has become an area of interdisciplinary research. In addition to other applications,
FER has a wide range of uses in the field of security, as it can be used to identify and verify a
person’s impressions in a photo or video. In this work, we recognise that FER is a two-step
process: (1) a live video stream using the VJ algorithm for face detection and (2) a four-layer
CNN architecture for FER.

3.1. Datasets

To measure and evaluate several methods of classification and recognition of facial
emotions, we needed standardised datasets. Several facial emotion datasets have been
developed in recent decades. The following sections present a detailed overview of some
of the standard and benchmark datasets used in this work.
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3.1.1. FER-2013

The FER-2013 consists of 33,000 grayscale images of faces expressing the seven basic
emotions of feeling neutral, happy, anger, sad, surprise, disgust, and fear [43]. Faces are
automatically registered so that each image is more or less in the middle and takes up
approximately the same amount of space.

3.1.2. CK+

CK+ consists of 593 images of 120 people aged 18–30 years [44]. The dataset includes
images that cover all seven basic emotions at a resolution of 640 × 490 or 640 × 480, in
8-bit grayscale. Approximately 81% of the people are European-American, 13% are African
American, and 6% are of another ethnicity of descent, with a women-to-men ratio of 65
and 35.

3.1.3. The KDEF

The KDEF [45] consists of 490 JPEG images of 35 women and 35 men depicting seven
different emotional expressions at a resolution of 72 × 72 pixels.

3.2. Facial Detection Using the VJ Algorithm

The VJ algorithms include the Haar feature selection, AdaBoost learning, and cas-
cading classifier construction. The Haar features are used to recognise darker regions of
the eyes from the brighter regions of the nose. This is described by comparing the pixel
values of both regions and subtracting the number of estimated pixels in the bright and
dark regions to find the difference. The difference is measured with a specific threshold
to check the appearance of the object in the image and to classify them as nose, eyes, and
chin on face or no-face. In the detection process, each detector consists of a combination of
strong and weak successive classifiers, and in our case, the strong classifier is trained using
AdaBoost learning through weak classifier combinations obtained by the Haar features
of edge, line, or four-sided structures. The Haar features enable the process of interpret-
ing identifiably different parts of a face by creating classifier cascades through the use of
whether the identifiable portion is an edge, line, or four-sided structure. In the proposed
technique, we have integrated the VJ facial detection algorithm: the camcorder captures
a video, extracts the video frames as input images, crops them, and converts them into
grayscale images. Once the image is converted into grayscale, it goes through the feature
extraction process shown in Figure 1, which shows different images from the framework
(pictures of a man, woman, and child) to detect the emotions of both genders. The proposed
system is independent of the age factor.
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3.3. Proposed Model Architecture

In the proposed model, the faces detected by the VJ algorithm are fed into the proposed
CNN architecture for prominent feature extraction and classification. The features of the
selected frames are received by a series of four convolutional layers and a pooling layer,
followed by the ReLu activation function. Afterward, the process frame is passed to the
fully connected layer and displayed to classify the input image in its corresponding seven
emotions. The proposed architecture is presented in Figure 1 and is chosen because of
its speed and accuracy, and above all, it is the most reported work. In this architecture,
32 different kernels (size 3 × 3) are applied with batch normalisation and the ReLu activa-
tion function using a 224 × 224 × 3 input shape for RGB data and a 224 × 224 × 1 input
shape for grayscale. We used maximum pooling with a 2 × 2 kernel size to reduce the
dimensions. This process was repeated for all the remaining convolutional and pooling
layers by increasing the number of kernels from 32 to 64 in the second layer, from 64 to
128 in the third layer, and from 128 to 256 in the fourth layer. In fully connected layers, 64
and 128 neurons of the first and second fully connected layers are selected, respectively,
and the SoftMax layer consists of seven neurons that provide the probability of each class.
Table 1 shows the internal architecture of the proposed model.

Table 1. The internal architecture of the proposed model.

Layer Output-Shape Params Layer Output-Shape Params

conv2d_63 (Conv2D) (56 × 56 × 32) 896 batch_normalisation_64 (23 × 23 × 128) 512
activation_63 (Activation) (56 × 56 × 32) 0 conv2d_66 (Conv2D) (21 × 21 × 256) 295,168

max_pooling2d_32 (28 × 28 × 32) 0 activation_66 (Activation) (21 × 21 × 256) 0
batch_normalisation_63 (28 × 28 × 32) 128 batch_normalisation_66 (21 × 21 × 256) 1024

conv2d_64 (Conv2D) (26 × 26 × 64) 18,496 flatten_16 (Flatten) (112,896) 0
activation_64 (Activation) (26 × 26 × 64) 0 dense_42 (Dense) (64) 7,225,408

max_pooling2d_33 (25 × 25 × 64) 0 dropout_27 (Dropout) (64) 0
batch_normalisation_64 (25 × 25 × 64) 256 dense_43 (Dense) (128) 8320

conv2d_65 (Conv2D) (23 × 23 × 128) 73,856 dropout_28 (Dropout) (128) 0
activation_65 (Activation) (23 × 23 × 128) 0 dense_44 (Dense) (7) 903

Total params 7,624,967

3.4. Flowchart Diagram of the Proposed Work

Figure 2 shows the workflow of the proposed model. The input frame is extracted
from the video and each face is detected from the input image through the VJ algorithm. If
the face is not detected, the system will scan another face detection video frame and the
process continues until the face is detected. When the face is detected, it is cropped into a
224 × 224 pixel size and passed to the CNN model for efficient emotion recognition into
the seven different classes—anger, disgust, fear, happy, neutral, sad, and surprise—for the
display of the output results.
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4. Results and Discussion

Experimental results were obtained from three benchmark datasets: FER-2013, CK+,
and KDEF. The datasets were divided into training, testing, and validation data, where
60% of data were selected for training, 20% for testing, and 20% for model validation.
We followed a state-of-the-art method to split the dataset between training, testing, and
validation [46]. Before choosing these percentages, we also tested the proposed model
over several variants of data splitting, meaning that the proposed model could effectively
learn with a lower amount of data. We conducted experiments during the training and
testing processes to determine the dramatic changes that occurred in the performance of the
proposed system. To obtain streams from VSN [22] for experimental evaluation, we used
Python 3.64, OpenCV3+, Keras, and TensorFlow with resource-constrained devices. We
used a GTX 1070 GPU with 8 GB of onboard memory and an intel Core i5 processor with
16 GB of RAM to train the model on a system comprising 8 GB of memory, a 2.8 GHz pro-
cessor, and a 1 terabyte (TB) installed hard drive. Table 2 shows the detailed specifications
of the system and important libraries.

Table 2. Software specifications for model training.

Name Configuration

OS Window 10.
Programming

Language Python 3.6 [47].

Libraries Keras, TensorFlow, Numpy, PyLab, pillow, lxml, Cython, pandas, Matplotlib [48].
Imaging Libraries OpenCV 3.4.0 [49], and Scikit-Learn.
Performance [50] Line Profiler, ContentBox, CommandBox, BCMStat, and CFML.

IDE Jupyter Notebook, and Python.

4.1. Experimental Evaluation

In this section, we evaluate the performance of the proposed model over benchmark
datasets. The detailed experimental results for each dataset are described in the follow-
ing subsections:
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4.1.1. Performance Evaluation over FER-2013

Figure 3 shows the accuracy level of our proposed CNN model on FER-2013 during
training and validation. The x-axis shows the number of epochs, while the y-axis shows the
accuracy of the proposed model concerning training and validation. We set 30 epochs as the
standard for model training, and the ratio of accuracy is listed on the y-axis. The validation
accuracy of the proposed method on the FER-2013 started at 0.2%, whereas the accuracy of
training started at 0.5%. After each epoch, the accuracy of training and validation decreases,
and after several epochs, these accuracies become stable. Over 30 epochs, the training
and validation accuracy reached 89%, respectively, indicating that the proposed model fits
with the data variation. The testing accuracy of each class was 77.78% for anger, 81.50%
for disgust, 85.86% for fear, 93.33% for happy, 95% for neutral, 93% for sad, and 90.44%
for surprise. The overall testing accuracy of our model using FER-2013 was 89%, and the
confusion of all classes is given in Figure 4.
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4.1.2. Cross-Validation of the FER-2013 Trained Model over the KDEF and CK+ Datasets

We also evaluated the performance of the proposed model using a cross-crop eval-
uation matrix, where the model is trained over the FER-2013 dataset and validated over
KDEF and CK+ datasets. Tables 3 and 4 present the detailed results. Cross-crop validation
was performed over a test set of data to check the generalisation ability of the proposed
model over unseen data.



Sensors 2022, 22, 6105 8 of 15

Table 3. Cross-validation over the KDEF dataset.

Anger Disgust Fear Happy Neutral Sad Surprise Per-Class Accuracy

Anger 32 8 6 1 2 3 1 0.60
Disgust 3 52 4 6 1 2 1 0.75

Fear 1 5 31 0 1 5 2 0.69
Happy 0 1 0 61 0 0 6 0.90
Neutral 2 3 2 1 54 3 3 0.79

Sad 1 1 2 0 1 43 0 0.90
Surprise 0 1 1 2 3 1 32 0.80

Overall accuracy 0.78

Table 4. Cross-validation over CK+ dataset.

Anger Disgust Fear Happy Neutral Sad Surprise Per-Class Accuracy

Anger 185 26 17 0 5 16 6 0.72
Disgust 10 220 29 7 15 11 3 0.74

Fear 7 10 99 0 0 8 0 0.80
Happy 1 5 1 310 0 1 27 0.90
Neutral 1 3 1 0 83 2 0 0.92

Sad 4 6 3 0 1 126 0 0.90
Surprise 1 4 2 22 2 5 378 0.91

Overall accuracy 0.84

4.1.3. Performance Evaluation over CK+

To evaluate the performance of the proposed model using the CK+ dataset, we ex-
perimented with the same number of epochs as previously used for the FER-2013 dataset.
The training and accuracy of our model using the CK+ dataset rose from 71% and 90%,
as shown in Figure 5, and the accuracy of training and validation reached 92% and 89%,
respectively. The testing accuracy is shown in the confusion matrix, as given in Figure 6,
which indicates that the overall testing accuracy of the proposed system on CK+ is 90.98%.
The proposed model achieved 77.57%, 85%, 88%, 98.31%, 99%, 99%, and 90%, respectively,
for the anger, disgust, fear, happy, neutral, sad, and surprise classes.
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4.1.4. Cross-Validation of CK+ Trained Model over FER-2013 and KDFE Dataset

The performance of the CK+ dataset-trained model was cross-validated on FER-2013
and CK+ datasets. We selected test samples from each class of the mentioned datasets and
performed a cross-validation to verify the robustness of the model. Tables 5 and 6 present
the results.

Table 5. Cross-validation over the FER-2013 dataset.

Anger Disgust Fear Happy Neutral Sad Surprise Per-Class Accuracy

Anger 574 96 193 0 0 95 0 0.60
Disgust 7 56 11 0 24 11 0 0.51

Fear 4 112 614 0 204 90 0 0.60
Happy 0 177 0 1419 0 0 178 0.80
Neutral 0 0 85 0 986 112 50 0.80

Sad 65 83 130 0 97 872 0 0.70
Surprise 0 0 92 10 64 0 665 0.80

Overall accuracy 0.68

Table 6. Cross-validation over the KDEF dataset.

Anger Disgust Fear Happy Neutral Sad Surprise Per-Class Accuracy

Anger 42 5 2 1 0 1 2 0.79
Disgust 3 48 9 2 1 4 3 0.68

Fear 0 1 39 0 1 3 1 0.87
Happy 0 1 0 61 1 0 5 0.90
Neutral 1 2 1 0 61 2 1 0.90

Sad 1 2 1 0 1 43 0 0.89
Surprise 0 0 1 1 1 1 36 0.90

Overall accuracy 0.85

4.1.5. Performance Evaluation of KDEF

Figure 7 illustrates the results of the KDEF dataset in terms of validation and training
accuracy, which started at 0.5%. After each epoch, the accuracy gradually increased because
of the learning parameters programmed into the machine. Finally, over 30 epochs, the
accuracy of training and validation reached 94% and 93%, respectively. The KDEF final
confusion matrix indicated that the overall testing accuracy of the proposed model was
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94.04%. Anger is identified at an accuracy rate of 91.89%, disgust at 91.50%, fear at 92%,
happy at 97%, neutral at 95.89%, sad at 94.28 %, and surprise at 95.78%, as shown in Figure 8.
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4.1.6. Cross-Validation of the KDEF-Trained Model over the FER-2013 and CK+ Datasets

The trained model over the KDEF dataset was cross-validated with the FER-2013 and
CK+ datasets, and the detailed results are given in Tables 7 and 8. Cross-crop validation
was performed over a test set of data to check the generalisation ability of the proposed
model over unseen data.

To conclude our analysis of all the above-mentioned results, the proposed model was
trained on FER-2013, CK+, and KDEF datasets individually, and their performance was
validated. Furthermore, each model was cross-validated on the other two datasets to fully
assess the generalisation ability of the proposed model.
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Table 7. Cross-validation over the FER-2013 dataset.

Anger Disgust Fear Happy Neutral Sad Surprise Per-Class Accuracy

Anger 862 10 86 0 0 0 0 0.90
Disgust 2 89 8 0 9 3 0 0.80

Fear 9 17 901 0 12 85 0 0.87
Happy 0 2 5 1738 3 0 29 0.98
Neutral 23 44 15 9 1085 39 18 0.88

Sad 36 55 97 0 0 1059 0 0.85
Surprise 0 11 9 63 0 0 748 0.90

Overall accuracy 0.88

Table 8. Cross-validation over the CK+ dataset.

Anger Disgust Fear Happy Neutral Sad Surprise Per-Class Accuracy

Anger 180 26 22 0 8 13 6 0.70
Disgust 13 187 39 11 23 17 5 0.63

Fear 16 23 68 1 3 11 2 0.54
Happy 2 6 1 301 0 2 33 0.87
Neutral 2 3 1 0 81 2 1 0.90

Sad 8 14 8 1 3 105 1 0.75
Surprise 5 6 4 45 6 9 340 0.81

Overall accuracy 0.74

Based on the above-mentioned results, the proposed model achieved remarkable
accuracy over each dataset; however, the performance of the proposed model over the CK+
dataset achieved lower accuracy against the FER-2013, and the FER-2013 achieved lower
accuracy against the KDEF. The performance of the proposed model over the CK+ dataset
achieved lower accuracy against FER-2013 due to unbalanced samples in FER-2013 datasets
when the model was trained over a balanced CK+ dataset. Furthermore, the proposed
model achieved lower accuracy in cross-crop validation when the model was trained over
FER-2013 and validated over KDEF. The main reason behind the lower performance of the
model is that KDEF is an RGB dataset, while the FER-2013 samples were in grayscale.

4.2. Comparative Analysis of the Proposed Model with State-of-the-Art Techniques

We conducted several experiments to evaluate the performance of the proposed
FER model with other state-of-the-art methods, as shown in Table 9. To evaluate the
model’s robustness, we first compared the performance of our model with FER-2013; the
proposed model surpassed an accuracy of 23.2%, 17.2%, 0.6%, and 2.42%, respectively,
compared to the models of Arriaga et al. [51], J. Li et al. [52], Subramanian et al. [53], and
Borgalli et al. [46]. We also assessed the robustness of our model using the CK+ dataset,
where our model achieved a promising result compared to state-of-the-art methods. The
proposed model achieved 1.48%, 9.98%, and 3.29% higher accuracy compared with those of
Hasani et al. [54], Borgalli et al. [46], and Bodapati et al. [6], respectively. We then assessed
the proposed model using the KDEF dataset. Our model obtained a higher accuracy of
0.65 when compared with the method proposed by Sajjad et al. [30]. To further analyse
the model, Haq et al. [55] and Liu et al. [56] achieved 0.39% and 7.14% lower performance
compared to the proposed model.
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Table 9. Comparing the performance of the proposed model with the state-of-the-art method over
three benchmark datasets.

Dataset References Methods Average Accuracy (%)

FER-2013

Arriaga et al. [51] Mini-Xception 66.0
J. Li et al. [52] CNN with Transfer Learning 72.0

Subramanian et al. [53] Three Layer CNN architecture 88.6
Borgalli et al. [46] Six Layer CNN architecture 86.78

The Proposed model Proposed 89.2

CK+
Borgalli et al. [46] Six Layer CNN architecture 81.0

Bodapati et al. [55] InceptionResNetV2 87.69
The Proposed model Proposed 90.98

KDEF

Sajjad et al. [30] Fine-tuned AlexNet 93.39
Haq et al. [55] CNN with Transfer Learning 93.65
Liu et al. [56] Multi-channel features 86.9

The Proposed model Proposed 94.04

4.3. Time Complexity of the Proposed Model over GPU, CPU, and Resource-Constrained Devices

We evaluated the performance of a proposed model in real time to compute the
processing time of the proposed model over GPU, CPU and resource-constrained device
(Jetson Nano). Jetson Nano is a small and powerful computer that runs multiple CNNs
in parallel for different applications, such as recognition, segmentation, object detection,
and speech processing. Its GPU has 128 NVIDIA CUDA® cores, the CPU is Quad-core
ARM Cortex-A57, and it has 4 GB of memory. The frames per second (fps) of the proposed
model using GPU, CPU, and Jetson Nano were 45, 21, and 26 s, respectively. The time
complexity of the proposed model is much lower and applicable for deployment in real-
world scenarios.

5. Conclusions

The capabilities built into FER technology with resource-constrained devices, such
as the Jetson Nano, can greatly assist law enforcement agencies in effectively identifying
suspects by analysing a person’s facial expressions. This requires an effective framework
to facilitate the identification of fake and suspected individuals from facial expressions.
With this in mind, we have proposed an efficient facial expression framework using
Jetson Nano, a resource-limited tool that measures facial expressions from video streams
captured by the VSN. The proposed framework automatically extracts the face using
the VJ algorithm and then identifies facial expressions using the proposed model. The
proposed model achieved significantly better results compared to the other methods.
The quantitative and qualitative capacities using three different datasets demonstrated
the effectiveness of the proposed framework for enhancing law enforcement services in
smart cities. In future studies, we will extend the proposed framework to incorporate
gender classification and age-predicting factors for the identification of facial emotions
in detail. Such a system would enable us to determine the gender, age, and emotions of
individuals effectively. We will apply various DL models and review their performance
on resource-constrained devices. We will also apply data augmentation techniques to
balance the samples in each class and increase the number of samples for all classes to
further improve the performance of the proposed model.
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