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Abstract: The ICARUS (International Cooperation for Animal Research Using Space) satellite IoT
system was launched in 2020 to observe the life of animals on Earth: their migratory routes, living
conditions, and causes of death. These findings will aid species conservation, protect ecosystem
services by animals, measure weather and climate, and help forecast the spread of infectious zoonotic
diseases and possibly natural disasters. The aim of this article is to explain the system design of
ICARUS. Essential components are ‘wearables for wildlife’, miniature on-animal sensors, quan-
tifying the health of animals and the surrounding environment on the move, and transmitting
artificially intelligent summaries of these data globally. We introduce a new class of Internet-of-
things (IoT) waveforms—the random-access, very-low-power, wide-area networks (RA-vLPWANs)
which enable uncoordinated multiple access at very-low-signal power and low-signal-to-noise ratios.
RA-vLPWANs used in ICARUS solve the problems hampering conventional low-power wide area
network (LPWAN) IoT systems when applied to space communications. Prominent LPWANs are
LoRA, SigFox, MIOTY, ESSA, NB-IoT (5G), or SCADA. Hardware and antenna aspects in the ground
and the space segment are given to explain practical system constraints.

Keywords: satellite IoT; very-low-power signaling; CDMA; random access

1. Introduction

The ICARUS satellite IoT system attaches mini-transmitters, called “tags”, to a variety
of animal species [1,2]. These tags then send their measurement data, e.g., GPS coordinates,
sensor information, or AI-determined patterns of animal behavior, such as sickness or
stress, to the ICARUS receiver station, currently operated on the international space station,
ISS. The ICARUS receiver station in turn transmits the data to a ground station from where
it is sent to the relevant teams of researchers. Collected tag data will finally be archived,
distributed, shared, and published through the Movebank database [3] that is accessible to
the public. As a spaceborne IoT system, ICARUS aims at data rates less than 1 kbit/s and
faces three major technical challenges:

(I) The tag transmit power is low to save battery lifetime. Hence, the signal-to-noise ratio
(SNR) of the received signals will be in the order of −30 dB up to −20 dB.

(II) The medium access of all ICARUS tags in range shall be uncoordinated while provid-
ing sufficient orthogonality among the tag signals for reception.

(III) Due to the motion of the space platform, the IoT radio signal will exhibit a high and
unpredictable Doppler shift as well as considerable multipath propagation.

To cope with these challenges, we introduce a system design entitled random-access,
very-low-power, wide-area network, RA-vLPWAN. Besides ICARUS, other RA-vLPWAN
systems are known, such as the unipolar-coded chirp spread spectrum (UCSS) system
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described in [4,5], which exhibits comparable RA-vLPWAN attributes as the ICARUS
signaling concept but was made for geostationary satellite communications. Both ICARUS
and UCSS are explicitly made to tackle the problems of conventional IoT systems when
applied to space communications. These conventional IoT systems are namely LoRA [6],
SigFox, MIOTY, ESSA, NB-IoT (5G), and SCADA networks [4,5], which constitute the
group of low-power, wide-area networks (LPWANs). Conventional LPWAN systems are
made for data rates between some 100 bit/s up to several kbit/s as depicted in Figure 1.
Hofmann et al. have shown in [4,5] that other than the newly introduced RA-vLPWAN
class, LPWANs cannot be scaled down to lower data rates or to a signal-to-noise ratio as
low as expected in space communications for the following reasons:

• LPWAN systems need a minimum data rate of approximately 1 kbit/s to establish sta-
ble time and frequency synchronization. These systems are not made for establishing
a stable signal synchronization for SNR < −20 dB and high random Doppler shifts.

• Efficiency: All the conventional LPWAN systems use fixed preamble/pilot signal
sequences for synchronization. At a very-low-data rate, the spectral efficiency gets
prohibitively low since the ratio between pilot and payload data gets worse.

• Some of the well-established IoT systems, such as LoRA, do not support uncoordinated
random-access schemes where all tags start transmission at arbitrarily chosen time
instants. As a consequence, the number of supported users per satellite beam is very
limited and can be, in a worst case, as low as one.

• By design, LPWAN systems, such as NB-IoT, typically are not resilient against huge
random Doppler shifts since they are made for terrestrial mobile communications.

Motivated by initial channel measurements in 2015 [7], ICARUS has been the first
waveform ever since to introduce the RA-vLPWAN class of IoT systems, tackling all
problems of conventional IoT systems when applied to space applications. ICARUS uses
uncoordinated random access and allows stable time and frequency synchronization even
in low SNR, at low-data rates, and high-Doppler shifts.
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The ICARUS system is often compared to the ARGOS satellite-based object-tracking
system [8]. However, ARGOS requires a higher UL-signal power and does not provide
a backward channel to adjust/trigger specific tag behavior. The ICARUS system can
selectively change the behavior (e.g., tag sensor duty cycle) of single tags by using a
dedicated downlink control channel from the ISS to ground.

The paper is structured as follows. In Section 2, we explain the ICARUS system
concept, and we list all ICARUS signal parameters for the uplink (UL) and the downlink
(DL). In Section 3, the properties of the ICARUS radio wave propagation channel are
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explained, which are important for the digital receiver design. Section 4 provides overview
information on the ICARUS tags, where Section 5 will detail link budget parameters and
will explain the UL ISS antenna concept. This article closes with Section 6, where first
animal behavioral research results are summarized. The main contribution of the paper is
twofold: (I) we introduce major technical parameters and design aspects of the ICARUS
system; (II) we explicitly explain how the joint time and frequency signal synchronization
is realized by means of conjugate complex CAZAC preamble sequences.

2. ICARUS System Overview

ICARUS implements an uplink (UL) and a downlink (DL). The uplink is used by the
tags to transmit sensor data to the ISS. After tag data reception, the downlink is used to
optionally sent re-configuration commands to the tags. The downlink signal is a constant
carrier which contains spread QPSK symbols. This continuous carrier is used by the tag as a
beacon signal to coordinate wake-up cycles and for timing synchronization. The following
Table 1 summarizes the basic signal and data rate properties of both uplink and downlink.

Table 1. ICARUS Uplink and Downlink System Parameters.

Uplink (UL) Downlink (DL)

Carrier
burst traffic, one single burst

per tag per ISS overflight,
multiple access channel

Constant carrier used to
synchronize tags and to broadcast

tag-individual commands,
broadcast channel

Modulation QPSK modulated CDMA,
Spreading factor 1023

QPSK modulated DS-Spread
Spectrum, Spreading Factor 23

Chip rate 900 kHz 33.75 kHz

Roll-Off 30% 30%

Center frequency 402.25 MHz 468.1 MHz

Net data rate after FEC
decoding and overhead

560 bit/s, 223 Byte/1784 Bit
per uplink burst 668 bit/s

FEC irregular-repeat-accumulate
LDPC rate 0.4

irregular-repeat-accumulate
LDPC rate 0.4667

Number of Rake fingers 10 5

Tolerable multi-path 11 µs (3.3 km) 148 µs (44 km)

Typical SNR −30 dB up to −20 dB −5 dB up to 5 dB

ISS overflights are used by the tags to transmit one single uplink burst of 223 bytes
payload data. Prior to transmission a complex wake-up procedure is realized, which saves
battery lifetime. This procedure consists of six individual steps which are explained in
Figure 2. During the wake-up and data transmission phases, the tag performs an ISS orbit
propagation based on ephemeris data received in the downlink. Based on the tag GPS
position and the ISS orbit data, the exact data transmission time instant is calculated to
meet the uplink time window of 8 s duration only. This appears quite challenging when
considering an uplink burst duration of almost 3.5 s.
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Figure 2. Tag wake-up procedure during ISS overflight: hibernation phase (1), satellite search phase
(2), downlink beacon reception (3), uplink window (4), downlink tag command reception (5), orbit
propagation for next overflight and go back to hibernation (6).

3. Physical Layer and Doppler Compensation
3.1. PHY Overview

ICARUS signal transmission is based on single CDMA (code division multiple access)
bursts which are emitted during the ISS overflight. The burst structure is depicted in
Figure 3. The preamble is used for time and frequency synchronization. It is explicitly
designed to jointly estimate exact burst start timing under high-Doppler shifts and low
SNR [9].
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After the synchronization preamble, the signaling preamble (green part in Figure 3)
is transmitted which encodes the spreading code ID used for direct-sequence spreading
of payload and pilot symbols. The subsequent burst structure then uses an interleaved
payload–pilot pattern whereas the pilot symbols are BPSK (binary phase shift keying) en-
coded, while the payload symbols are QPSK (quadrature phase shift keying). Both payload
and pilot symbols are spread with the same spreading code of length 1023. The interleaved
pilots are explicitly made for keeping track of the time-varying radio channel impulse
response which exhibits volatile multi-path [7]. Channel impulse response (CIR) estimation
is performed using the inserted pilot sequences to constantly track the Rake receiver [10]
which is used to equalize and to de-spread the received CDMA chips. Figure 4 shows the
architecture of the channel estimation circuitry used in the ISS spaceborne receiver:
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Figure 4. Correlation-based channel estimation.

The principle of the ICARUS Rake receiver is depicted in Figure 5 for the case where
two so called ‘Rake fingers’ are used. Each Rake finger corresponds to one single channel
tap, all of which are equalized by a maximum-ratio-combiner. Figure 5 shows the schemat-
ics of the implemented Rake receiver for two rake fingers, whereas ten Rake fingers are used
in the uplink space-borne receiver, and five fingers are used in the ICARUS tag to equalize
the downlink signal. The * sign in Figure 5 denotes conjugate complex signal operation.
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The rake receiver performs constructive signal combining by means of a maximum
ratio combining operation [10]. It exploits the good auto-correlation properties of the
spreading code which nearly cancels out time-shifted versions of the received signal. As an
important side effect, the Rake receiver is allowed to keep signal orthogonality of different
tag signals even after equalization in low SNR (<−20 dB). It is allowed to operate a random
access (RA) channel even under difficult channel properties and low SNR. These important
properties lead to the definition of the new class of space IoT systems: RA-vLPWAN.

The downlink signal structure (see Figure 6) is similar to the uplink burst structure,
whereas the DL signal forms a continuous stream of frames, realizing a continuous carrier.
The DL beacon has a similar structure as the UL synchronization preamble. It is made
for time and frequency synchronization under high-Doppler shift and low SNR. Regular
pilot insertions allow it to track the time-varying channel impulse response used for Rake
reception. The first pilot field is different from other pilot fields since it implements the
frame start delimiter (FSD) which marks the start of a new LDPC FEC frame.
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3.2. Joint Timing and Frequency Synchronization

The joint time and frequency synchronization is difficult under the presence of
large random Doppler shifts at low SNR. Conventional cross-correlation-based time and
frequency synchronization typically uses pseudo-noise bipolar sequences, so called M-
sequences [9,11]. In ICARUS, we use a CAZAC (constant amplitude zero auto-correlation)
sequence. Both sequence type options are compared in the following Table 2.

Table 2. Design Tradeoffs for Different Preamble Types.

M-Sequences (Bipolar) CAZAC (Complex Sequences)

Timing offset estimation
accuracy High Average

Frequency offset tolerance Low High

Cross-correlator
complexity

Low, binary sequences do not
require MULT operations

during correlation

High, complex sequences require
complex MULT operations during

correlation

Signal generation Easy (bipolar BPSK
type sequence)

Average (complex valued
IQ sequence)

When using bipolar M-sequences the correlation peak amplitude strongly depends
on the Doppler shift of the received signal. The Doppler shift introduces a carrier fre-
quency offset (CFO) of the received signal to its nominal center frequency which causes
significant degradations.

Figure 7 shows the cross-correlation peak degradation at high-carrier frequency offset
values which makes M-sequences unsuitable for space IoT systems when operated with
LEO (low earth orbit) satellite systems. When using CAZAC sequences, the performance
changes [11,12].

Figure 8 exhibits a preferable immunity of the cross-correlation peak amplitude against
CFO. However, we observe a linear timing lag of the peak versus CFO. The linear timing
lag appears quite impractical in the uplink when considering random Doppler shifts of the
incoming tag signals.

The ICARUS solution to jointly estimate timing and Doppler shift is to use a form of
CAZAC sequences, widely known as Frank–Zhadoff–Chu (FZC) sequences. The UL and
DL synchronization preamble sequences are composed of two consecutive complementary
FZC subsequences. Subsequences 1 and 2 are defined as follows where the ICARUS
parameters are listed in Table 3.

zFZC(n) = exp
(

jdπ
un(1 + n + 2q)

NZ

)
(1)
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where NZ denotes the sequence length. Variable n denotes the sample time domain index
ranging from [0, ..., NZ−1]. Value d is either set to 1 or −1, where u and q are carefully
chosen signed integer values.
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Figure 7. Cross-correlation performance of bipolar M-sequences used for time–frequency
synchronization.
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Figure 8. Cross-correlation performance of a single CAZAC sequence used for time–frequency
synchronization.

Table 3. Downlink Beacon Sync Fields.

FZC Parameter Subsequence 1 Subsequence 2

d −1 1
u 1 1
q 0 0

Nz Downlink 255 = 28 − 1 255 = 28 − 1
Nz Uplink 16,383 = 214 − 1 16,383 = 214 − 1

The benefit of using two FZC sequences that are conjugate complex copies of each
other is the symmetric timing shift property depicted in Figure 9. The correlation peak
timing lag of both subsequences is inverted equal at a given CFO value. With this property
in mind, an easy CFO and timing algorithm could be generated which allows the ICARUS
system to be jointly synchronized in time and frequency. This synchronization algorithm is
described in Figure 10.
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After the first correlation peak (subsequence 1) is detected, the receiver cross-correlator
switches to subsequence 2. When detecting the cross-correlation peak of subsequence 2,
the timing difference of both peaks is measured. Due to the properties of the FZC sequence,
the timing difference of both peaks is directly proportional to the CFO/Doppler shift which
allows it to generate a simple look-up table approach to estimate timing and CFO. A similar
strategy of CFO estimation has been used in [5].

The challenge of using FZC sequences lies in its elements which are equally spread
among the unit circle of the complex number plane. In practice, it appears too complex to
store these complex numbers in a ROM look-up table (LUT) with low bit-width.

Instead, it appeared beneficial to use unit circle approximations of the original FZC
subsequences. In ICARUS we hence applied an 8-PSK mapping of the FZC sequence, as
depicted in Figure 11.

Each element of subsequences 1 and 2 are rounded towards one of the eight ele-
ments of the given 8-PSK constellation. System simulations showed only a negligible
performance degradation when compared with the full-circle FZC implementation but
saves LUT space since only three bits need to be stored per sequence element. Complex
multiplication of 8-PSK constellations is easier to implement in FPGA logic compared to
high-resolution complex multipliers which is also of great importance with respect to the
real-time implementation on ISS.
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3.3. ICARUS Channel Properties
3.3.1. Doppler Effect

As the ISS travels at a high velocity, the communication links are influenced by the
Doppler effect. The Doppler effect is mainly characterized by the well-known Doppler
frequency shift which imposes a time-varying carrier frequency offset on the received
signal. The first derivative of the Doppler shift is of importance as well. It is denoted as
Doppler rate [Hz/s] which describes the change of the frequency offset over time. Figure 12
outlines the main characteristics of the Doppler shift and the Doppler rate along ground
track of the ISS.
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3.3.2. Radio Channel Properties and Propagation Conditions

Much effort have been made to properly understand the ICARUS propagation channel
at the selected transmission frequencies [7] before designing the physical layer of our trans-
mission system. Figure 13 depicts the typical ICARUS communication signal propagation
scenario which is modelled as a classical 2-ray channel model. Both signal components
dominate the entire propagation setup: the direct path (LOS—line of sight) and the re-
flection paths (NLOS—non-line of sight). A dedicated additional path attenuation of the
reflection component is introduced by means of the ground reflection coefficient, R.
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Figure 13. ICARUS Multipath Propagation Scenario.

As a reference for multiple ground types, Table 4 lists reflection coefficients, as outlined
in [13].

Table 4. Reflection Coefficients for Typical Ground Types.

Surface Dielectric Constant εr Reflection Coefficient R

Dry poor ground 4–7 −9.7 dB, ..., –7.0 dB
Average ground 15 −4.7 dB

Wet ground 25–30 −3.6 dB, ..., −3.3 dB
Water 81 −1.97 dB

Figure 14 shows measured normalized receive signal power of the ICARUS downlink
with vertical polarized antenna versus height of the receiver over ground. We compare
the measurement results with the simulation result for the two-ray model with a ground
reflection on wet ground.

Any variation of the antenna height causes an alternation between constructive and
destructive superposition of the line-of-sight signal and the ground reflection signal. The
simulation result from the two-ray model coincides well with the measured data with
respect to the deep fades of the signal power. There might however be propagation
scenarios which are not dominated by a non-resolvable ground reflection. In such cases, we
need to model the radio channel as a complex base-band impulse response which exhibits
resolvable LOS and NLOS tap components, as depicted in Figure 15.



Sensors 2022, 22, 6329 11 of 17

Sensors 2022, 22, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 13. ICARUS Multipath Propagation Scenario. 

As a reference for multiple ground types, Table 4 lists reflection coefficients, as out-
lined in [13]. 

Table 4. Reflection Coefficients for Typical Ground Types. 

Surface Dielectric Constant εr Reflection Coefficient R  
Dry poor ground 4–7 −9.7 dB, ..., –7.0 dB 
Average ground 15 −4.7 dB 

Wet ground 25–30 −3.6 dB, ..., –3.3 dB 
Water 81 −1.97 dB 

Figure 14 shows measured normalized receive signal power of the ICARUS down-
link with vertical polarized antenna versus height of the receiver over ground. We com-
pare the measurement results with the simulation result for the two-ray model with a 
ground reflection on wet ground. 

 

Figure 14. ICARUS Multipath Propagation Scenario.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 18 
 

 

Figure 14. ICARUS Multipath Propagation Scenario. 

Any variation of the antenna height causes an alternation between constructive and 
destructive superposition of the line-of-sight signal and the ground reflection signal. The 
simulation result from the two-ray model coincides well with the measured data with 
respect to the deep fades of the signal power. There might however be propagation sce-
narios which are not dominated by a non-resolvable ground reflection. In such cases, we 
need to model the radio channel as a complex base-band impulse response which exhibits 
resolvable LOS and NLOS tap components, as depicted in Figure 15. 

 

 
Figure 15. ICARUS channel impulse response modelling. 

The LOS component is modelled to be a slowly time-varying channel tap of random 
phase. The NLOS taps are modelled to be mutually independent Rayleigh faded random 
variables. The ISS velocity causes a time-varying radio channel which is characterized by 
receive power fluctuations during UL or DL packet reception. The downlink signal power 
deviations between consecutive pilot blocks is exemplarily and statistically evaluated in 
Figure 16 by means of its CCDF (complementary cumulative distribution function). 

Figure 15. ICARUS channel impulse response modelling.

The LOS component is modelled to be a slowly time-varying channel tap of random
phase. The NLOS taps are modelled to be mutually independent Rayleigh faded random
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variables. The ISS velocity causes a time-varying radio channel which is characterized by
receive power fluctuations during UL or DL packet reception. The downlink signal power
deviations between consecutive pilot blocks is exemplarily and statistically evaluated in
Figure 16 by means of its CCDF (complementary cumulative distribution function).
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Based on the channel measurement campaigns and the ICARUS receiver implementa-
tions, we can derive the following implications on the ICARUS system design:

1. UL: The appliance of a bit interleaver prior to FEC encoding [14] shows negligible
impact on system performance. This is because the UL frame is QPSK-modulated and
FEC-encoded by a strong LDPC code.

2. The ICARUS UL performance is dominated by long-term fades due to ground reflec-
tion; fast fading does not show any considerable performance impact since it can be
tracked easily by the inserted pilot signal sequences.

3. The current UL and DL pilot distance setting appears to be chosen right.
4. The current receiver implementation can cope with strongly faded pilot blocks if

the fading duration is no longer than two pilot blocks (no corruption of timing and
CFO tracking).

4. The ICARUS Tag

The most important condition for a viable animal transmitter (tag) is that the species
under study must tolerate wearing the tag as a true ‘wearable for wildlife’. As recom-
mended by ethics committees, the tag should not exceed 3% of the animal’s body weight to
avoid influencing the animal’s behavior or even endangering it. Since it was also planned
to equip small animals with the tags, the upper limits for the size and weight were very
difficult to meet. The trackers based on mobile or analog radio, which were conventional at
that time, were ruled out for animals under 1 kg, meaning that 75% of all bird and mammal
species could not be studied. The blackbird was chosen by the MPIAB as a reference animal
due to the long-term focus on this songbird within the observation program. Prototypes of
the ICARUS tag were tested, preferably on these seemingly familiar birds whose migration
behavior still brings up questions, though that could only be answered by means of contin-
uous monitoring. Weighing in at 4.5 g, the lightest version of the tag is just light enough
for the blackbird, assuming its use is limited to adult male specimens (see Figure 17). For
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all other species to be fitted with a transmitter according to current ICARUS planning, the
recommendation is easily fulfilled.
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Figure 17. ICARUS tag overview.

Along with the radio and location technology, the tags contain multiple sensors as
well as enough memory to store the movements and environmental data for a single
animal during its entire life. Up to 20 sets of position data are transmitted to the ISS
during each overhead pass, which generally occurs daily but can take place every three
days at lower, equatorial latitudes. The limited amount of data is due to the brief contact
window of only 8 s (of which 3.4 s are used for transmission) and the low bandwidth
and high-spreading factor of the UL signal. The fact that a miniature radio with only six
milliwatts of transmit power can communicate with a satellite is an important property of
this RA-vLPWAN system. The tags use the regularly transmitted ISS ephemeris data along
with their own position to calculate the next time of contact. They prepare to receive and
transmit during the calculated time window, but mostly remain in stand-by mode to save
power. Based on the regularly transmitted tracking data that is compiled in the database
at movebank.org [3], researchers have already gained valuable insights (see Section 6).
However, another component is needed to access the entire data trove accumulated by the
tags, including the environmental data.

5. ISS Antenna Concept and Link Budget

The ICARUS packet reception performance strongly depends on the UL and DL link
budget. The UL link budget is especially crucial for gaining the tag position data. The
following Table 5 hence summarizes the major parts of the ICARUS UL link budget:

The ICARUS UL antenna consists of three independent antenna elements which are
slightly steered in the backward direction (relative to ISS orbit path). Two of the antenna
elements are steered off-track. Each of the antenna elements feeds a separate digital receiver
branch which increases demodulation capacity. The following Figure 18 shows the UL
satellite antenna gain contours as a projection on ground. The color code indicates the
probability of successful UL packet reception depending on random channel fading and
the given link budget.
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Table 5. ICARUS UL Link Budget.

Parameter Value in 402.25 MHz

Chip rate 900 kHz
Spreading factor 1023

Orbit height 400 km (time varying)
Max. single-sided UL antenna opening angle 55◦

Max. Slant path (direction edge of coverage) 872 km
Swath width 800 km depending on ISS orbit height

UL tag EIRP 8 dBm (derived from tag antenna chamber
measurement campaigns)

UL tag antenna gain due to imperfect pointing −1 dBi

Satellite Rx antenna gain max
4 dBi in bore sight (3 antenna elements each of

a different backward tilt and off-track
directivity)

Satellite Rx antenna gain edge of coverage 1 dBi
Free space loss to Nadir −138.5 dB

Free space loss to edge of coverage −143.3 dB
Atmospheric losses 0.1 dB

Fading loss 0 dB (Rayleigh fading will be simulated in link
budget calculations)

Satellite Rx feeder loss 0.5 dB
Satellite antenna noise temperature including

man-made interference 2000 K (worst case), 700 K average case

Satellite receiver temperature 500 K
Polarization loss 3 dB
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6. ICARUS Research on Animal Behavior

Despite the substantial problems of sending data from a mobile animal, the ICARUS
tags performed extremely well all around the globe [1]. We received data from all latitudes
and longitudes within the orbit of the ISS (ca. 56 degrees), as well as archived GPS positions
from animals that temporarily went outside (north or south of) the orbit of the ISS (see
Figure 19), i.e., could not be read out by the antenna and receiver on the ISS for some
time. Transmissions occurred from inside the rain forest, through heavy weather systems
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(thunderstorms, typhoons, etc.), in dry and hot areas (e.g., Sahara Desert), and from all
oceans [15].
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During the first year of operation (ca. 2021 March–2022 March), we received valid
payload data for 3090 individual ICARUS tags via the ISS. This represents a total of 62,791
individual valid ISS payload data (contacts to ISS). A total of 4 GB of payload data in
979 files was transferred to the ICARUS User Data Center and from there, directly into
the global database, Movebank [16]. Within the database, Movebank, ICARUS hosts 2281
deployments of tags registered on individual animals. The global collaboration partners
within the ICARUS initiative studied a total of 75 different animal species. In total, these
deployments of tags on animals include 168,913 GPS fixes transmitted through space to
the ISS. In addition, the ICARUS tags can be read out terrestrially via a handheld receiver.
Here, more data can be transmitted, and thus, the total number of GPS fixes from ICARUS
tags on animals in Movebank is substantially higher [17].

Scientific highlights and transformations in our knowledge about animal movements
are, e.g., provided by the tracking of common cuckoos from Kamchatka to Southern Africa,
the concurrent tracking of seabirds, such as Sooty terns in three oceans of the world (Atlantic
Ocean: Asencion Island; Indian Ocean: Seychelles; Pacific Ocean: Polynesia) as sentinels
of climate change and typhoon initiation, the first return migration tracks of European
blackbirds, the tracking of African fruit bats to understand their role as ecosystem service
agents and their sentinel function to find where the true host of the Ebola virus hides,
or the year-round study of endangered mountain plovers in the Rocky Mountains of the
USA [15,18].

The excellent technical performance of the ICARUS tracking and communication
system has started to allow us to address scientific questions in biology and ecology that
were completely out of reach even 1.5 decades ago [18–20].
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