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Abstract: As lightweight, low-cost EEG headsets emerge, the feasibility of consumer-oriented brain–
computer interfaces (BCI) increases. The combination of portable smartphones and easy-to-use
EEG dry electrode headbands offers intriguing new applications and methods of human–computer
interaction. In previous research, augmented reality (AR) scenarios have been identified to profit from
additional user state information—such as that provided by a BCI. In this work, we implemented
a system that integrates user attentional state awareness into a smartphone application for an AR
written language translator. The attentional state of the user is classified in terms of internally and
externally directed attention by using the Muse 2 electroencephalography headband with four frontal
electrodes. The classification results are used to adapt the behavior of the translation app, which
uses the smartphone’s camera to display translated text as augmented reality elements. We present
the first mobile BCI system that uses a smartphone and a low-cost EEG device with few electrodes
to provide attention awareness to an AR application. Our case study with 12 participants did not
fully support the assumption that the BCI improves usability. However, we are able to show that the
classification accuracy and ease of setup are promising paths toward mobile consumer-oriented BCI
usage. For future studies, other use cases, applications, and adaptations will be tested for this setup
to explore the usability.
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1. Introduction

In our globalized age, many aspects of our lives, such as travel, advertising, business
collaborations, signage, and information texts, are becoming increasingly international.
Languages, however, remain very national and, along with culture, are often one of the
most obvious differences between countries. They pose a big communication issue.

Encountering material in a foreign language, for example when traveling, makes
information intake difficult and requires the use of a translator. Although dictionaries
were commonly used for such purposes in the past, translators on cell phones are now far
more widespread in the digital age. In some circumstances, translating single words or
sentences is sufficient; in others, entire documents must be translated into the native tongue.
Copying such texts into a cell phone is time-consuming, and it becomes especially tough
when the foreign characters differ greatly from your own. One solution to this problem
is the camera-based translator, which can recognize the foreign language text and display
translations by using augmented reality (AR) [1]. Such AR translators can be used to swiftly
construct a translated version of what the user is seeing. In real-time, text in an image is
identified, translated, and replaced with visually corresponding translations. This produces
an almost instantaneous AR illusion. It excludes the need for text to be typed and highly
decreases the time required to obtain a translation. On the downside, this continuous
updating of potentially salient visual content increases the chance for distraction from
thought processes [2].
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In this work, we explore how mobile AR translators for smartphones can be improved
by adding attention-awareness. The attentional state of a user is estimated by using an
electroencephalography-based (EEG) brain–computer interface (BCI) in which the behavior
of the application is adapted to the current state. It has been shown in several studies that
an efficient use of AR can have positive effects on mental workload and task performance
unless the distraction level of the virtual content is too high [3]. The virtual text overlay
on the screen is usually updated regularly when using AR translators. This is required to
compensate for minor unintentional camera movements and to update the translation in
real time if new words are revealed. These updates can be a source of distraction, especially
during times of internally directed attention (i.e., thought, mental task solving, memory) [4].
When users direct their attention internally, the suggested system reacts by halting the
translations, which would otherwise update continually.

Recent machine learning research showed that it is possible to separate attention
into internal and external attention with decent accuracy [5]. However, the applicability
of this technology has mainly been demonstrated with BCIs that rely on a more or less
stationary EEG setup, severely limiting the mobility of its users. Several companies have
recently produced consumer-oriented EEG headsets that emphasize comfort and mobility.
This technology represents a significant step toward the widespread application of BCIs.
We considered an AR translator an appropriate use-case scenario to demonstrate the
enhancement of AR applications by adding attention awareness with a mobile BCI because
it is commonly used “on the road”. Previous research has shown that the adaptation of
an AR smart-home system based on internally or externally directed attention decreases
the distraction and increases the usability compared to an attention-unaware system [6].
However, the study was performed inside a lab by using a head-mounted AR device and
an EEG cap with 16 electrodes that is meant for research purposes only. We will focus on a
consumer-oriented BCI that is cheaper, has an easier setup and calibration, and can easily
be used "in the wild" to improve the smartphone application.

The two main goals of this work were the implementation of the cell phone application
in combination with the mobile BCI and a user study to evaluate our hypotheses about the
application’s improvement when attention sensitivity is incorporated. The main contribu-
tion of this work is the purely smartphone-based setup using a lightweight consumer-grade
EEG headset as the BCI data source. To test the system, we built the AR translator fol-
lowing the current-state-of-the-art apps. The final application is an attention-aware AR
translation app that we accordingly named “AtAwAR Translate”. The adaptability to
the user’s attentional state was included as an optional parameter to compare two ver-
sions of the system—the attention-aware one and the standard one—in the user study.
A travel-themed scenario was used for this study, in which participants had to read and
understand foreign posters before answering questions on the material. The evaluations
of the system will be based on achieved classification accuracies and user questionnaires
rating the system’s usability and level of distraction. The results will also provide insights
regarding a design that accounts for false classifications. Assessing the potential benefits
with the potential drawbacks and finding the right balance on when to adapt is key to
maximizing the improvement.

2. Related Work

Studies related to this work cover other AR translation applications, internal and
external attention classification from EEG data, and mobile BCI setups. We are not aware
of previous works that implemented and tested a mobile, lightweight BCI setup for cell
phone applications that differentiates attentional states of the user. The combination
of biosignal data recordings and augmented reality has recently been of high interest,
for instance, to explore neurocognitive processes in real-world environments without
losing experimental control [7]. Zhao et al. [8] designed an AR-based mobile photography
app that detects emotional states by using EEG data to improve learning about photography
and to decrease the cognitive load while achieving a better emotional state. Following
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a similar goal of reducing the cognitive load, Yan et al. [9] used eye tracking data in an
AR parcel scanning task to integrate foveated vision detection and smooth pursuit of eye
tracking. Their results also showed facilitated task solving in AR.

2.1. AR Translation

Text can be translated from and to a language of choice by using a translator, typically
by inputting text manually. An AR translator directly projects translations onto existing
text in the actual environment with the help of a display. The most well-known example is
the Google Translate App [1]. There is no need for human text input because the translator
detects text automatically. An AR translator must detect and recognize text, which is
accomplished by optical character recognition (OCR). Following that, the text is translated
and projected back into position onto the original text, preferably with a text style that
resembles the original for authenticity. To produce an authentic illusion of existence,
the translated text must not only be applied in the precise location, but must also move
with the camera and underlying text. This is accomplished by object tracking. The exact
implementation of the application will be described in a later section.

The number of research publications on AR translators is limited. One of the latest
papers concerning AR translators is from 2017 in which Tatwany and Ouertani [10] review
AR use for text translation. They identified 12 papers relevant for their research. Most
papers present translators that work by taking a picture. The picture is then analyzed
with OCR and text is overlaid onto it, usually in a different location in a different style.
Because translations are displayed on a fixed image, these translators cannot be considered
true AR translators because they do not work in real time.

Among all papers, only the TranslatAR (2011) [11] used real-time translations. Users
translate text by tapping onto text, and translated versions with matching styles emerge
at the same location after roughly one second. The translated text then moves in sync
with the camera or the text, as if it were glued to the original text (text stickers). Using
TranslatAR, text stickers move with the actual text, based on tracking. While Head-mounted
display-based translators exist [12], smartphones as handheld AR devices dominate the
research [10].

The latest publications on AR translators were in 2015 [10,13], thus, it is interesting to
see how consumer products evolved since. In 2022, numerous consumer translation apps
were available, several of which allow for language translation by using the smartphone
camera (see Table 1 for top Google Play Store results). The majority of the apps evaluated
provided this functionality, but only the top four of these apps were included in the table.
Only three apps were found to have AR capabilities, in which text is displayed within the
real-world surroundings. Two of them in particular overlay the translation on the text
and return an image in which the original text can still be seen behind the translations.
Because translations are displayed as images, these two translators are not real time and
hence do not fully meet the AR standards. Google Translate [1] is the only app that features
real-time translations and is therefore the only true AR translation app. It is also the only
consumer app with genuine text stickers. Although TranslatAR [11] has this capability, it
only translates and tracks a single word at a time, whereas Google Translate replaces all
words. Google’s AR translator also allows one to manually pause translations, effectively
freezing the screen. Google Translate was launched in 2010, but it was not until 2015 that
it featured AR translation. Word Lens was the most popular AR translation app at the
time and was a primary reference for most AR translation-related research [10]. Google
Translate integrated Word Lens into their application in 2015, becoming the market’s
leading AR translation software with over 500 million downloads to date. According to
download statistics, Google Translate has a significant market dominance, with ten times
more downloads than its closest competitor, Microsoft Translate. The Google app is also
the first translation app to appear in the Apple App Store when searching for “translator”.

Google’s AR translator is certainly the most advanced and cutting-edge, and it will be
used as a model for this work.
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Table 1. All apps found in the Google Play Store (Android) with the query “AR translate” and
“Camera translate” on 26 February 2021. Many more translation apps are available that do not feature
AR, so only the top ones were analyzed for this comparison. Langs., languages; RT, real time.

Text Replace

App Name Author Release Downloads Langs. RT AR Text Display

Google Translate AR Google 2015 500M+ 109 yes yes Replacement
Microsoft Translator Microsoft 2015 50M+ 22 (yes) Overlaid
Camera Translator EVOLLY.APP 2017 10M+ 56 (yes) Overlaid
Camera Translator Fox Solution 2018 1M+ 163 Separate
Translator for Texts,
Websites & Photos

Octaviassil 2018 1M+ 108 Separate

Cam Translate Xiaoling App 2019 100k+ 28 Separate
Language Translator Touchpedia 2021 50k+ 105 Separate

2.2. Attention Classification

Attentional mechanisms are applied to filter task-relevant from task-irrelevant sensory
input and mental processes at all times to deal with the constant information overload.
Thus, attention can be described as the mental process of concentrating on certain per-
ceivable information. The processes, layers, and dimensions of attention are numerous.
One distinguishable aspect of attentional mechanisms are internally and externally directed
attention [5]. In times of internal attention, sensory input is rated as task-irrelevant and
the focus is on internally produced information (i.e., thoughts, memories, mental problem
solving). External attention, on the other hand, is a selection and emphasis on information
offered by our environment [4]. For the suggested use case, reading the translations re-
quired external attention and thinking about the question/task requires internal attention.
In this study, we will interpret neurophysiological activity recorded by an EEG to produce
a quantitative assessment of the given attentional state. Other studies instead use eye
tracking data as classification input [14–16].

Cooper et al. [17] found that alpha band amplitudes are higher during periods of internal
attention, which they attribute to active blocking of external input. According to Benedek et al.
[18], right-parietal alpha power increases with internal focus. Putze et al. [19] were the first
to distinguish between internal and external attention using an EEG and linear discriminant
analysis (LDA) on a single trial, achieving an accuracy of up to 81.2%. Vortmann et al. [14]
employed a multimodal setup to categorize internal and external attention in a real-time
evaluation, employing both EEG and eye tracking, with an accuracy of 60.9%. In another
study, Vortmann and Putze [6] improved the usability of a smart-home system with the
multi-modal setup of the previous study, reaching a real-time accuracy of 65.7%.

As previously stated, we will use a lightweight, low-cost EEG headband for the
BCI in this study in order to improve the usability and application possibilities of the
proposed system. We will work with the Muse 2 Headband by InteraXon Inc., Toronto,
Canada [20]. The number of electrodes in the Muse Headset is less than that in the
aforementioned research. However, the right parietal area is partially covered by the TP10
electrode, which appears to be a significant area for separating attention into internal and
external, as previously indicated. This gives reason to believe that attentional classification
into internal and external attention is achievable, despite the fact that electrode coverage
is restricted and data quality is worse. Previously, consumer-grade EEG was used to
determine attention in passive BCI scenarios; however, classifications referred to attention
levels in terms of focus and involvement [21–24]. To the best of our knowledge, using a
consumer-EEG, such as the Muse Headset, to classify internal and external attention was
not done before. We will use the predicted attentional state of the EEG data classification to
adapt the behavior of the AR translation application.
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2.3. Mobile and Passive BCIs

Brain–computer interfaces allow for direct communication between the brain and an
external device. Mobile BCIs eliminate the need to stay stationary that traditional BCIs have
due to their wiring. As BCI technology becomes more popular, several businesses are working
to develop mobile, pleasant, and non-invasive EEG solutions. Because of its setup and method
of data collection, EEG counts as a non-invasive brain activity recording modality and is
frequently used for BCIs [25]. It is a reasonably cheap and effective recording technology [26];
hence, EEG is one of the most popular types of BCI, having been employed in 60% of BCI
research from 2007 to 2011 [27]. However, laboratory EEG necessitates a time-consuming
setup and cleaning procedure [28]. A trained specialist is required to place the electrodes
correctly [29], and to apply the conductive gel or saline solution that is routinely used to
promote scalp connection, which improves data quality [28]. A mobile BCI, on the other hand,
increases usability and aesthetics by eliminating the need for lengthy electrode placement
procedures. It can also be used dry, avoiding the need for the time-consuming application
and subsequent removal of conductive gel. This, however, comes at the expense of data
quality. As previously stated, research EEG needs the placement of a qualified professional,
whereas mobile EEG can be placed by a novice. Consumer-oriented BCI solutions, such
as headsets or headbands, are offered by companies such as “Emotiv (EPOC), Neurosky,
Advanced Brain Monitoring (B-Alert X10), InteraXon (Muse), and Melon” [28]. The Muse
headset was validated for EEG research by Krigolson et al. [30].

Active BCIs are used to consciously control a system by deliberately changing one’s
thoughts to evoke a certain action of the system. Zgallai et al. [31], for instance, used
the Emotive mobile EEG headset to control a smart wheelchair with four different move-
ments. For a passive BCI, users do not need and should not alter their way of thinking
actively [32]. It is meant as an implicit interaction in which the passive BCI picks up auto-
matic, spontaneous brain activity for a background monitoring of cognitive and affective
states. The implicity is defining for passive BCIs; the user should utilize the system as if
there was no passive BCI [26].

Passive BCIs have been utilized frequently in research over the last few decades, al-
though largely in laboratories or tightly controlled situations [33]. Recently, research on
applications in real-world settings is emerging. In Roy and Frey [34], passive BCIs help users
under substantial stress and cognitive load, such as air traffic control or drone management.
They accomplish this by modifying the information presented on an interface in order to
reduce task complexity and hence workload. A passive BCI can also be used to update the
user interface depending on user-experienced problems [32]. Zander et al. [35] assessed the
use of a passive and mobile EEG (actiCAP Xpress dry-electrode) for autonomous driving in
terms of signal quality and usability and discovered that the prerequisites for the development
of actual systems were met. An autonomous automobile might utilize the data to determine if
the driver is ready to take over control, or to assess the user’s mood or attentional state.

In this work, we will make use of a passive mobile BCI together with a smartphone
application aiming at an easy, fast setup and effortless usability to decrease the distraction
caused by AR applications.

3. The Mobile BCI-Smartphone System and Application

The AR translator implemented for this work is a replication of the Google Translate app,
because it proved to be the most advanced and state of the art. We implement our own version
of the app to be able to make the necessary changes for the BCI integration and because the
source code is not publicly available. Translated written text is presented dynamically in real-
time by using text stickers that create a believable AR experience. When users read and process
a translated text, they alternate between internal (no sensory input required) and external
(focusing on perceptual input) attention. During internal attention, perceptual input is usually
suppressed to a certain degree. However, the possibly distracting and unnecessary updating
of the visual text stickers is a very salient change that would disrupt internally directed focused
attention. Therefore, pausing the updating of the visual augmented content while users are
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internally focused is an excellent use-case to test a passive BCI for attention sensitivity. We will
determine the attentional state and modify the interface’s behavior accordingly. The update
frequency, appearance of text stickers, location of text stickers, and changes in appearance and
location between updates determine the level of distraction. Our application can suspend the
process of updating text stickers when the attention is internally focused and as soon as the
user turns their attention externally, the updating of text stickers can resume. We will use a
Muse 2 Headset to avoid limiting the mobility of users and for a fast and easy setup.

3.1. Translation App Implementation

We had to prioritize rapid computation and execution times when developing the
AtAwAR Tranlate system as a real-time AR translator. Balancing performance and efficiency
was key when selecting and developing algorithms. The main app was written by using
Java and C++. The app operates by using an image resolution of 540 × 960 pixels, which
was found to be the optimal compromise between performance and quality. (The images of
the app presented in the following were taken by using a higher resolution (720 × 1280)).
The essential features of the AR translator are provided in the following sections to provide
a brief structural overview.

The activity diagram in Figure 1 visualizes the structure of the AR translator. After the
user launches the app, the main processes are started.

Figure 1. Activity diagram for the implemented AR translator showing the user activity, the creation
of text stickers, and the updating of the text stickers. The attentional state of the user was is not
supplied yet.

3.1.1. Text Sticker Creation

First, the text-sticker production process begins with a timer, which serves two purposes:
as a delay for the camera to establish focus and as a wait between updates for the duration
of the app’s existence. The time it takes to create new text stickers ranges between 300 and
3000 ms. It is expected that enough time has passed for the text stickers to be changed
after this amount of time. The open source PaddleOCR, which is neural network-based and
under active development with frequent releases, was used in this work for optical character
recognition (OCR) [36]. The ultra-lightweight OCR is fast and has a high accuracy [37], even
on scene text, making it ideal for this application. To generate the texts, an image is sent into
PaddleOCR’s model, which does text detection, recognition, and classification.
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Following that, the discovered labels are forwarded to Google’s translation service
through REST API. The translated labels and the original image are combined to create text
stickers with the same text and background color, font size, and thickness as the translated
text. For each label detected by OCR, a region containing the label’s location in the image is
returned. This is accurate, however, because OCR and text-sticker production take time,
the text may have changed in the meantime, invalidating the previously accurate detected
areas. As a result, the identified text regions are updated after the generation of the text
stickers to reflect reality. After text sticker creation is complete, the image utilized for the
OCR model is compared to the initial picture. By using feature matching, the label regions
from the OCR image are redetermined in the latter picture [38]. This method significantly
reduces the latency to reality, allowing optical flow to be exploited for real-time tracking.
Optical flow attempts, at best, to determine where points from one image went to in another
similar image [38]. Following that, any existing text stickers are replaced with the text
stickers generated by this update.

3.1.2. Text Sticker Update

The updating of text stickers is accomplished by the use of optical flow. It begins by
locating four tracking points within a label region for each text sticker. These tracking
points can be identified again in a new image, and the placements and shapes of the text
stickers are modified based on the difference. To help overcome the latency caused by
feature matching, a wider search window size is used for the initial application of optical
flow after feature matching. Following that, a reduced window size is used to boost speed,
allowing for a higher frame rate. This is repeated frame after frame until the text stickers
are changed with updated ones.

Figure 2 shows examples of original text, our AR translation application and the
Google translate results.

Figure 2. Comparison of the implemented AR translator (AtAwAR Translate), Google Translate and
the original text for three different text and background combinations.
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3.2. Brain–Computer Interface

In the following, the addition of the BCI-based adaptive pausing is described. This
includes how the data from the Muse Headset is transferred to the app, and how that data
is processed and classified into either external or internal attention.

Figure 3 gives an overview of the data flow structure from the Muse Headset to the
app, which will be described in the following. The data is first sent from the Muse Headset
to an app called Mind Monitor [39]. Once linked to the Muse Headset, the app displays
several graphical representations of the EEG frequency spectra as well as an indicator of
the headset’s fit, which is useful for determining whether the data from Muse is being
captured adequately and the device is being worn correctly. Furthermore, Mind Monitor
applies a 50-Hz notch filter to remove power line noise.

Figure 3. Schematic description of the data flow of the implemented system. The Muse 2 headset is
connected to a fist smartphone via Bluetooth and sends the EEG data stream to the installed Mind
Monitor app. A second smartphone that is connected to the same WiFi network is running the AR
Translation application and receives the EEG data via OSC over WiFi from the first smartphone.

Mind Monitor streams the data via Open Sound Control (OSC) by using the user
datagram protocol (UDP), acting as an interface to the Muse Headset’s data. The OSC data
is streamed to a device via WiFi by specifying the receiver’s IP address. Mind Monitor is
running from a separate device for the following reasons.

• To reduce interference from the OS Android (the Mind Monitor should run in foreground);
• Because the AR translate app is already computationally demanding, it makes sense

to not put any extra strain on the device;
• Because it enables continuous monitoring during the execution of the study, to ensure

that there are no issues with the connection between Muse and Mind Monitor.
• Because the creator of Mind Monitor mentioned that the Muse Headset has connec-

tion issues with the Bluetooth module of Huawei phones, which was used for the
translation app devices.

To receive the OSC data from Mind Monitor, the library JavaOSC [40] is used. When
OSC streaming is enabled in the app, the Mind Monitor app provides multiple data streams
over OSC pathways. The subscribed items are as follows:
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• EEG absolute values of delta, theta, alpha, beta, and gamma frequency bands as
four float values (frequency ranges: δ(1-4Hz), θ (4-8Hz), α (7.5-13Hz), β (13-30Hz),
γ (30–44 Hz);)

• Horseshoe indicating fit of the electrodes;
• Battery info;
• Gyroscope measuring or maintaining orientation and angular velocity;
• Accelerometer measuring acceleration;
• Blink; and
• Jaw Clench.

The absolute power band frequencies will be used for the attention classification process.
The Muse Headset can be seen in Figure 3. It is a four-channel EEG with two silver

sensors on the forehead and two conductive silicone-rubber sensors on the ears. It can
communicate data wirelessly via Bluetooth 4.0 and samples data at 256 Hz. The electrodes
cover areas of the brain in the anterior frontal (AF7, AF8) and temporoparietal (TP9, TP10)
lobes. It also has a 3-axis accelerometer and gyrometer for tracking head motions [41].

The Muse Headset is adjustable in length and is thus suits a wide range of head sizes.
It is a low-cost EEG designed to be used as a personal meditation helper. With a price of
$250, it is far less expensive than research EEG devices (e.g., ActiChamp 75,000 $). In terms
of data validity, Krigolson et al. [30] assessed the Muse data of 1000 participants in varied
contexts and demonstrated its robustness and accuracy in a visual oddball task. The Muse
Headset’s detection patterns were found to be identical to those of the research-grade wet
EEG systems actiCHamp and g.Tec [42]. In noisy environments, Przegalinska et al. [43]
critique low data quality. Additional Muse Headset problems were discussed in those
studies: Bluetooth-related delay and jitter (20–40 ms delay, jitter 5 ms), a temporal unstable
beginning of consecutive samples (time difference of −10 ms to 150 ms), and missing
samples (0.01–0.05% missing samples across all participants).

3.2.1. Classification

The adaptation of the AR translation application behavior was based on the classified
attentional state. We differentiated internally and externally directed attention based on the
recorded EEG data. Following the results of Putze et al. [19] and Vortmann and Putze [44],
we chose 4-second data windows for the feature extraction of single trials. The classification
was performed person-dependently, and 400 s of training data were collected per person to
train an LDA. The training phase of the classifier will be explained in more detail in the user
study. The extracted features were provided by the MuseIO [45]. To calculate the absolute
band powers of the aforementioned frequency bands, a Fast Fourier Transform is used on a
256 sample Hamming window, sliding at 10 Hz. For each electrode and frequency band,
one sample is extracted every 100 ms for the previous second. Thus, a total of 20 features
is contained in the feature set and the windows overlap with 90%. As 400 s of training
data were recorded per participant, a total of 4000 feature vectors were available per
participant. The LDA was implemented by using the standard scikit-learn parameters and
settings because they lead to good results on pilot data and hyperparameter optimization
per participant would be time inefficient and reduce the usability of this online classifier.
To calculate the training accuracy for each participant that was used to evaluate the quality
of the calibration and training phase, a 5-fold cross-validation was performed on the data,
and the average was calculated over all folds. The results will be reported later. For the
final training of the LDA, all feature vectors of available training data were used.

Apart from the notch filter, no additional preprocessing of the data was performed to
keep the computation times at a minimum.

3.2.2. Prediction Integration

In the following, the strategy to adapt the BCI behavior based on the classification
results of the BCI data will be explained.
We expect that while reading something that is relevant for a task or question, the user



Sensors 2022, 22, 6160 10 of 28

switches between internally and externally directed attention. During the externally di-
rected attention the user is sensitive to perceptual input and scans or reads the available
information. During internally directed attention on the other hand, the user is focusing
on internally generated information, such as thoughts or memories. For instance, to inte-
grate the newly acquired knowledge from the external input into existing knowledge or to
formulate an answer to a question. The perception of external stimuli is suppressed but
salient changes of external stimuli, such as the smartphone display in our system, can be
distracting. An update of the displayed content or translations could be such a distracting
change. Thus, whenever the attentional state of the user is presumably “internal”, the up-
dating of text stickers is paused. However, the pausing of translation updates in times of
externally directed attention is presumably not diverging the attention from the current
goal and therefore the text stickers can be updated whenever necessary.

The pre-trained classifier predicts the attentional state every 100 ms based on the last
second. We compile the predicted labels of 4 s to make a decision whether to pause the
translation updates or not. Within the 4 s, at least 60% of the predictions (n = 40) have to
be labeled “internal” for the translations to pause. This threshold was chosen to create a
bias toward “not pausing”, as wrongful pausing during external attention was considered
more impairing, whereas missing pausing during internal attention can be tolerated and is
typical in attention-unaware systems.

4. User Study

In a user study, the AtAwAR Translate system was tested with and without the
addition of attention-based pauses. This gave information about the performance and
usefulness of the AR translator, as well as the modality preferences of the participants.
Furthermore, the modality with BCI was examined in terms of attentional classification
accuracy and distribution, as well as the length and correctness of pauses.

The study’s hypotheses are stated first, followed by the methodology, which explains
how the study was carried out. Following that, the results are displayed and discussed in
the last section, highlighting potential causes of faults and recommendations to enhance
the system.

4.1. Hypotheses

One of the goals of this research was to evaluate the usability of a mobile BCI for
attention awareness. Several hypotheses concerning this purpose were considered.

4.1.1. Main Hypotheses

The main hypotheses relate to the positive (H1) and negative (H2) effects that the
pausing of translation updates may cause. It is believed that although users have internal
focused attention, the pausing of translations is perceived as positive (H1). Contrary to
that, pauses during phases of external attention, which occur during reading, are believed
to have a negative effect (H2).

Hypothesis 1. The larger the percentage of pauses during thinking, the higher the experienced
usability and the lower the task load.

Hypothesis 2. The larger the percentage of pauses during reading, the lower the experienced
usability and the higher the task load.

As the app makes decisions for the user that are not always correct, attempting to help
the user by pausing when they are thinking inevitably comes with negative effects while
reading. H1 and H2 with regard to the attentional prediction accuracy gives insights to
how high the accuracy needs to be to improve the app, as the accuracy is a deciding factor
for how the usability regarding the pausing is perceived by participants.
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4.1.2. Other Hypotheses

The other hypotheses relate to whether text appearance or content may influence the
experienced usefulness of the pausing.

Hypothesis 3. The more distracting the displayed translation results are, the more helpful pauses
are during thinking.

Hypothesis 4. The more demanding the combination of text and question is, the more helpful
pauses are during thinking.

Answering these hypotheses shows for which types of text the pausing is most useful.
Another key goal of the study is to test the AR translator, for which it makes sense to test
various texts that differ in visual and contentual complexity, ergo H3 and H4 can be tested
with little extra effort. Another purpose of the study, as previously stated, is to evaluate the
AR translator. This comprises not only the operating principle of the AR translator, but also
the two modalities of pausing and not pausing. This assists in determining where the AR
translator can be enhanced the most and where it already performs adequately. Evaluating
the two modalities in relation reveals whether pausing is advantageous or not, and why.

4.2. Methods

The research was conducted by following a within-subject design. Each participant
tested the app with and without the Muse Headset. The evaluation of the hypotheses
were mainly based on questionnaire results. To test the translation app, eight posters with
Spanish texts were created. For each participant four posters were used for the version
with Muse Headset and four for the version without. The four permutations of these
combinations were labeled modalities A, B, C, and D, which were rotated throughout the
study’s runs. The participant count was multiple of four. Thus, the poster distribution
across both versions was balanced.

4.2.1. Participants

Fourteen healthy participants between 16 and 59 (mean age 27.1, SD 9.8) with nor-
mal or corrected eyesight who were all German native speakers participated in the study.
Two participants were excluded because the attention prediction was excessively unbal-
anced, making the BCI version unsuitable (nearly always paused) or too similar to the BCI
version (almost no pauses). This reflects the expected rate of people with BCI illiteracy
(the inability to control a BCI accurately) [46]. To keep the equal distribution of poster
combinations, two new volunteers were selected for the excluded participants’ experiment
versions. The volunteers did not receive monetary compensation. Eight of the remaining
participants were male and four female. The majority of participants did not speak Spanish
at all, and those who did had just a rudimentary understanding. Two of the participants
had previously used an AR translation software (both Google Translate). Each partici-
pant was informed about the collection of EEG data and written participation consent
was collected. All participants were recorded in the same room that was not specifically
shielded to test the system under non-laboratory conditions. The data was anonymized
by assigning six-digit participant IDs at random and the study was approved by the local
ethics committee.

4.2.2. Procedure

Figure 4 shows the general structure of the study, which will be explained in the following.
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Figure 4. User study procedure overview for the two runs (with and without the BCI to make the
system attention-aware).

Participants were introduced to the study verbally and through an introductory docu-
ment, and then provided written consent after being informed about the goal of the study
and the data that would be collected. Following that, a demographic questionnaire and the
Mind Wandering Questionnaire (MWQ) [47] were completed. The MWQ was collected to
find suspiciously high mind-wandering scores because these participants would possibly
influence the study results. Afterwards, the app was tested in the participant specific order.
Half of the participants began with BCI, while the other half did not. The poster sets were
the same; half began with poster set A and half with poster set B, each of which featured
four posters. The production and selection of posters will be discussed more below.

For the run with BCI, a calibration of the EEG headset and the training of the classifier
were required. The initial calibration was performed by using the built-in impedance
measurement of the Muse headset. The training data collection was performed by using
four German texts that were read via AR (externally directed attention) and four text-
specific questions after each text (internally directed attention). Each of the eight parts
lasted roughly 50 s (400 s of training data in total per participant), after which the app
informed the participant that enough data had been collected for that part. Participants
were instructed not to talk during the training data collection and to refrain from touching
the Muse Headset during the remainder of the study, as this could impair the prediction
accuracy. The classifier was trained on all the available training data per person.

After the calibration and classifier training, participants were asked to imagine that
they are tourists in a foreign country, as that is a fitting use-case scenario for an AR
translation app. Virtual posters were displayed on the smartphone screen. To match the
overall study narrative during this phase, the content of the texts was related to traveling or
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about facts of countries. To ensure that participants had something to ponder about within
the 50 s, the questions were relevant to the texts and were either open-ended or asked for a
lot of information about the text. For example, after reading a paragraph describing Chinese
customs, participants were asked to think about both Chinese and other foreign customs.

During the study, the participants’ main task was to read the translations of posters
using the AR translation app (externally directed attention) and then answer questions
about the content (internally directed attention). The main part structure was communi-
cated verbally and visually to the participants by using a guidance document that included
screenshots of each step of the main part. This added an explanation of when and why the
application paused in the version with BCI. Participants were informed that pausing may
occur during reading and that waiting or attempting to read may cause the pause to be
unpaused. The arrangement was identical to the training phase, except that actual posters
were pinned to the pinboard and had to be scanned with the camera. Participants were
also given the option of rereading the text during the task; however they were instructed to
first think about the question and to then rethink their answers completely if they reread
the material. Participants were prompted verbally for their replies after each question to
reward them and to subjectively judge the difficulty of posters and the quality of answers.
The participants were not timed and could spend as much time as they needed to read the
poster and complete the exercise.

Participants completed a run-specific questionnaire after each of the two main compo-
nent runs (with and without BCI). Following the completion of both runs, a final question-
naire was completed.

Participants spend an average of 98 min on the study. To maintain excellent signal
quality, the Muse Headset was routinely cleaned before each research.

4.2.3. Questionnaires

Before testing the app, participants filled a demographic questionnaire and the Mind
Wandering Questionnaire [47] translated to German. The latter is based on a Likert scale
and includes questions to generate a score that shows how likely the person is to start
mind wandering. Participants completed a run-specific questionnaire after each run in the
main section. The well-known system usability scale (SUS) [48] and the short form of the
NASA Task Load Index [49], known as Raw TLX [50], were filled out in this questionnaire
(German translations for SUS [51] and Raw TLX [52]). In addition, for the version with BCI,
participants answered Likert scalebased questions on translation pauses. These questions
were designed to provide answers to the four study hypotheses. Finally, following both
runs of the main part, participants completed a questionnaire to rate their overall experience
of the AR translator. These questions used a Likert scale and dealt with display smoothness,
tracking, visual authenticity, accurate positioning, and content correctness. In the last
section of the study, participants chose which version, with or without BCI, they preferred
and could provide an open-ended response as to why.

4.2.4. Stimuli

An example poster is shown in Figure 5.
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Figure 5. Example poster that was used in the study and the translation (in a separate box for
showcase purposes).

The choice of posters for the study plays an important role in testing the mobile BCI
for the AR translator, as well as being able to answer H3 and H4. The behavior of the AR
translator greatly depends on the appearance and structure of texts. Thus, to sufficiently
test the BCI version, a variety of different texts needed to be used to obtain a more holistic
review. The creation of the eight posters for the study was done by defining criteria based
on what was needed to answer H3 and H4. As H3 relates to the appearance of texts,
answering it also requires a variety of different text appearances similar to what is needed
to test the AR translator more holistically.

Criteria for the Distractiveness of Translation Updates of Posters

H3 pertains to the distractiveness of text sticker updates, which depends on the
appearance of the text and background on posters. To test if the BCI version of the AR
translator may be considered more helpful for text/background combinations that elicit
a lot of translation updates, several posters differing in design aspects have to be used.
von Mühlenen et al. [53] show that a change in text color strongly captures attention. This
effect is likely to be amplified if the background color changes as well. A smaller disparity in
text sticker changes is less obvious and consequently less distracting. The visual complexity
of a text and its background has a direct relationship to the consistency of text sticker
generation. The AR translator replicates a text with an equally colored background more
reliably than a text with alternating background colors, because noise and more color
shades lead the determined background colors to stray a lot more. This results in a more
prominent and attention-grabbing appearance over time, as the switching of text sticker
colors between updates is unavoidable.

Another issue is the consistency with which the text stickers are correctly positioned. If
the location of text stickers is not consistent between updates, they will shift a lot. Because
movement attracts attention [54], consistency in location lowers the distractiveness of
updates. A background that is equally colored has fewer potential features for the feature
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matching procedure. Even if the background lacks good features, the text itself can be used
as a reference point. Furthermore, text with poor contrast to the background is unreadable
by OCR and even by humans. Hence, it is not possible to create posters with deviating
consistency of text sticker placements without significantly compromising legibility and
poster authenticity.

The frequency with which text stickers are updated has a direct effect on distractive-
ness. Changes to the text become more obvious as they occur more frequently, increasing
the distractiveness of the previously described distractors. When the text is spread out, less
text is in the camera view at the same time, lowering the complexity of the calculations
necessary and hence the computation time. As a result, for less dense texts, the update
frequency may be higher, increasing distractiveness. Larger typefaces, as well as text layout
that spreads out text, are two ways to create lower text density.

Other elements influence distractiveness (change in font size between updates, word
ambiguity causing various words to appear between updates), but the ones presented were
thought to be the most effective and sufficient to design posters with enough variation.

The criteria are not binary in nature. As a result, in order to make four posters that rise
in distractiveness, they must be created in relation to one another. The first poster should
be the least distracting, while the last should be the most distracting.

Based on the criteria, four pairs with similar characteristics were created. It was
attempted to similarly increase the level of the distraction per difficulty (e.g., gradually
increasing font size and spacing between lines to reduce text density from poster 1 to 4).

Criteria for the Difficulty of Text and Question Combinations

To evaluate H4, the combination of text and question needs to be of varying mental
demand. However, this did not need to be as nuanced as the appearance of the posters,
as it is only relevant for H4. The length of the text is one consideration. The mental demand
is often increased when more text provides more information, especially when open-ended
questions are asked, where large sections of the text contain part of the answer. Those
that require lengthier answers are likely to be more difficult than questions that can be
answered in a few words because the participant must recall bigger portions of the text.
Two difficulties were created based on the criteria above:

Simple text and question combinations had a word count around 100–150 words.
The questions had simple, clearly defined answers (information that is contained in just
one or two sentences of the text). The difficult text and question combinations had a word
count of around 200–250 words. The questions were open-ended and ask for information
contained in large parts of the text. Potentially, the participant needs to reread parts of
the text to solve the question, as it is difficult to remember everything needed to solve the
question. It should be noted that when using an AR translator, the process of reading is not
as straightforward as compared to regular reading. Thus, the general demand is higher
than it may seem.

In total, eight posters were used for this study. The posters were split into two groups
of four, of which one was used for the configuration with BCI and one for the configuration
without BCI (balanced across participants). Within each group, the posters had 4 different
levels of difficulty regarding the distractiveness and two levels of difficulty regarding the
text and question combinations.

4.3. Results

To evaluate both the application and the user study, and to test our hypotheses, we
analyzed the classification accuracies and the questionnaire results. For all significance
tests, an alpha level of 0.05 was assumed. All correlations were tested by using the Pearson
correlation and differences were assessed by using dependent t-tests. To increase the
readability, all six-digit participant IDs were exchanged by numbers 1–12.
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4.3.1. AtAwAR Translate Application Rating

One post-session questionnaire was specifically designed to rate different aspects of
the AR Translation application, independent of the BCI aspect. The questions and answers
can be seen in Figure 6. For questions 1, 2, 3, and 5, the participants had opposing opinions;
however for questions 4 and 6, they agree more. The latter concern the correct arrangement
of translations (4) and the matching colors of translations (6), which are likewise the highest-
rated aspects (mean 5.6 and 5.4 respectively). The smoothness of translations (1) and the
correctness of translations (5) are the lowest-rated features (mean 4.0 and 3.9, respectively).
Surprisingly, participants rated “translations matching colors” (6) higher than “translations
replaced text visually authentically” (3) (means: 5.4 versus 4.8). When asked directly about
the app, many participants stated that the translations were not perfect, making the texts
difficult to read in some sections. Nonetheless, the participants were able to understand
the core of the texts and, as a result, could respond to questions that frequently covered the
most relevant components. Following the experimenter’s subjective judgment, 72% of the
answers were rated good (the majority of the questions were answered), 24% okay (about
half of the questions were answered), and just 4% poor. In the NASA-TLX, participants
responded to the questions “How successful were you in performing the task?” and
“How satisfied were you with your performance?” The average result for both modalities
in this performance category was 5.5 (SD 2.34), placing them directly in the middle of
the scale. Although the majority of the answers were regarded as good, the participants
did not appear to agree as much on average. Some participants expressed a desire to
be able to interrupt the translations at any time, a function available in Google Translate.
The preference of modality had no significant nor interesting correlations with the MWQ.

Figure 6. Questionnaire results per participant for the AR translator application rating.

Conclusions

The most criticized aspects of the AtAwAR Translate system were the smoothness
and the correctness of translations. The AR translator seems to take too long to display
translations. Also, translations were confusing at times, as they are created line by line,
lacking coherence between lines. The placement and colors of text stickers were rated the
best among the categories, even though some posters were designed to create difficulties
regarding color determination for the AR translator. Even though some participants
had problems, they were generally able to complete the tasks. Some participants stated
that they would not be able to understand anything without the app, but with the AR
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translator, the Spanish sentences became understandable. We conclude that the quality
of the implemented AR translator was good enough to test our hypotheses regarding the
mobile BCI integration for attention-awareness.

4.3.2. Classification Accuracies and Pauses

For the BCI version of the AR translator, we evaluated the classification accuracies
and analyzed the pauses. These results shine a light on how well the implemented system
worked in terms of “attention awareness” and will help explain and discuss the results of
the questionnaires.

The accuracy of the attention classification is largely influenced by the calibration
and training phase accuracy. On average, the accuracy during the classifier setup was
82.5 ± 8.2% (calculated using a 5-fold cross-validation as described).

As a ground truth, it was assumed that participants’ attention was directed externally
in times of reading and internally during question answering. However, because the
participants had the option to review the text while answering the question (which would
result in externally directed attention within a phase of internally directed attention), we
analyzed the reading phases in more detail and found that thinking and rereading resulted
in longer task solving times for some trials. Additionally, throughout the course of the
question answering phase, the classification accuracy dropped significantly in the middle
for some trials. This indicates that the assumed ground truth (internally directed attention)
is wrong and needs to be corrected for our offline analysis of the classification accuracy.
For trials identified as “thinking and rereading”, phases (each trial was separated into
5 bins) with a high probability for external attention were excluded for this analysis (bin
corrected). Figure 7 shows the distribution and mean of classification accuracies per trial
during the reading and task separately, as well as the mean accuracy per viewed poster
(n = 48 for BCI condition).

Figure 7. Prediction accuracies for reading (external), task-oriented internal attention and their mean.
Indicating the mean, standard deviation and distribution over participants. and mean of both.

The mean classification accuracy in the main part of the study was 59.67% which is
comparable to the real-time attention classifier in Vortmann et al. [14]. The classification ac-
curacy in time of external attention (75.16%) was higher compared to the internally directed
attention (44.65%). Label noise for this analysis has to be assumed for both trial parts.
Figure 8 shows the correlation between the classifier calibration accuracy after the training
phase and the classification calculated in the offline analysis on the assumed ground truth
labels. As p = 0.16, the weak positive correlation of r = 0.21 is not significant. For most par-
ticipants, there are also large fluctuations in mean prediction accuracy between the posters.
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Figure 8. Pearson correlation of calibration and mean prediction accuracy. Each dot with line
represents the four posters for one participant. The dot is the mean and the lines are the min and max
values of the four posters.

With BCI, participants needed 29 s longer (+23.7%) to read the posters, a statistically
significant difference (p < 0.01). Surprisingly, this is also true when comparing the modali-
ties of people who favored the BCI (M = 36 s, p < 0.01). Participants needed slightly less
time with BCI for the task, although this is not statistically significant (p = 0.32). In the
next step, we analyzed the distribution and length of paused and unpaused translations.
Each continuous time interval of either paused or unpaused translations were rated as one
block and categorized depending on their length. Figure 9 shows the share of each block
length depending on the current trial part. The translations were paused for 17% of the
total time participants spend reading the posters. Almost 80% of these pauses were shorter
blocks of below 3 s or between 3 and 10 s. The largest part of reading time the translations
were not paused for intervals longer than 30 s.

Figure 9. Block during which translations were paused or unpaused separated by reading and task.
The task is split into “only thinking” and “thinking and reading”. The data uses the mean of the
distributions of participants, so that the length of a run does not increase its weight; each participant
had the same weight.

In times of internal attention (only thinking), the translations were paused for 35% of
the total time. This was reduced to 33% in the trials there were later identified as thinking
and rereading. It can also be noted that the length of the continuous pauses is longer for
task parts than for reading parts.
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The effect of the translation pauses during the reading part on the total task-solving
time was analyzed by using a correlation analysis (see Figure 10). The moderate positive
correlation of r = 0.51 is highly significant with p < 0.001. Thus, longer translation update
pauses during reading significantly increased the total task solving times.

Figure 10. Pearson correlation of the pause time during reading and the total time. Statistics indicated
in the figure.

Conclusions

For the modality with BCI, the attentional classifier reached a median accuracy of
around 60%. However, this value is likely affected by label noise, as the study design made
a clear separation into thinking and reading difficult. Regarding pauses, the percentage
of time paused during reading was around half of that of the task (reading pauses 17%,
only thinking task 35% and thinking and reading task 33%). Although a clear difference in
pause percentages exists between reading and task, the paused percentage during the task
is generally rather low as not even half of the task time was paused. Participants reported
to be more affected by the reading pauses.

4.3.3. SUS and NASA-TLX

The SUS and NASA-TLX questionnaires were provided after each version of the
AR translators separately and will be compared to rate the usability of the attention-
aware translator compared to a regular AR translator. The version without BCI achieved
higher results on the NASA-TLX and the SUS, with a reduced standard deviation, for both
questionnaires. The higher SD for the version with BCI could be attributable to the fact
that some people found the pause useful, while others found it annoying, resulting in
polarization. The BCI version of the translator achieved an average SUS score of 76, and
the BCI-less version achieved a score of 79. According to Bangor et al. [55], these values
fall between between “good” (71.4) and “great” (85.5). The version without BCI is slightly
closer to “excellent,” whereas the version with BCI is slightly closer to “good.” The answers
per person for both questionnaires can be seen in Figure 11.
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Figure 11. NASA-TLX and SUS ratings per participant for BCI and BCI-less versions of the AR
translator app.

To evaluate the differences between the NASA-TLX categories for both versions
of the system, paired t-tests were performed, but no significant differences were found.
The biggest rated differences were present for the mental and temporal demand (see
Table 2). The overall NASA-TLX and SUS score ratings were also not significantly different.

Table 2. Mean and standard deviation of the NASA-TLX categories.

NASA-TLX Category With BCI Without BCI Difference

M SD M SD
Mental Demand 5.75 2.3 6.5 1.57 −0.75
Physical Demand 2.33 1.15 2.33 1.3 0
Temporal Demand 2.83 2.4 1.67 0.78 1.17
Performance 5.25 2.45 5.75 2.22 −0.5
Effort 6 2.22 5.41 1.72 0.58
Frustration 4.92 2.78 4.5 2.35 0.41

Conclusions

The SUS and NASA-TLX scores were better for the version with BCI. The biggest
difference for the NASA-TLX was the temporal demand, which might be due to the fact
that participants required on average 29 s longer to read posters with the BCI (p < 0.01).
The SUS score with BCI is 79 and without 76, both can be considered “good” according to
Bangor et al. [55].

4.3.4. Hypotheses

The main aspect of this study was to find out whether an attention-aware AR translator
would be superior to an attention-unaware system. When asked which modality they
preferred, 58.3 percent chose the version without BCI and 41.7 percent liked the version
with BCI. The major reasons for preferring an unaware version were that pausing interfered
with the reading and the Muse headset was distracting. Those who favored the attention-
aware version said the text was more legible since it did not update as frequently, and it
seemed less stressful because the app adapted to their cognitive state. Figure 12 shows
the participants agreement with the statement “I found the automatic pausing to be more
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distracting than helpful”. Participants who liked the BCI version rated the question with
an average of 2.8, whereas the other group gave it a rating of 4.7. The latter is closer to a
neutral value of 4. The participants who liked BCI leaned more towards 1 than the other
group did towards 7, indicating a clearer preference.

Figure 12. Answers to the statement “I found the automatic pausing to be more distracting than
helpful”. 1 = fully disagree, 7 = fully agree; n = 12.

H1 suggested that ”The larger the percentage of pauses during thinking, the higher
the experienced usability and the lower the task load.“ To evaluate the hypothesis, we
calculated the correlation of the SUS and NASA-TLX scores with the task pauses percentage
(see Figure 13).

Figure 13. Questionnaire scores of SUS and NASA-TLX correlated (Pearson) with the percentage of
pauses during task. For the task, the data of OT and the first bin of TR was used; as for these it is
more likely that participants were thinking.

Regarding the task load (represented by the NASA-TLX), there was no correlation
between the scores and the percentage of pauses during the task. For the usability assess-
ment (represented by the SUS), we found a weak positive correlation of r = 0.29 which
is, however, not significant (p = 0.36). We would have expected a positive correlation
between pauses and the SUS score and a negative correlation between the pauses and
the NASA-TLX. With the current results, H1 can not be supported but the SUS results are
promising for a larger test set.

H2 stated “The larger the percentage of pauses during reading, the lower the experi-
enced usability and the higher the task load.” To evaluate this hypothesis, we calculated
the correlation of the SUS and the NASA-TLX scores with the translation pasues during
reading (see Figure 14).
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Figure 14. SUS and NASA-TLX correlated (Pearson) with the percentage of time that translations
were paused during reading. The pauses percentage is the mean of the four posters.

Although both correlations are not statistically significant with p-values of 0.2 and
0.12, they do demonstrate a tendency that supports H2 with absolute r-values greater than
0.4. The bigger the percentage of pauses, the worse the score for both questions (a higher
score for NASA-TLX is worse). As a result, it is likely that H2 is proven to be true with
more participants. At this point, the results do not support H2.

For the evaluation of H3, participants were asked how much they agreed with the
statement “The more distracting translations were during thinking, the more helpful the
pausing was for me,” which they would agree with if H3 were accurate. The results are
shown in Figure 15.

Figure 15. Answers for agreement to the statement related to H3 “The more distracting translations
were during thinking, the more helpful the pausing was for me”. 1 = fully disagree, 7 = fully agree;
n = 12.

The average score was 4.3 (SD 1.7), indicating that participants tended to agree more
than disagree. This supports H3. Participants were also asked if they thought the pausing
was more distracting than useful (see Figure 12), and those who thought it was more
distracting tended to disagree with the statement in Figure 15. The Spearman’s correlation
yielded an r-value of -0.78 with a p-value of 0.01, indicating that participants appeared to
agree with this statement if they regarded the pausing to be useful.

Finally, H4 was evaluated by using another questionnaire question. H4 stated that
“The more demanding the combination of text and question is, the more helpful pauses
are during thinking.” The agreement to the statement “The more I had to think during a
question, the more helpful the pausing was for me” can be seen in Figure 16.
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Figure 16. Answers for agreement to the statement related to H4 “The more I had to think during a
question, the more helpful the pausing was for me”. 1 = fully disagree, 7 = fully agree; n = 12.

The mean of 4.1 (SD 1.7) is lower than for the H3 statement. The results for this
statement were also correlated with the results for the statement of whether participants
felt the pausing to be more distracting than useful, and a negative correlation (r = −0.63,
p < 0.05) was found.

Conclusions

There is evidence for both H1 and H2, because task pauses correlate with high SUS
and NASA-TLX scores and reading pauses with low SUS and NASA-TLX scores, albeit
this was not statistically significant. Although H3 and H4 are likewise difficult to answer,
participants who preferred the version with BCI appeared to agree with the hypothe-
ses’ statements.

5. Discussion

The case study to test the implemented AtAwAR Translate system revealed interesting
insights into user preferences regarding the setup and application behavior, as well as the
use case itself.

5.1. Use Case

As an authentic mobile BCI setting use case, we decided to use an AR translator
because it is frequently used “in the wild”. By using a smartphone to display the AR
content is automatically less visually distracting than a head-mounted display that is
typically used for augmented reality. The usability of such AR glasses could probably be
improved even more by adding attention awareness compared to the cell phone application.

The content for the translations was made up of posters containing travel-related
information. As previously stated, only contiguous texts were employed in the study;
nevertheless, discontiguous texts may also be translated by users. Moreover, these texts are
likely to have a distinct distribution of reading and thinking time, because disjoint texts
require less reading (e.g., book covers, shop window labeling, menus, consumer product
labels, maps) and thinking is significantly dependent on the user. It is conceivable that a
user studies a menu and spends considerable time inwardly discussing which food to order.
In such an instance, the AR translator would have more chances to halt when thinking than
while reading. Such a use case might be even more appropriate to test the enhancement
through attention-sensitive BCIs.

5.2. AtAwAR Translate Application

Participants were generally able to use the translator to understand texts of foreign
language, judging by the subjective rating of their answers to the questions (72% of answers
considered good). The majority of participants preferred the version without BCI (58.3%,
n = 7). The main reason for the preference of modality was the pausing during reading.
For some participants, the reading pauses made the text more legible, as the text did not
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switch as much. Other participants disliked the pauses, as they interrupted the reading
flow. The pausing during thinking did not play a deciding role; however it seems that it was
generally regarded as positive. Because of the study design, the appearance of text stickers
played only a minor role, which is presumably why the main complaints participants
indicated in the AR translator questionnaire were the smoothness of translations and the
quality of translations, both of which relate to understanding. Needless to say, the legibility
of text stickers was critical for understanding in the study, although it did not really matter
if a text sticker had red or black text to understand it. It is interesting that participants
evaluated “matching colors of translations” higher than “translations replaced text visually
authentically” (means: 5.4 versus 4.8). The purpose of an AR translator is to create visually
accurate text stickers, and matching text stickers merely in color does not appear to be
sufficient. It should be emphasized that half of the posters were intended to cause problems
for the AR translator. Posters 3 and 4 of both poster sets have letters with low contrast to the
backdrop, whereas the background is an image with many varied colors that alternate often
throughout the image. This is particularly difficult for OCR, and likely negatively affected
the ratings of participants regarding the answers related to visual effects. Another issue
raised by participants was the quality of translations. Because the OCR recognized text line
by line, the translations were done line by line. It would make sense to utilize an OCR that
returns text paragraph by paragraph, as the context between lines is critical for translation
tools to construct meaningful translations; however, PaddleOCR does not support this.
Grouping lines after OCR is a non-optimal workaround, as paragraph detection within
OCR is the faster method. This is because the image is already being processed by the OCR,
making it more resource-efficient.

Overall, the visual authenticity of text stickers was rated well, but there is still room for
improvement of the AR translator application in general. This is most obvious if it is used
to understand relatively large texts. However, the quality of the implemented application
was good enough for our purposes and the mentioned shortcomings most likely did not
severely interfere with the study outcome.

5.3. BCI Integration

The general setup using two smartphones and the Muse headset worked very well,
and calibration times were fast and easy. The system was rather comfortable to wear and
the data quality seems sufficient for these purposes. The achieved classification accuracy of
almost 60% was comparable to other real-time BCI applications in lab settings [6]. The main
issue in this study was the label noise due to the rereading of text in time of internally
directed attention. For future studies, it should be assured that externally and internally
directed attention are clearly separable for the generation of ground truths to evaluate
the classifier. Another study design-related issue is the learning effect that may cause the
second modality in execution order to be rated better. That is why looking at individual
participants may not be expedient. Furthermore, judging upon the subjective answer
quality, the difficulty of the two poster sets appears to differ slightly.

It is possible to improve the accuracy by adjusting the calibration configuration.
Participants used augmented reality to read German literature. Although it is encouraging
that the text was read with AR in a manner similar to that of the AR translator, there is likely
still a difference in elicited brain signals when comparing the calibration reading to the
reading with the AR translator. Reading with an AR translator differs from conventional
reading in that the flow of reading is frequently disrupted, either because translations
swap while reading or because they do not always make sense. This is likely to result
in confusion, possibly even frustration, or other reactions. A more specific calibration,
in which participants read using the AR translator, would most certainly improve overall
accuracy. Similarly, the thinking phase of the calibration could entail needing to glance at
the text while the AR translator is paused. The calibration and main section of the study
would then be more comparable.
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In the long run, however, it would be desirable to exclude the need for collecting
person-dependent training data to set up the classifier. This would increase the usability
of a mobile BCI smartphone system by a lot. Vortmann and Putze [44] addressed the
idea of person-independent EEG-based classification for internally and externally directed
attention and found that neural networks outperform an LDA approach for 4-s data
windows in such cases. The analysis in their paper were performed offline and a lot of
training data was available for the classifier. No information about the computation time
is given. For a training-free real-time application the choice of classification algorithm
would have to be reevaluated. Again, the goal would be to find a compromise between
computation time and classification accuracy.

5.4. Attentional State Application Adaptation

The attention-aware AR translator in this study was designed to update the transla-
tions while the participants were reading the text to adapt to deliberate camera movements,
and it was supposed to pause the updates during times of perceptual suppression and
internally focused thoughts to avoid goal-oriented thought disruption. The comparison of
both versions of the system showed that participants decided for or against a version based
on the pausing during reading (which was due to wrong attentional state classification
results). Although 4 participants expressed that the pausing interrupted their flow of
reading, another 4 participants expressed that this initially unwanted system behavior
actually helped them to focus on the reading. Only one participant commented on the
intended pauses while thinking, stating that the app met their needs. Another participant
claimed that pausing while thinking was beneficial, but because they were focused on the
work, it had no effect on them. This opinion was echoed by several subjects following the
study when they were interviewed.

It was not anticipated while preparing the questionnaire or planning the study that
participants would find the pause while reading useful. As a result, some questions did
not directly inquire about pausing when thinking, but rather about halting in general.
As a result, it is unclear whether participants felt the pausing to be beneficial because
of the reading or because of the thinking, and by how much. According to the open-
ended responses of those who preferred the version with BCI, pausing during reading
was more useful than pausing during thinking. It is unknown how much of their choice is
dependent on the pauses during thought. When asked about the pauses during thinking,
the participants’ responses were typically positive. However, because no participant
explicitly said this in their open-ended response in the final questionnaire, those pauses do
not appear to be a determining factor.

The way the classification result was integrated into the behavior of the application
sometimes led to pauses of over 30 s before a new update would appear. This is far too
long and should be restricted in later experiments.

6. Conclusions

We performed a user study to test the effects of the BCI integration into an AR
translator application. The main novelty and contribution of this research was the mobile
setup consisting of a smartphone and a consumer-grade EEG headset in our AtAwAR
Translate system. We hypothesized that attentional state adaptation of text updates reduces
distraction caused by the AR elements and increases the usability of the system. These
hypotheses could not yet be proven with the current data. However, there are several
other inferences and results, as well as indications that attention sensitivity can be helpful.
This was the first attempt at developing a mobile BCI system using a smartphone and a
low-cost EEG headset with few electrodes to add attention awareness to an AR application.
Previously, the idea that the application’s attention-awareness would improve an AR
application was only tested for head-mounted displays and in a laboratory setting. We
chose an AR translator inspired by Google Translate as a use case because it is a popular AR
smartphone app that is frequently used on the road and provides several switches between
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internally and externally directed attention. A travel scenario was used for the user study,
and foreign tests had to be read and understood.

The findings of our user study did not entirely support the claim that the BCI improves
usability. The main limitations of the suggested framework are the accuracy of the classifier
and the user-specific preferences of the adaptation behavior. However, the achieved
performance and ease of setup demonstrated that the system design is promising. Other
use cases, usage scenarios, display devices, or applications should be investigated for future
studies aimed at mobile attention-aware AR systems. For example, the precise nature of the
interface’s attention adaptation or system behavior must be thought through and efficient
in order to reduce distractiveness.
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