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Abstract: Existing approaches for automated tracking of fascicle length (FL) and pennation angle (PA)
rely on the presence of a single, user-defined fascicle (feature tracking) or on the presence of a specific
intensity pattern (feature detection) across all the recorded ultrasound images. These prerequisites
are seldom met during large dynamic muscle movements or for deeper muscles that are difficult to
image. Deep-learning approaches are not affected by these issues, but their applicability is restricted
by their need for large, manually analyzed training data sets. To address these limitations, the present
study proposes a novel approach that tracks changes in FL and PA based on the distortion pattern
within the fascicle band. The results indicated a satisfactory level of agreement between manual
and automated measurements made with the proposed method. When compared against feature
tracking and feature detection methods, the proposed method achieved the lowest average root mean
squared error for FL and the second lowest for PA. The strength of the proposed approach is that the
quantification process does not require a training data set and it can take place even when it is not
possible to track a single fascicle or observe a specific intensity pattern on the ultrasound recording.

Keywords: muscle architecture; ultrasonography; in vivo fascicle length; pennation angle; Chan–Vese
model; particle filter

1. Introduction

The geometric layout of fascicles within a skeletal muscle is known as muscle architec-
ture. The fascicle geometry is primarily defined by two muscle architecture parameters:
the fascicle length (FL) between the two aponeuroses and the pennation angle (PA), which
is the angle at which the fascicles operate with respect to the longitudinal axis of the mus-
cle. These parameters play important functional roles, impacting on the force-, velocity-,
excursion-, and power-generating capabilities of muscle [1–4].

Advancements in the application of B-mode ultrasonography in the 1990s made it
possible to record muscle scans in vivo showing the length and orientation of muscle
fascicles at rest or during isometric contraction at different joint angles in those earlier
years [1,5–7] and during dynamic contractions later on as technological developments
allowed higher scanning frequencies [2–4,8–15].

Traditionally, ultrasound-based measurements of PA and FL have been made man-
ually [12]. Manual measurements are subjective and time-consuming, especially for the
large sequences of ultrasound images recorded during dynamic tasks [4,12,16]. Moreover,
manual assessments do not completely exploit the high spatial resolution or temporal
resolution in ultrasound images. As a result, localized muscle movements may not be
recognized or precisely quantified through this approach [12].
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To alleviate the limitations associated with the manual measurement of PA and FL,
automated methods using image-processing techniques were developed [3,4,13]. However,
the relatively poor image quality and low contrast of ultrasound imaging requires the
development of image-processing algorithms that can handle these limitations [17].

Automated quantification of PA and FL has previously been done using one of the
following three approaches: feature tracking [12,18,19], feature detection [3,4,13,17], and
deep learning [20,21]. Feature tracking involves manually identifying a target fascicle in the
first/reference frame of an ultrasound video and tracking this fascicle in subsequent frames
using either cross-correlation [19] or the Lucas–Kanade algorithm [18,22]. Since feature
tracking relies on the persistence of a predefined target, it requires the targeted fascicle
to be visible in all frames without considerable changes in shape or appearance. The loss
of the predefined fascicle from the imaging plane or significant changes in its shape or
appearance would lead to measurement errors [4,13,17,23]. Even though feature-tracking
methods have been successfully used for some years now, the aforementioned conditions
are more likely to be met for relatively small and/or slow muscle movements and for more
superficial muscles, which are easier to image using ultrasound. The automated analysis of
dynamic contractions over a large range of movement and in difficult-to-image muscles
remains challenging.

Feature detection is based on a specific pattern appearing on all the recorded ultra-
sound scans. In the case of skeletal muscles, this pattern corresponds to the two aponeuroses
appearing as continuous hyperechoic bands and, between them, the fascicles appearing
as nonuniformly distributed striations, following a pattern of oblique line-like structures
(Figure 1). Feature detection methods detect the dominant fascicle direction and calculate
PA and FL based on its intersection with the two aponeuroses. In this case, tracking can be
completed as long as the aforementioned distinctive pattern of line-like structures can be
reliably identified across the imaging frames. However, this can also become challenging
due to the noisy nature of ultrasound imaging, due to imaging artifacts and interference
from intramuscular blood vessels, which can obscure critical characteristics of the fasci-
cles [3,4,13].
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Figure 1. Ultrasound image of gastrocnemius muscle. 

Lastly, a deep-learning approach uses deep residual and convolutional neural net-
works for PA and FL estimation [20,21,24]. Although the performance of this approach 
has been within acceptable error levels, the key common limitation of deep-learning 
models is that they require a large amount of training data in order to achieve satisfactory 
results [3,17]. 

To address the limitations of existing methods, the present study proposes a novel 
image-processing algorithm that is based on the pattern of movement/distortion within 
the fascicle band for the automated estimation of PA and FL. The strength of the pro-
posed approach is that the estimation process does not require a training data set and it 
can take place even when it is not possible to track a single fascicle or observe a specific 

Figure 1. Ultrasound image of gastrocnemius muscle.

Lastly, a deep-learning approach uses deep residual and convolutional neural net-
works for PA and FL estimation [20,21,24]. Although the performance of this approach
has been within acceptable error levels, the key common limitation of deep-learning mod-
els is that they require a large amount of training data in order to achieve satisfactory
results [3,17].

To address the limitations of existing methods, the present study proposes a novel
image-processing algorithm that is based on the pattern of movement/distortion within
the fascicle band for the automated estimation of PA and FL. The strength of the proposed
approach is that the estimation process does not require a training data set and it can
take place even when it is not possible to track a single fascicle or observe a specific
intensity pattern. Following the introduction of this novel method, its use is demonstrated
and compared against previously published results from the literature for the medial
gastrocnemius muscle [18]. An assessment of the sensitivity of the results to initialization
is also presented.
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2. Proposed Methodology

PA is defined as the angle between the deep aponeurosis and the fascicles. FL is
defined as the point-to-point distance between the insertions of the fascicles into the
two aponeuroses (Figure 1). Following manual initialization in the first frame of an ul-
trasound video of a muscle contraction, the proposed approach quantifies changes in FL
and PA from the pattern of movement/distortion within the fascicle band and from the
changes in the relative distance and orientation of the two aponeuroses. The workflow of
the proposed PA and FL estimation algorithm is shown in Figure 2.
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The proposed distortion pattern-based image-processing algorithm for the quantifica-
tion of FL and PA consists of four stages:

Stage 1: Initialization
Stage 2: Movement tracking of the deep and superficial aponeuroses
Stage 3: Tracking of distortion in the fascicle band
Stage 4: Calculation of FL and PA
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2.1. Stage 1: Initialization

The proposed method for the quantification of FL and PA begins with an initialization
procedure where the user defines two boxes: one that encloses the superficial and the
other that encloses the deep aponeuroses in the reference frame (frame 1). For the deep
aponeurosis, starting from the left end, the user defines a line on the bottom boundary of
the fascicle band (line AB in Figure 3a) and enters the thickness of the box. Similarly, for
the superficial aponeurosis, starting from the left end, the user defines a line on the top
boundary of the fascicle band (line CD in Figure 3b) and enters the thickness of the box.
The thickness of the boxes was chosen on a trial-and-error basis such that at least ≈90%
of the aponeurosis area was enclosed by the initialized boxes. A preliminary sensitivity
analysis confirmed that the outcome of the algorithm was not sensitive to the thickness of
the initialized boxes (Appendix A). To complete the initialization, the user draws a straight
line that is parallel to the direction of fascicles in the fascicle band (line EF in Figure 3c).
This line does not need to closely match a specific fascicle. The boxes that enclose the deep
and superficial aponeuroses is the input to stage 2, while the fascicle direction line is used
as one of the inputs to stage 3.
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Figure 3. Initialization boxes that enclose (a) the deep aponeurosis and (b) the superficial aponeurosis.
The respective lines that are drawn by the user are denoted as AB and CD for the deep and superficial
aponeurosis, respectively. (c) The line that is drawn by the user (EF) to initialize the fascicle direction.

2.2. Stage 2: Tracking of Changes in Superficial and Deep Aponeuroses

The changes in distance and relative orientation of the two aponeuroses are tracked
by frame-wise detection of the top and bottom boundaries of the fascicle band using
particle filter in conjunction with a computationally efficient modified Chan–Vese (CE-
MCV) model [25]. To this end, the two boxes defined by the user are used as the initial
contours for the delineation of the superficial and deep aponeuroses by the CE-MCV model
in frame 1. The delineated image is then postprocessed to isolate the boundaries between
the aponeuroses and the fascicle band. At the end, the coordinates of the pixels that form
the two boundaries are fitted with a straight line to quantify the position and orientation of
the two boundaries. The same process is repeated for all subsequent frames. In this case,
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however, the initial contour used by the CE-MCV model for image delineation is updated
for each frame to account for movement between the frames (Figure 4). To this end, the
aponeuroses that are enclosed within the user-initialized boxes of frame 1 are tracked for
the duration of the video using particle filter. A background of particle filter and CE-MCV
algorithms that are used in stage 2 of the proposed method is provided below.
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Particle filter: The tracking of the aponeuroses is posed as a state estimation problem
within a Bayesian inference framework. The goal of the state estimation problem is to
estimate the hidden current state xt given the past and the current ultrasound image
observations z1:t. The optimal estimator x̂t for the state is given by conditional expectation
E(xt|z1:t) To obtain the conditional expectation, given all the ultrasound image observations
till time(z1:t), the posterior probability density function (PDF) of the state x at time t p(xt|z1:t)
has to be estimated and this estimation is done through recursive Bayesian filtering.

The goal of recursive Bayesian filtering is to construct the posterior PDF p(xt|z1:t),
which is obtained through a recursive two stage process: prediction and update. In our
problem, since the ultrasound videos are taken during dynamic tasks, the transition and
observation models associated with aponeuroses are nonlinear and non-Gaussian in nature,
thereby making it difficult to arrive at the closed form solution for the prediction and
updating equations of the recursive Bayesian filter. Therefore, the sequential Monte Carlo
method (particle filter) was used to approximate the posterior PDF p(xt|z1:t) [11,26–34].

Particle filter is a Bayesian sequential importance sampling technique that is used
for estimation of the posterior PDF of the state variable characterizing a dynamic system.
Particle filter is a convenient framework for estimating and propagating the posterior PDF
of the state variable, regardless of the underlying distribution. Let ϑt be the state variable at
time t. The state variable characterizes the state of the object, such as position, shape, size,
and speed. In our work, the object of interest is either the superficial aponeurosis or the
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deep aponeurosis, and the state of the aponeurosis is formed by its position (i.e., coordinates
of the initialized boxes). The base idea of particle filter is to recursively approximate the
posterior PDF of the state variable p(ϑt|zt) with a set of weighted particles {ϑt

i , at
i ;

i = 1,2,3 . . . ..M}, where ϑt
i is the state variable associated with the ith particle at time t, at

i is
the weight associated with the state variable of the ith particle at time t, and M is the number
of particles. In the present work, since the motion of aponeuroses between two consecutive
frames is approximated by affine image warping, the state variable ϑt is defined by six
affine parameters i.e., ϑt = [xt, yt, θ;t, st, at, ψt], where xt, yt, represent the translation at time
t and θ;t, st, at, ψt represent rotation angle, scale, aspect ratio and skew direction at time
t, respectively. Each particle represents a hypothesis of the state and is randomly drawn
from the prior density. At each time t, particle filter repeats a two-stage process: prediction
and update. After a particle is drawn, it is then propagated according to the transition
model p(ϑt|ϑt−1) and this forms the prediction stage. Each parameter in ϑt is modeled
independently by a Gaussian distribution constructed around its counterpart in ϑt−1. i.e.,
p(ϑt|ϑt−1) = N(ϑt; ϑt−1, P), where P is the diagonal covariance matrix whose elements are
the variances of affine transformation parameters i.e., vx

2, vy
2,. vθ;

2, vs
2, va

2, vψ
2. In

the update stage, with the latest measurement (ultrasound image at time t) being available,
a weight at

i is assigned to each propagated particle in accordance with an observation
model that is formed by the observation likelihood p(zt|ϑt). In general, the observation
models are formed by image features, such as texture, color, gradient, or contours. In the
present work, the observation likelihood is formed by the approximation error in sparse
representation. The sparse representation of structure of interest is obtained by solving an
L1 regularized least squares problem using accelerated proximal gradient descent. The
tracking result would be the candidate with the smallest target template projection error.
After that, tracking is led by the Bayesian state inference framework, in which particle filter
is used for propagating sample distributions over time. Detailed explanation on sparse
representation of structure of interest is given in [27–29,31,35]. Sparse representation was
chosen to handle the occlusion problem, which may arise in ultrasound videos taken during
dynamic tasks. After updating, the particles are resampled (sampling with replacement)
according to their importance weights to generate an unweighted new particle set, and this
step is done to avoid the degeneracy problem (concentration of most of the weights on a
single particle) [26,28,29].

The hyperparameters associated with the particle filter framework were number of
particles, number of templates in sparse representation, size of the template, variance of
affine parameters, Lipschitz constant, regularization constants for target template and
trivial template, weighting constant for controlling the energy of trivial templates when
occlusion was detected, and maximum number of iterations. All these hyperparameters
were set on a trial-and-error basis during preliminary testing and kept constant for all
analyses included in this study. For our experiment, the hyperparameters were set as
follows: number of particles = 800; number of templates in sparse representation = 10; size
of the template (in pixels) = [39, 39]; variance of affine parameters = [0.03, 0.0005, 0.0005,
0.03, 1, 1]; Lipschitz constant = 8; regularization constants for target template and trivial
template were 0.2 and 0.001 respectively; weighting constant for controlling the energy of
trivial templates when occlusion was detected = 10 and maximum number of iterations = 5.

Computationally efficient modified Chan–Vese model: Delineation algorithms based
on deformable models are well suited for the analysis of ultrasound images [36,37]. The
key idea of deformable-model-based segmentation is that a prior model of the structure of
interest is represented either as a 2D curve or as a 3D surface in the image domain and this
curve or surface undergoes deformation in an iterative manner to fit onto the boundary of
the structure of interest. The deformation field that tells how the model should deform to fit
onto the boundary of the structure of interest is obtained by the minimization of an energy
functional. Therefore, the segmentation problem is now transformed into an energy func-
tional minimization problem that can be solved with the help of an optimization algorithm.
The Chan–Vese (CV) model is one of the most representative and a widely used deformable
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model [38,39]. The modified CV (MCV) model is a variant of the CV model that is more
robust to the type of noise found in ultrasound images, namely the speckle noise [25]. The
key limitation of the CV and MCV models is that the computational efficiency of these two
models is severely hampered by the use of gradient descent (GD) optimization technique to
solve the nonconvex optimization problem of CV and MCV models and the constraint that
has been maintained on level set during its evolution. In this regard, the authors in [25]
proved that the computational efficiency of the CV and MCV models could be improved
by using alternative first-order optimization schemes. Out of the proposed optimization
techniques in [25], for the present work, Barzilai–Borwein gradient descent (BB-GD) was
chosen. More specifically, the MCV model with BB-GD was chosen from [25] to delineate
superficial and deep aponeuroses in each frame of an ultrasound video.

The hyperparameters associated with the CE-MCV model were set either based on
previous work by authors of this study [25] or on a trial-and-error basis to produce a
satisfactory delineated output, namely a delineated output that contains at least 80% of
the subregions in each frame. The weighting constant associated with the length of the
curve (ρ) should be relatively small when the segmentation process targets small individual
structures, and it should be relatively large when larger structures or clusters of structure are
to be detected [25]. In this regard, ρ was set to 0.0009. The weighting constants associated
with data fidelity terms (β1 and β2) and area constraint term (γ) in the energy functional of
the MCV model were set according to the literature [25,40] as one and zero respectively.
The stopping criterion threshold (ζ) was defined as ζ = (0.18)2 × dt, where dt is the step size
that decides how fast the solution proceeds towards optimum. For our experiment, dt was
set to 0.51. The iteration threshold i.e., the maximum number of iterations was set to 5000.

2.3. Stage 3: Tracking the Distortion in Fascicle Band

In stage 3, the change in orientation of the fascicles is calculated based on the distortion
of a region of interest (ROI) within the fascicle band. The ROI is a rectangle defined by
the two insertion points of the fascicle direction line to the aponeurosis lines (points A
and B in Figure 5). Once the ROI is defined in the reference frame, the KAZE interest
points are identified and tracked in the following frame (tracked frame) using the Kanade–
Lucas–Tomasi (KLT) algorithm. To enable the analysis of videos of rapidly changing
fascicle direction and length, the ROI is updated and new KAZE interest points defined
every two frames throughout the duration of the video (Figure 2). The tracking process is
implemented in MATLAB using the pointTracker function. This function uses the optical
flow vector (given by the KLT algorithm) to determine the movement of interest points
between two frames. Once the new and the old positions of interest points are in hand,
the translation (along x-direction and y-direction), rotation, scale (along x-direction and y-
direction) and shear/distortion (affine matrix, 6 degrees of freedom) of the ROI is estimated
using the estimateGeometricTransfrom2D function in MATLAB. The new position of the
fascicle direction line in the tracked frame is found by applying the affine matrix given by
the estimateGeometricTransform2D function over the coordinates of the fascicle direction
line in the reference frame. Once the analysis of the first two frames is complete, the tracked
frame becomes the new reference frame and the entire process is repeated (Figure 2).
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Figure 5. Definition of the region of interest (ROI) in an ultrasound image of a muscle at rest (a) and
during maximal contraction (b). The geometric points that are used in the calculation of FL and PA
are also shown. Lines KL and MN, respectively, correspond to the top and bottom boundary of the
fascicle band. Points A and B denote the insertion points of the fascicle direction line.

The hyperparameters of the MATLAB functions for finding the KAZE interest points
in the reference frame, tracking the defined KAZE interest points, and estimation of 2D
geometric transformation matrix between two frames were chosen on a trial-and-error
basis during preliminary testing and they were kept constant for all analyses included in
this study. The following paragraphs give a brief description of KAZE interest points and
the MATLAB functions pointTracker and estimateGeometricTransform2D.

KAZE interest points: An image could be represented in an abstract manner by detect-
ing features (a.k.a. interest points) at different scale levels (multiscale image processing) and
associating a local descriptor with each of the detected features. The existing approaches
for multiscale feature detection and description use linear scale space (Gaussian scale space,
which is one instance of linear diffusion). However, the limitation of Gaussian blurring is
that it smoothens the details and noise in the image to the same level while evolving the
image through scale space, thereby reducing the localization accuracy and distinctiveness.
To alleviate the limitation of linear scale space, the authors in [41] proposed a 2D feature de-
tection and description approach called KAZE that operates completely in a nonlinear scale
space. The nonlinear scale space was constructed using additive operator splitting tech-
niques and nonlinear diffusion (variable conductance diffusion). Diffusion was calculated
according to Weickert conductivity coefficient (diffusion type: “edge”) [41]. The strength of
nonlinear scale space is that at each scale level, the noise is removed without disturbing the
image details, thereby improving the localization accuracy and distinctiveness.

The hyperparameters associated with the MATLAB function for finding the KAZE
interest points in the reference frame are: (1) rectangular ROI, specified as a row vector
of the form [x, y, width, height] where x, y denotes the x-coordinate and y-coordinate of
the starting point of the rectangle (top left corner) (Figure 5), width and height denote the
width and height of the rectangle respectively (2) number of scale levels and number of
octaves for multiscale analysis and (3) method to compute diffusion (conductivity). To
enable multiscale analysis, the number of octaves should be an integer that is greater than
1 and more features can be detected when the number of octaves is more. Similarly, the
number of scale levels is an integer in the range [3, 10] and smooth-scale changes can be
achieved if the number of scale levels is high. For our experiment, the rectangular ROI
was defined as [Ax, Ay, width = Bx − Ax, height = By – Ay], where Ax and Bx are the
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x-coordinates of points A and B respectively (Figure 5); Ay and By are the y-coordinates
of the points A and B respectively (Figure 5); the number of octaves and number of scale
levels were set to 9 and 5 respectively.

pointTracker: The pointTracker function in MATLAB is used to track the KAZE
interest points defined in the reference frame. Fundamentally, this function uses the KLT
algorithm to calculate the optical flow of a region to determine the movement of structure of
interest between two frames. The hyperparameters associated with pointTracker function
are: (1) region of size m×m around each interest point (block size) (2) number of levels
in the image pyramid for multiresolution tracking (3) maximal bidirectional error and
(4) maximum number of iterations required to obtain the optimum solution. For our
experiment, block size, number of levels in image pyramid, maximal bidirectional error,
and maximum number of iterations were set to 5 mm× 5 mm, 9, 3 mm, and 40, respectively.
The output of this function is the new location of KAZE interest points defined in the
reference frame.

estimateGeometricTransform2D: This MATLAB function estimates the 2D geometric
transformation matrix between two frames by mapping the inliers in KAZE interest points
from the reference frame to the inliers in KAZE interest points from the tracked frame. In
the process of finding the corresponding interest points between two frames, it is necessary
to determine the interest points that are true matches (inliers) and the interest points that
are not matching (outliers). Random sample consensus (RANSAC) is most commonly
used for this purpose and many variants of RANSAC have been proposed in the literature,
out of which the M-estimator sample consensus (MSAC) variant is used by this MATLAB
function. RANSAC and its variants are used for estimating the best-fit model from the
data especially when the data contain a large number of outliers [42]. Here, geometric
transformation over the image is considered as the model and the task is to estimate
the model (geometric transformation matrix) from the data (a pair formed by the old
position and the new position of the KAZE interest points). Each model has a minimal
set (i.e., smallest number of interest-point pairs) from which the model can be computed.
The sequence of steps involved in finding the best-fit model is depicted in Figure 6a. The
hyperparameters associated with this function are: (1) maximum random trials, (2) type
of geometric transform, and (3) maximum distance (in pixels) between a point and the
projection of its corresponding point (Figure 6b). For our experiment, the type of geometric
transform was set to affine, the maximum number of random trials and maximum distance
between a point in reference frame and the projection of its corresponding point from the
tracked frame were set to 1,000,000 and 30 pixels, respectively. Since the type of geometric
transformation was set to affine, for the computation of affine transformation matrix, the
minimal set should consist of three pairs of KAZE interest points.

2.4. Stage 4: Calculation of PA and FL

After obtaining the new position of the fascicle direction line and the boundaries of the
fascicle band, the insertion points of the fascicle direction line (points A and B in Figure 5)
are determined, followed by the computation of FL as their Euclidean distance. PA is
calculated as the angle between the fascicle direction line and the deep aponeurosis (angle
ABM in Figure 5).



Sensors 2022, 22, 6498 10 of 19Sensors 2022, 22, x FOR PEER REVIEW 10 of 20 
 

 

k = number of random trials and M =
maximum number of random trials

for k = 1 

Randomly draw three KAZE interest point
pairs

Compute the affine transformation matrix (T)

Is k ≤ M? 
Final estimate of affine
transformation matrix = Tk

corresponding to max {Ck}

{Inliers} = set of KAZE interest interest points that satisfies 
the criterion:  Euclidean distance between a point (p1 in 

figure 6b) and the projection of its corresponding point (p2 
in figure 6b) < distance threshold 

Ck = cardinality of {Inliers} and Tk = T

Yes No

Stop

a)

Distance (in pixels) between the point (p1) in frame 1 and its corresponding point (p2) in frame 2

p1

p1’ = T × p1

p2

Frame 2Frame 1

p1’

p2  = T−1 × p1’

b)

 
Figure 6. (a) Flow diagram for estimation of affine transformation matrix using M-SAC algorithm 
in estimaGeometricTransform2D MATLAB function (b) Illustration of maximum distance thresh-
old. 

2.4. Stage 4: Calculation of PA and FL 
After obtaining the new position of the fascicle direction line and the boundaries of 

the fascicle band, the insertion points of the fascicle direction line (points A and B in 
Figure 5) are determined, followed by the computation of FL as their Euclidean distance. 
PA is calculated as the angle between the fascicle direction line and the deep aponeurosis 
(angle ABM in Figure 5). 

Figure 6. (a) Flow diagram for estimation of affine transformation matrix using M-SAC algorithm in
estimaGeometricTransform2D MATLAB function (b) Illustration of maximum distance threshold.

3. Demonstration of the Proposed Approach

The proposed concept was tested on normative previously published ultrasound data
for the medial gastrocnemius muscle during isokinetic ankle plantar flexion contractions at
30, 120, 210, and 500 deg/s [18]. Twelve videos were analyzed in total (three videos per
plantar flexion speed), each including a single contraction. Manual measurements of PA
and FL were performed on specific frames of the isokinetic videos (6 frames per video) by
an expert [18]. The automated measurements of PA and FL using the proposed approach
were compared against these published ground-truth measurements.

Moreover, to get an assessment of relative performance of the proposed method
against literature, an established feature tracking method [18] and an established feature
detection method [13] were also used to analyze the same videos. The relative performance
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of the three methods was assessed based on their degree of closeness to the ground-truth
measurements.

To support the repeatable use of the proposed methodology, the initialization of the
fascicle direction line (Line EF, Figure 3c) was done following a predefined process. More
specifically, the user was instructed to draw the fascicle direction line along a clearly visible
fascicle and then to move it to the center of the image, ensuring that the two intersection
points between the fascicle direction line and the two aponeuroses (points A,B Figure 5)
were within the ultrasound image. The sensitivity of results to the placement of the
initialized fascicle direction line and to small deviations in the initial PA was assessed in a
final series of tests.

3.1. Comparison against Manual Measurements and Established Methods from Literature

Manual measurements were available for six frames for each of the analyzed contrac-
tion videos. The level of agreement between manual and automated measurements was
evaluated using root mean squared error (RMSE) and the coefficient of variation (CoV).
Average RMSE for FL was equal to 2.7 mm, 3.4 mm, 1.5 mm, and 3.1 mm for contractions
at 30, 120, 210 and 500 deg/s respectively. For the same contraction speeds, RMSE was
3.3 deg, 3.7 deg, 5.6 deg, and 5.2 deg for PA. Results for a video with lowest RMSE and for
the one with the highest RMSE are presented in Figure 7 to provide a sense of the physical
meaning of low and high RMSE in the context of this comparison.
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Figure 7. Comparison between the automated calculations using the proposed algorithm and
manual measurements of fascicle length (FL) (a,b) and pennation angle (PA) (c,d). Results are
presented separately for the contraction where the difference between computerized and man-
ual measurements was the highest (a,c) and for a contraction where it was the lowest (b,d).
More specifically, graphs (a,c) correspond to an ankle plantar flexion contraction at 500 deg/s,
graphs (b,d) to ankle plantar flexion at 30 deg/s. For comparison, the respective root mean square
errors (RMSE) between computerized and manual measurements are also shown.

The CoV between manual measurements and the automated calculations of the pro-
posed method was 4% and 7% for FL and PA, respectively. This level of variation was
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deemed to be satisfactory. According to the literature, the CoV for FL and PA measurements
in gastrocnemius muscle across measurements should be ≤10% [18,43].

When the same images were analyzed using an established feature tracking method [18]
and an established feature detection method [13] from the literature, the proposed approach
achieved the lowest average RMSE for FL followed closely by feature tracking (Table 1).
Moreover, it achieved the second-lowest average RMSE for PA. In both cases, the average
RMSE of feature detection was relatively larger than the other two methods.

Table 1. Coefficient of variation (CoV) and average root mean square error (RMSE) between manual
and automated measurements of fascicle length (FL) and pennation angle (PA). Results for the
proposed distortion-based approach are compared against feature detection and feature tracking
methods from literature.

FL PA

CoV RMSE (mm) CoV RMSE (deg)

Distortion-based
approach 4% 2.4 ± 1.3 7% 4.4 ± 1.4

Feature tracking
approach [18] 4% 2.7 ± 1.3 5% 3.3 ± 1.7

Feature detection
approach [13] 9% 5.5 ± 2.6 16% 8.8 ± 2.4

All the three automated methods achieved CoVs lower than the predefined threshold
of 10% [18,43] for FL (Table 1). For PA, only the proposed approach and feature tracking
achieved CoV < 10%. More specifically, the CoV between the manual and automated
measurements of FL was 4% for the proposed approach and feature tracking, while the
feature detection approach achieved a CoV of 9%. With respect to PA, the CoV between
manual and automated measurements was 7%, 5%, and 16% for the proposed approach,
feature tracking and feature detection respectively.

3.2. Sensitivity to Initialization

The video that gave the highest RMSE relative to manual measurements (Figure 7a,c)
was used to assess the effect of initialization on the calculations. To this end, the analysis
was repeated for different initializations of the oblique fascicle direction line and the
difference in the calculated FL and PA relative to the reference initialization and to manual
measurements were assessed. Six different scenarios were tested in total: four scenarios
for different placements of the fascicle direction line without any change in the initial PA
and two cases where initial PA was slightly altered. Different placements were produced
by moving the points E, F of the reference initialization (Figure 3c) by 10, 20 pixels to
the right and 10, 20 pixels to the left. This resulted to parallel displacements of 0.9 mm,
1.8 mm, −0.9 mm and −1.8 mm, respectively from the reference position. A small rotation
was imposed by moving point E 10 pixels in one direction and point F by 10 pixels to the
opposite direction, thus changing the initial PA by ±1.4 deg.

3.2.1. Parallel Shift of Fascicle Direction Line

The results indicated that a parallel shift of the initialized fascicle direction line to the
right or to the left from the center of the image (i.e., reference position) led to differences in
the calculations, which changed as the contraction progressed. For example, a parallel shift
of the fascicle direction line to the right by 20 pixels (1.8 mm) led to an underestimation of FL
of 0.4 mm for the first frame (−0.8% difference to reference) and to an overestimation of FL
of 0.9 mm (4% difference to reference) for the last frame (Figure 8a). Parallel shift to the left
had the opposite effect, leading to initial overestimation and finally to an underestimation
of FL for maximum contraction relative to the reference initialization. As expected, parallel
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shift of the initialized fascicle direction line did not change the initial estimation for PA.
However, it led to differences of up to 4 degrees for maximum contraction.
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the left (−10, −20 pixels) or to the right (10, 20 pixels) from the center of the image. The resulting 
difference in FL (a) and PA (b) relative to the reference initialization is presented for all frames of a 
contraction video (Figure 7a,c). The effect on accuracy is demonstrated based on the RMSE against 
ground truth for FL (red line) and for PA (blue line) (c). 
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line is moved to the left of the image. As can be seen in Figure 8a,b, a shift by 10 and 20 
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also evident when the computerized calculations are compared against ground truth. As 
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very similar and significantly reduced RMSE for PA and FL. These findings indicate that 
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3.2.2. Initial PA 
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tial changes in FL and to changes in PA that are magnified over the duration of the con-
traction. Indicatively, increasing the PA during initialization by 1.4 deg (−6.4% difference 
to reference) decreased the calculated FL for the at-rest muscle in frame one by 3.9 mm 
(−6.8% difference to reference). At the end of the contraction video, this difference was 3.0 
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tion at initialization was magnified to 7.8 deg underestimation (−14.8% difference to ref-
erence) of PA at the final frame of the video (Figure 9b). 

Figure 8. The sensitivity of FL and PA to the initial placement of the fascicle direction line initialization.
Different initialization scenarios are generated by shifting the reference initialization line to the left
(−10, −20 pixels) or to the right (10, 20 pixels) from the center of the image. The resulting difference
in FL (a) and PA (b) relative to the reference initialization is presented for all frames of a contraction
video (Figure 7a,c). The effect on accuracy is demonstrated based on the RMSE against ground truth
for FL (red line) and for PA (blue line) (c).

Interestingly, the response of the algorithm seems to stabilize when the initialization
line is moved to the left of the image. As can be seen in Figure 8a,b, a shift by 10 and
20 pixels to the left leads to very similar calculations for maximum contraction regardless
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of the initial differences in PA and FL for the muscle at rest. This pattern of convergence is
also evident when the computerized calculations are compared against ground truth. As
can be seen in Figure 8c, shift to the left of the initialization line by 10 or 20 pixels led to
very similar and significantly reduced RMSE for PA and FL. These findings indicate that
optimum initialization for maximum accuracy and robustness might be possible.

3.2.2. Initial PA

Small deviations in the orientation of the initialization line appear to cause substantial
changes in FL and to changes in PA that are magnified over the duration of the contraction.
Indicatively, increasing the PA during initialization by 1.4 deg (−6.4% difference to refer-
ence) decreased the calculated FL for the at-rest muscle in frame one by 3.9 mm (−6.8%
difference to reference). At the end of the contraction video, this difference was 3.0 mm
(−13% difference to reference) (Figure 9a). With regards to PA, 1.4 deg underestimation at
initialization was magnified to 7.8 deg underestimation (−14.8% difference to reference) of
PA at the final frame of the video (Figure 9b).
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Figure 9. The sensitivity of FL and PA to small changes in the initialized PA. Different initialization sce-
narios are generated by rotating the reference initialization line to the left (1.4 deg reduction in initial
PA) or to the right (1.4 deg increase in initial PA). The resulting difference in FL (a) and PA (b) relative
to the reference initialization is presented for all frames of a contraction video (Figure 7a,c).

The sensitivity of the calculations to the PA initialization has a strong influence on the
accuracy of the method. Rotating the initialization line from what the user considered to be
in alignment with the direction of the fascicles significantly increased the difference of FL
to ground truth. More specifically, the RMSE for FL increased from 1.8 mm to 3.9 mm and
3.7 mm for 1.4 deg decrease and increase of the initialized PA, respectively. RMSE for PA
was also significantly affected by initialization. In this case, however, the effect appeared to
us monotonous. More specifically, 1.4 deg reduction in PA during initialization increased
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the RMSE to 10.1 deg (from 5.7 deg for reference), while increasing the initialization PA by
the same amount decreased the RMSE to 2.9 deg (from 5.7 deg for reference).

4. Discussion

Traditionally, FL and PA have been measured manually. Manual measurements are
subjective and time-consuming, especially for the large sequences of ultrasound images
recorded during dynamic tasks. To alleviate the limitations associated with manual mea-
surements of PA and FL, automated methods using image-processing techniques were
developed [3,12,13,18]. Previous studies on automated methods for the quantification of
FL and PA rely on the presence of a single user-defined fascicle (feature tracking) or on
the presence of a specific intensity pattern (feature detection) across the recording or on
a large manually analyzed training data set (deep-learning approach). The need for a
fascicle or a pattern to be visible across the recording can undermine the accuracy of FL and
PA measurements in ultrasound videos taken during dynamic movements or for deeper
muscles, which are more difficult to image. Deep-learning approach is not affected by these
issues, but their applicability is restricted by their need for large training data sets [3].

To address the limitations of the existing methods for automated measurements of
FL and PA, the present study proposes a novel method that tracks changes in FL and
PA based on changes in the position and orientation of the two aponeuroses and the
movement/distortion pattern within the fascicle band. The strength of this method stems
from its ability to utilize information on movement from every trackable point within the
ROI and not only from points that belong to a specific fascicle or pattern. As a result, it
can be applied to recordings where it is impossible to track a single fascicle or pattern.
The only key requirements for its use are: (a) that the two aponeuroses are visible across
the recording and (b) that the fascicle direction can be inferred in at least one frame for
initialization. In its current form, the proposed algorithm in this study used linear curve-
fitting to calculate the boundaries between the fascicle band and the two aponeuroses. In
the future, linear curve fitting could be easily replaced by polynomial fitting to enable also
the study of muscles whose aponeuroses do not appear as straight lines in ultrasound
imaging.

The performance of the proposed approach was assessed against (1) manual mea-
surements of FL and PA and (2) PA and FL results obtained using alternative automated
methods available in the public domain [18]. The method of [18] was included in this
study as a representative method that is based on feature tracking. They compared the
accuracy of their method against Ultrack, a common tool for the tracking of FL and PA, and
concluded that for the same initialization, their method could achieve better accuracy than
Ultratrack [18]. The method by [13] was included as a representative method for feature
detection. In [13], the image of the region of interest between the two aponeuroses is first
converted into a binary image using quantile thresholds of the image intensities, followed
by detecting possible fascicle snippets by the bwtraceboundary function of MATLAB. The
semiautomatic approach allows for setting also manual snippets, which was not done for
this study.

The results indicated a satisfactory level of agreement between manual and automated
measurements of FL and PA using the proposed method. When compared against auto-
mated methods for the measurement of FL and PA (feature tracking and feature detection
approaches), the proposed method achieved the lowest average RMSE for FL and the
second lowest for PA. In both cases, the CoV was well below 10%, the threshold specified
in literature as acceptable. The observed relatively lower accuracy for PA could be due to
errors in identifying the angle of the fascicles (fascicle direction line orientation) accurately
in the initialization phase. The proposed algorithm calculates FL and PA as changes from
the reference values that are calculated during initialization based on input by the user. This
approach enables the creation of a method that is robust to the disappearance of specific
fascicles or intensity patterns in subsequent frames. At the same time, this can also make
the method sensitive to initialization. In the case of the two aponeuroses, initialization
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is only the first step for the detection of the boundaries of the two aponeuroses based on
image delineation and tracking. In this case, the only prerequisite for correct initialization is
that the user needs to create boxes that enclose the two aponeuroses. This process is made
significantly easier by the fact that the two aponeuroses appear as areas of high contrast in
ultrasound imaging. The operator-independent nature of initialization with regards to the
two aponeuroses is also supported by a preliminary analysis (Appendix A) indicating that
the results were not affected by the thickness of two initialized boxes (Figure 3a,b).

On the contrary, the results appear to be sensitive to the initialization of the fascicle
direction line. Based on the results presented here, this seems to be a bigger problem for PA
than FL (Figures 8 and 9). Because of trigonometry, small variations in FL during muscle
contraction might result in large variations in PA [18]. Moving forward, this challenge could
be addressed by adding an additional step into the process for the operator-independent
initialization of fascicle direction in the reference frame. The feature detection approach
of [13] appears to be a very good candidate method for this purpose. A second dimension
of sensitivity to initialization that was not explored here is the selection of the reference
frame. In this study, all calculations were conducted based on an image of the muscle at
rest. The criteria dictating optimal selection of reference for maximum accuracy should
also be explored in the future.

5. Conclusions

The purpose of this study was to demonstrate the idea that the pattern of movement
and distortion of muscle fascicle band could be used to quantify PA and FL in the ultrasound
videos taken during activities in which the length of the muscle changes. The proposed
approach was demonstrated with ultrasound videos of medial gastrocnemius muscle taken
during isokinetic contractions. The results indicated a satisfactory level of agreement
between the manual and automated (proposed approach) measurements of FL and PA.
When compared against the established feature tracking and feature detection methods
from the literature, the proposed method achieved the lowest average RMSE for FL and the
second lowest for PA. The proposed method offers the advantage that the quantification
process does not require a training data set and it can take place even when it is not possible
to track a single fascicle or observe a specific intensity pattern on the ultrasound recording.
However, in its current form, the performance of the proposed approach is sensitive to the
fascicle direction line initialization. Sensitivity to initialization can have a detrimental effect
on the accuracy and on the time efficiency of the method and should be addressed for the
development of a widely applicable automated method. Combining the concept presented
here with established methods capable of objectively identifying the dominant direction of
fascicles could address this limitation.
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Appendix A

Box sensitivity test for tracing of bottom and top boundaries of fascicle band:

For the deep aponeurosis, the thickness of the box was chosen as 20 pixels. To check
whether the tracing of bottom boundary of the fascicle band was sensitive to thickness of
the box that encloses ≈90% of the deep aponeurosis, a sensitivity test was carried out with
thickness of the box being defined as thickness = {20 ± (50% of 20)} pixels. The test was
carried out on a single ultrasound video. More specifically, the six frames that were defined
for validation part were analyzed. For each thickness of the box, the slope and intercept of
the line that defines the bottom boundary of the fascicle region were noted for each frame.
From Figure A1a,b, it is evident that the slope and intercept of the line that defines the
bottom boundary of the fascicle band were insensitive to changes in the thickness of the
box (±10 pixels change relative to 20 pixels) initialized around deep aponeurosis in frame 1
of the ultrasound video.

The same type of analysis was done for superficial aponeurosis too. For the superficial
aponeurosis, the thickness of the box was chosen as 10 pixels. To check whether the
tracing of top boundary of the fascicle band was sensitive to the thickness of the box
that encloses ≈90% of the superficial aponeurosis, a sensitivity test was carried out with
thickness of the box being defined as thickness = {10 ± (50% of 10)} pixels. From the
analysis, it was found that slope and intercept of the line that defines the top boundary
of the fascicle band were insensitive to the changes in thickness of the box (±5 pixels
change relative to 10 pixels) initialized around superficial aponeurosis in frame 1 of the
ultrasound video.
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Figure A1. Box sensitivity analysis for deep aponeurosis (a) Slope of bottom boundary of fascicle 
band for different thickness of the box around deep aponeurosis and (b) Intercept of bottom 
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Figure A1. Box sensitivity analysis for deep aponeurosis (a) Slope of bottom boundary of fascicle
band for different thickness of the box around deep aponeurosis and (b) Intercept of bottom boundary
of fascicle band for different thickness of the box around deep aponeurosis.
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