
Citation: Antonowicz, P.; Podpora,

M.; Rut, J. Digital Stereotypes in

HMI—The Influence of Feature

Quantity Distribution in Deep

Learning Models Training. Sensors

2022, 22, 6739. https://doi.org/

10.3390/s22186739

Academic Editor: Matteo Gelardi

Received: 11 August 2022

Accepted: 2 September 2022

Published: 6 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Digital Stereotypes in HMI—The Influence of Feature Quantity
Distribution in Deep Learning Models Training
Pawel Antonowicz 1,*, Michal Podpora 1 and Joanna Rut 2

1 Department of Computer Science, Opole University of Technology, Proszkowska 76, 45-758 Opole, Poland
2 Faculty of Production Engineering and Logistics, Opole University of Technology, Sosnkowskiego 31,

45-272 Opole, Poland
* Correspondence: p.antonowiczz@gmail.com

Abstract: This paper proposes a concept of Digital Stereotypes, observed during research on quan-
titative overrepresentation of one class over others, and its impact on the results of the training
of Deep Learning models. The real-life observed data classes are rarely of the same size, and the
intuition of presenting multiple examples of one class and then showing a few counterexamples
may be very misleading in multimodal classification. Deep Learning models, when taught with
overrepresentation, may produce incorrect inferring results, similar to stereotypes. The generic idea
of stereotypes seems to be helpful for categorisation from the training point of view, but it has a
negative influence on the inferring result. Authors evaluate a large dataset in various scenarios: over-
representation of one or two classes, underrepresentation of some classes, and same-size (trimmed)
classes. The presented research can be applied to any multiclassification applications, but it may
be especially important in AI, where the classification, uncertainty and building new knowledge
overlap. This paper presents specific ‘decreases in accuracy’ observed within multiclassification of
unleveled datasets. The ‘decreases in accuracy’, named by the authors ‘stereotypes’, can also bring an
inspiring insight into other fields and applications, not only multimodal sentiment analysis.

Keywords: machine learning; feature measurement; cognitive technologies; artificial intelligence;
Industry 5.0; digital stereotypes

1. Introduction

The idea of human-machine cooperation and partnership plays the key role in the
current digital transformation—Industry 5.0—the transformation that goes beyond the
horizon of intelligent factories and automated systems and processes. The fifth indus-
trial revolution strongly incorporates cognitive technologies, making the system fabric
more natural and native for human beings, enabling true coexistence and cooperation
of machines and humans. The cognitive technologies are also increasingly often used in
business, including within the communication process. Verbal interactions contain not only
a message, but they also carry non-verbal clues, including emotional content, which can
be processed using a multimodal sentiment analysis subsystem. A smile is an effective
indicator in communication and in business communication, while at the same time, a
smile is one of the simplest and most common face expressions.

Learning to distinguish one object class from another is one of the most basic cognitive
tasks a human being is capable of. The same capability is being expected from artificial
systems, machines or robots. However, the teaching-learning methodology is different for
the above-mentioned cases, and the results also differ. Teaching a machine to acquire new
knowledge does not always follow this path. Deep Learning is an example of a method-
ology of embedding knowledge within the layers of a Convolutional Neural Network,
usually done in the learning stage, after which a model is obtained, which can be used for
confronting new data with the learned concepts. On the other hand, learning new knowl-
edge for a living being is done with reference to the current knowledge state, by showing
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similarities and differences, and it does not start with empty structures/layers. Some of
the learning factors are quite intuitive (e.g., choosing images that clearly show the features
that distinguish cats and dogs), but some of them tend to be omitted or forgotten (e.g., if
considerable number of samples present cats sleeping on a red sofa, then the red sofa can
become an indicator of a cat image). The paper’s objective is to reach the researchers who
use deep networks (especially using the TensorFlow library) with the idea of examining
one of the common (while often underrated) challenges in working with data—when some
classes have more examples (instances within the teaching set) than other ones.

1.1. Motivation Background—The Importance of Smile in Business Relationships

The dynamics and the digitalization of economy and society and virtualization of sales
channels and customer service channels [1,2], were reinforced during the pandemic [3].
Enhancing the unification of both virtual and real worlds, already back in the 2015, were
said to have led to significant changes in marketing [4].

A smile is a basic component of the first impression. It also has an impact on building
a relationship with the interlocutor/client. It is one of the most effective non-verbal
communication techniques, and often says more than any spoken word. A smile can have
many meanings: ‘I’m glad to see you’, ‘I like you’, ‘I’m interested in you’. A smile also
represents a satisfied customer, reaching an agreement in the implementation of business
activities [5], joy, delight, or enthusiasm. People usually smile when they are happy,
however, they also happen to smile when they’re unhappy, embarrassed, or even when
they are offended. A smile can be used to transport (or disguise) various emotions and
feelings, simple or complex, including: love, contempt, pride, delight, but also submission,
awkwardness, mockery, or even disgust (although this might be detected [6]). According
to [7], a human face is capable of expressing about 50 types of smiles, and each type can
have a different meaning. Ref. [8] investigated the influence of smiles on the perception
of verbal statements of positive, neutral, and negative meaning. The authors prove that
smiling has shifted the perception of messages by making the negative ones appear less
negative and neutral ones more positive. They also experimented with combining disgust
and anger with smiling expression, and concluded that smiles are being used to moderate
the meaning of verbal statements.

1.2. The Challenge

It is common knowledge for Deep Learning specialists that having more training (and
testing) data is usually better, inter alia due to the overfitting reduction [9–12]. However
there should also be a remark made, which is not equally often stated, that data distributed
equally among the all classes in the dataset (instead of simply using as much data as
it is possible regardless of the data distribution) also brings benefits. It must be noted
that, while uniform data distribution among classes in this paper is presented as highly
beneficial (from a classification point of view), it also introduces biases [13–16]. It should
also be noted that, in many real-life use cases (e.g., the notion of balance of linguistic
corpora [17–19]) a dataset that represents both classes with equal number of instances
would not be representative (one class (word/phrase) can be represented with significantly
less instances than other one).

An important and interesting question arises: how does the overrepresentation of one
class affect the model and its prediction and generalization capability.

The authors performed over 100 trainings of models with varying training parameters
using various training set sizes with both leveled and unleveled data distribution, inten-
tionally not using data augmentation to study the influence of data distribution vs. data
quantity. (By ‘leveled’ authors mean avoiding overrepresentation by trimming the number
of instances (Figure 1) as opposed to natural number of instances in a dataset (Figure 2)).

The analysis of the influence of the quantity of samples on the occurrence of the
negative result (‘stereotype’) within a non-binary classification using Deep Learning was
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performed using the AffectNet dataset [20] containing images of faces, labeled regarding
face expressions.

Figure 1. Data distribution of 80,000 images trimmed to avoid overrepresentation.

Figure 2. Training data distribution within the ‘manually annotated images’ subset (A, left, blue) of
the AffectNet [20] Dataset and within its first 80,000 records only (B, right, orange).

2. Methodology

The AffectNet dataset [20] consists of two separate parts: manually annotated images
and automatically annotated images. Both include 11 categories. Eight of them are for
facial expressions (Neutral, Happy, Sad, Surprise, Fear, Disgust, Anger, Contempt), three
are unrelated to facial expressions (None, Uncertain, Non-Face). While the targeted model
is intended for facial expression recognition [21], thus the first eight (facial expression)
categories were used from the ‘manually annotated images’ subset. This subset consists
of 420,299 images, indexed among two CSV files, one intended for training and one for
validation. The CSV files contain a lot of information, but in this case the most important
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in each entry are the image path and a specific label ID. The validation file lists only 5500
entries in total, but it has a rather leveled data distribution, as opposed to the training
subset consisting of 287,651 labeled images constituting eight classes varying in length,
causing significant uneven data distribution. Figure 2 shows training data distribution
of eight facial expressions classes within the ‘manually annotated images’ subset of the
AffectNet [20] dataset, clearly favoring ‘happy’ and ‘neutral’.

The AffectNet dataset [20] is impressive in terms of quantity and usability [20,22],
however, the unleveled distribution and the huge number of samples are more of a chal-
lenge than advantage. The authors tried to limit the number of loaded samples to speed
up preliminary tests, however limiting the number of samples (to 80,000) did not resolve
the problem of overrepresentation of the ‘happy’ class (the distribution of only the first
80,000 items is shown in the Figure 2B).

While the authors wanted to make good use of the dataset by minimizing the overrep-
resentation of some of the classes, this resulted in a dataset presented in Figure 1, where
the samples were loaded in such a manner so that all classes would be populated equally.
This approach resulted in loading all items of the less numerous classes (4, 5, 7) and a
limited number of samples of the other classes (0, 1, 2, 3, 6). Some preliminary trials were
performed, but a concern has arisen: will the classes 4, 5, 7 be represented within the model
correctly? Will the model be able to distinguish ‘disgust’ as well as it distinguishes ‘happy’?

The word ‘dataset’ within this paper will be used to indicate one of the following
cases:

• the whole AffectNet dataset [20],
• the training set (various versions, presented in Figure 3: left, Figure 3: right, Figure 4:

left, Figure 4: right, Figure 5: left, Figure 5: right, Figure 6: left, Figure 6: right),
• the testing set (a fragment of a particular training set, subtracted from it by the

DL library),
• the validation set (validation was made using a particular model after the training has

finished, gives no feedback to the training).

Figure 2B shows the first 80,000 data items taken, whereas Figure 1 shows data loaded
equally if possible from each category, using the above-mentioned methodology. Both
figures consist of data representation of 80,000 labeled images.

2.1. Machine Learning Library

The size of the described part of the dataset exceeds 50 GB of raw data, thus it is
necessary to load data on-the-fly or to prefetch it. The TensorFlow library contains API
‘tf.data.Dataset’ [23] which provides all necessary methods and algorithms to load and
preprocess data. One of mentioned methods makes it possible to decode images of different
file extension formats. Images were resized to a specific resolution (which vary depending
on the Neural Network used), then converted to the grayscale. To create the data structure
two lists containing file paths and image labels (due to the use of Supervised Learning) are
required. The dataset’s CSV file is being used for the preparation of both lists of files to
be processed: (1) loading the data in the order in which it occurs in the CSV file without
leveling the quantity of samples between classes, and (2) loading samples while providing
the number of samples equally leveled in all classes if possible. After preparation of the
initial data structure data are mapped by a method ‘map’ implemented in the mentioned
API. In this process the method calls another function which decodes, resizes and converts
images to the grayscale, and sets a number of parallel calls. The following step is to set
batch size to the same value as batch size of the Neural Network and to set prefetch buffer
size. At this point it is essential to address two issues. First one is data normalization,
the second one is data augmentation. The former was not implemented in the called
function by the ‘map’ method due to implementation of a Rescaling layer provided by
Keras API, which makes sure that the values passed to the following layers are in range
between 0 and 1. Application of this layer ensures consistent data normalization during
training, validation and testing, thus eliminating potential interpretation mistakes. The
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latter one (data augmentation) was purposely not applied, because augmenting the data
would certainly affect the results in a way that it could blur the differences between leveled
and unleveled data to a certain degree.

2.2. Software and Hardware Configuration

To prepare a complete test procedure the authors have used Python in version 3.9 [24].
To load and preprocess data as well as to create and train Convolutional Neural Network
(CNN) the authors have utilized several Python libraries. Data loading and preprocessing
was handled by Pandas, Numpy, and ‘tf.data.Dataset’ API from TensorFlow [23] library.
The CNN model was created and trained by using Keras [25–27] implementation from the
TensorFlow 2. One of the popular methods for speeding up the training of Neural Networks
is by using GPU acceleration. In order to enable GPU support in the TensorFlow library
it is obligatory to utilize CUDA-enabled hardware, according to the library website [28].
With this in mind, the following hardware was used during the trials: one-CPU server
(Intel Xeon Silver 4208, 128 GB RAM) equipped with one GP-GPU card (NVIDIA Tesla
V100 16 GB HBM2 PCIE), running Ubuntu 18.04 LTS operating system (versions 16.04 LTS
and 18.04 LTS are recommended by Google/TensorFlow [28], while versions 18.04 LTS and
20.04 LTS are recommended/popular among users/community [29,30]).

2.3. ANN Model

Computer Vision and Image Understanding are very popular areas for research of
Artificial Neural Networks (ANN), due to the possibility of visual validation of the expected
results and the relative ease of explaining it and sharing the knowledge. Convolutional
Neural Networks, as a type of ANNs, and as a foundation of Deep Learning, have a
significant share of the Computer Vision research [26,31,32].

While the applied CNN design is not really extraordinary, and presenting it is not
the goal of this paper, only the following paragraph contains its condensed description.
For readers less familiar with particular terms or approaches the authors recommend the
following book: [26].

As facial expression recognition is inherently a classification task [33–35], the output
layer of the designed CNN had to be a fully connected layer with a sum of outputs equal to
1. During studies multiple of models have been designed, but the one which was utilized
to provide results for this particular research was composed of a rescaling layer as input
layer, followed by three blocks of layers which consisted of two each of: convolutional
layers, batch normalization layers, max pooling layer and dropout layers. These blocks
were followed by a flatten layer, one dense layer and finally a dense output layer with the
‘Softmax’ activation function. The above mentioned blocks of layers differed from each
other in layer parameters, such as number of filters in convolutional layers and dropout
rates. The image input size used was 120 ×120 pixels.

2.4. Testing

To test the influence of data distribution the authors run multiple training sessions.
The data quantities used in trainings were as follows: 30,000, 60,000, 80,000, and 200,000
faces. Every training session was performed using leveled and unleveled data for each data
quantity limit. The only exception was for the largest number of training data samples,
which was set at 200,000 images, which were tested only in unleveled data mode, due to
the inability to trim the dataset classes (due to the insufficient number of samples in the
classes). Most of the trainings were completed in 50 epochs, with each training lasting
approximately from 30 to over 270 min depending on the size of the training set. Training
sessions utilizing a dataset of 60,000 images were performed with the number of epochs
set to 50 and 80. Other training parameters, which were: initial learning rate, learning
rate schedule, batch size, as well as the architecture of the CNN (including number of
filters and dropout rate) have been exactly the same in order to study the influence of data
quantity and data distribution. Therefore, although it is possible to perform better training
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sessions with fine-tuned parameter selection closer to optimal for each of the training sets
individually, it would be far more challenging to objectively compare these results.

Starting from the data set size limit of 30,000 images, the distribution using both the
first and the second method is shown in Figure 3. The distribution of data loaded by
utilizing the second method is almost equally leveled, but the data representation (in terms
of the quantity of samples required for the CNN) may be too low.

Figure 3. Data distribution of training set limited to 30,000 images. At the left side is data distribution
using the first method, at the right—using the second method.

The training set of 60,000 images is the first one which can not be composed of equally
leveled data in all classes (Figure 4), however the method for loading trimmed subsets of
the dataset still increases data classes representation, while not increasing data distribution
inequality too much.

Figure 4. Data distribution of training set limited to 60,000 images. At the left side, the data
distribution using the first method is presented, at the right—using the second method.

The largest training set which consists of leveled data in classes in which data repre-
sentation is presumably sufficient is composed of 80,000 images. This training set has the
largest overall data representation, while it is still leveled for the majority of classes (i.e.,
with the exception of three classes) as shown in Figure 5.

The largest training set with the highest overall data quantity is composed of 200,000
images. Due to the lack of sufficient data representation in almost all classes (only the
classes 0 and 1—‘neutral’ and ‘happy’—could be leveled), training ‘with leveled data in
most of the classes’ was impossible. The data distribution of data loaded by using method
1 and method 2 are shown in Figure 6.
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Figure 5. Data distribution of training set limited to 80,000 images. The left-hand side graph depicts
the data distribution using the first method, while the second one—using the trimmed loading.

Figure 6. Data distribution of training set composed of 200,000 images. At the left side is data
distribution using the first method, at the right using the second method.

Before discussing results it is important to mention that the designed Facial Expression
Recognition System is using multinomial classification [26,36] (applying fully connected
networks to a multiclass classification is a typical approach [26]), instead of binary clas-
sification [27,37] which would give better confidence levels due to the simplified com-
plexity of classification (‘happy’ vs ‘other-than-happy’, as in one-vs-rest reduction strat-
egy [38]). Multinomial classification (also called multiclass classification) on the other hand
tries to compare every object to all classes (thus the good results may be visualized by
lower values).

3. Results

The initial results of the first trials of the trained model were surprising and promising:
over 70% accuracy in validation and loss value of 0.80 (Figure 7) were ‘too good’ especially
when compared to other works [39] which also used the AffectNet dataset. In the results of
detailed analysis of these trials it turned out that the Facial Expression Recognition System,
designed by the authors of this study, classified almost all samples as ‘happy’. Only a
mere handful of faces were recognized as ‘neutral’ or ‘angry’, and none as ‘fear’, ‘disgust’
or ‘sad’. It was this erroneous result that instilled in the authors the spark for searching
for possible flaws of the network, conception, algorithms, and data representation. After
careful examination of code a mistake has been found which resulted in not loading the
correct validation set. After correcting, the model did not achieve 40% accuracy (Figure 8).
That prompted authors to study the influence of data distribution on the training of the
CNN model.

The results of training of the Convolutional Neural Network model using datasets
depicted in Figures 3–6 (with correct validation set, and without any method of data
augmentation) are presented below, starting with the smallest training sets (Figure 3) to the
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largest (Figure 6). The results of the training of the model are presented side-by-side for
unleveled and leveled data distribution in datasets, except for the last (largest) one.

The datasets composed of 30,000 images have the most uniform distribution of objects
among classes (see Figure 3, right) but 30,000 is the smallest training set used in this
research—the data representation for each class in the leveled set seems to be too small for
the model to learn the patterns it should be able to distinguish, as it is shown in Figure 9.
When the validation curve is still at a rising trend it means that the model still can learn
from presented data, but in this case the learning curve starts to flatten out. It is the only
case when the accuracy of the unleveled set (Figure 9, left) appears to be better than of the
leveled one (Figure 9, right), however the loss value is much higher.

Figure 7. Initial training results, with incorrect validation set.

Figure 8. Initial training results, with correct validation set.

Training sets of 60,000 images had larger overall data representation, so they should be
more useful in achieving better accuracy. However, it was also the first pair of sets in which
the ‘trimmed’ version could not be perfect (equally distributed) due to the quantitative
underrepresentation of some of the classes. Both the equally trimmed and the natural
training sets of 60,000 samples have achieved better results than those of the previous
attempt (30,000). It also was the first pair of training sets to clearly show better results with
trimmed data than natural in terms of accuracy. The loss value chart for trimmed data
(Figure 10, right-down) is typical—it starts with a high value, but in 15 epochs drops below
2.0, reaching approximately 1.5 at the end of training. However the natural data (Figure 10,
left-down) quickly loses the ability to learn from data between 5th and 10th epoch and
starts to overfit—overtraining is clearly visible: the training (blue) results get better while
validation (orange) results get worse.
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Figure 9. Training results using 30,000 images. Charts on the left side of the figure present results
using unleveled data distribution, charts on the right side show results using leveled data distribution.

Figure 10. Training results using 60,000 images. Charts on the left side of figure present results using
natural data distribution, charts on the right side show results using trimmed data distribution.
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The best results were achieved by the trimmed training set of 80,000 images (Figure 11,
right). The unleveled data used for training the same model with the same training
parameters barely did achieve a little over 40% accuracy (instead of almost 50% for leveled
data), and the loss value was close to 2.5 (as opposed to 1.5 for trimmed data set). The
results of this training session are shown in Figure 11.

Figure 11. Training results using 80,000 images. Charts on the left side of figure present results using
unleveled data distribution, charts on the right side show results using leveled data distribution.

The largest training set, consisting of 200,000 images, has been used only on unleveled
data due to the lack of sufficient data representation in almost all classes. The 200,000
training set was the only unleveled training set which resulted in model performance at the
accuracy level close to 45%, but still the loss value was high (over 2.25 at the end of training)
as shown in Figure 12. This training also took the longest time (exceeding 5 min for each
epoch, compared to about 2 min per epoch for the set of 80,000 images), yet resulting in
worse efficacy. Also the quantity of used data samples was 2.5 times larger than the best
performing (second largest) training set.

Figure 12. Training results using 200,000 images of the unleveled training set. The accuracy chart is
presented on the left side, the loss value chart on the right side.
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4. Discussion

The presented results clearly show that using more leveled (trimmed) data with
sufficient data representation in each class (Figure 10, right) can outperform a three times
larger training set (Figure 12) in greater accuracy and lower loss value in multinomial
classification. Data quality and distribution of the validation set is of no less importance
than of the training set, as it is one of primary methods for checking model performance.
Data distribution should always be relatively level to test if the model is capable of correct
multiclass classification for all of the classes. The visible difference between the training
curve and the validation curve seems to be the result of insufficient data representation of
some or even most of the classes in the used dataset.

The important factor to mention is that the more numerous the data are, the more time
is required to complete training. The longer one epoch takes the longer the entire training
will take. This in turn means the need for more resources to process more data, and a longer
training time of the model, while achieving worse results than using a smaller dataset of
leveled data. This study does not indicate that having more data is worse than having less
data. Having more data is indeed better, provided that the possessed data are more than
less leveled, or at least that each class has a sufficient quantitative representation, while the
difference between the most represented class and the rest of classes is as low as possible.

Strong disproportions between more numerous classes and less numerous may result
in lowering the classification accuracy. If a specific class is quantitatively insufficient not
only in the training dataset but also in the validation dataset, it is possible that the overall
classification accuracy would be only slightly lower because of incorrect classification of
all (scarce) samples of that class. Such multiclassification CNN model would recognize all
classes with multitudinous samples and fail with most of the samples of less represented
classes, numerically showing only a slight decrease in accuracy. The authors suggest
that, instead of calling such a situation ‘a decrease in accuracy’ (which makes it a value-
oriented issue), this phenomenon should rather be called ‘a stereotype’ (which makes it a
cognition-oriented deficiency resulting from insufficient experience).

A very similar misclassification may occur within society, when meeting someone
new—a mix of uncertainty, expectations, and experience results in specific predictions,
which can obviously be wrong.

Note: the phenomenon of ‘Digital Stereotypes’, considered by this paper, was observed
in CNNs, however additional research should be carried out, while it may (should) also
be occurring in any other Machine Learning approaches. The phenomenon relates to the
dataset, not a Machine Learning model.

This research can be useful in any multiclassification applications, but especially in AI,
where the classification, uncertainty and building new knowledge overlap. Something that
may seem like a small dent in accuracy may eventuate the exact moment for spawning a
new class of objects or a new branch of knowledge.

5. Conclusions

Each company aims to provide the highest customer satisfaction and attractive profit.
Through a smile, it is possible to express a multitude of emotions and build new business
relationships. A smile in a fraction of a second determines the credibility and openness
in business and it is the smile that has the power to increase the number and affect the
steadiness of the relationships built and contracts concluded. A smile expresses a posi-
tive reception in customer service, business contacts, business management and human
resource management.

It should be noted that Industry 5.0, being the era of man-machine true cooperation,
cognitive technologies, Machine Learning and Artificial Intelligence, the era of Big Data
and Knowledge Engineering, sets new standards, challenges and expectations regarding
the modern reality. Rapid changes, developments and progress will continue to shape the
future of man-machine cooperation, collaboration and partnership. The current challenge
is to be able to combine effectively latest advances in the fields of communication, Natural
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Language Processing, human cognition (including non-verbal communication), machine
precision [40–42], to create unique products and services, as well as new quality ([43–45]).

The phenomenon called ‘stereotype’, presented in this article, resulting from the
overrepresentation of the class of objects in Machine Learning, can and should be further in-
vestigated in terms of its relationship with digital marketing, information science, business,
advertising, and social computing.
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