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Abstract: A frequency spectrum segmentation methodology is proposed to extract the frequency
response of circuits and systems with high resolution and low distortion over a wide frequency range.
A high resolution is achieved by implementing a modified Dirichlet function (MDF) configured for
multi-tone excitation signals. Low distortion is attained by limiting or avoiding spectral leakage and
interference into the frequency spectrum of interest. The use of a window function allowed for further
reduction in distortion by suppressing system-induced oscillations that can cause severe interference
while acquiring signals. This proposed segmentation methodology with the MDF generates an
interleaved frequency spectrum segment that can be used to measure the frequency response of the
system and can be represented in a Bode and Nyquist plot. The ability to simulate and measure the
frequency response of the circuit and system without expensive network analyzers provides good
stability coverage for reliable fault detection and failure avoidance. The proposed methodology is
validated with both simulation and hardware.

Keywords: frequency response; sinc function; fast Fourier transform; digital signal processing;
windowing technique; network analyzer; poles and zeros; Bode diagram; system stability

1. Introduction

Recent modern automobiles are equipped with electronic systems with improved
capabilities and safety features, such as an advanced driver-assistance system (ADAS) and
a collision avoidance system for the protection of pedestrians and people inside the car.
These systems use multiple sensors, such as cameras, proximity sensors, LIDAR, RADAR,
microphones, transceivers, etc. Though sensed information is processed with a reliable
microprocessor, the performance of these electronic devices depends on the analog circuits
with which these sensor modules are built, such as amplifiers, data converters, power
management circuits, and other signal processing and conditioning circuits. These analog
circuits have a definitive frequency response whose stability is typically guaranteed by
their phase margin and gain margin [1]. Limited frequency response tests and validation by
approximating the system model in the simulation or by incorrect test procedures can cause
the system to fail in the application field, and a failure of critical sensors or actuators, such
as an airbag actuator, can be catastrophic. Typically, these circuits are required to operate in
harsh environments over a wide temperature range [2]. Hence, it is crucial to understand
the circuit behavior over a well-defined frequency range to ensure proper device operation.

The frequency response of a circuit and system is acquired by: (a) analyzing the
transfer function (TF) using a linear model [1], (b) simulating either the actual system or
its average model [3], and (c) hardware measurement using instruments, such as network
analyzers. The TF analysis uses linear time-invariant system (LTI) methods and typically
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yields a complex equation with multiple poles and zeros, making it difficult to utilize
for system improvement. The closed-form TF is simplified for better understanding and
allows the designer to improve the system performance through increased bandwidth
and phase margin. This simplification is achieved by reducing the number of poles and
zeros. This process eliminates a few weak dependency components, such as parasitics from
the analysis. Ignoring a critical pole or zero during this simplification process causes a
mismatch in the frequency response between the analysis and measurement, which can
cause catastrophic failure in real-life applications. Hence, the TF can be used for system
behavior only for a finite frequency range in which their responses match.

Some circuits or electrical machines cannot be represented as a TF due to their com-
plexity. Multiple methodologies have been proposed in the literature [4–6] that use an
equivalent model with system approximations to achieve the TF followed by additional
simplifications. These methods apply to a limited frequency range, and additional tests
are required to verify the TF and the system. Other approaches have been proposed [7,8]
that approximate the linear TF to the behavior of nonlinear systems, such as switching the
regulator circuits that operate with pulse width modulation (PWM) control schemes [9–13].
A frequency response analysis is used to estimate the power transformer and induction
motor models [14–21]. However, the system frequency response and stability should be
measured to ensure safe and correct operation to avoid any system faults and failures.

The frequency response is characterized under LTI systems [22–24] and is analyzed
in the complex frequency domain, also known as the s-domain. Despite that, the theory
of LTI systems can be transferred to the frequency domain due to the similarity between
the definitions of the Laplace transform (LT) and Fourier transform (FT). The s-domain
provides the stability of the system, whereas the frequency domain provides the frequency
response of the system. Though they yield different information, some characteristics in the
frequency domain can be observed from the response in the s-domain and vice versa. It is
worth mentioning that the analysis in the s-domain provides a closed-form expression that
cannot be used to measure the frequency response directly. Instead, transformation into
the frequency domain allows for observation of the frequency response and acquisition of
stability characteristics to detect failure conditions.

The most common method for extracting the frequency response is to apply a single-
tone signal in the time domain to the input of the system under test and measure the
signal transmitted to the output of the system. The amplitude ratio of the output-to-input
signal provides the system gain. The phase difference between the input and output sig-
nals provides the system phase. This method tests the system one tone at a time, and
frequency sweeping is required to get a frequency response from time-domain signals.
Additionally, the frequency resolution depends on the number of tones swept. The pro-
posed measurement method tests a specific number of tones at a time to decrease the
measurement time. The resolution of the measurement is improved using the proposed
method, where the frequency spectrum is divided into multiple segments with a high
number of harmonic elements.

References [25–27] describe methods in which a dedicated signal generation circuit,
such as a voltage-controlled oscillator, and magnitude and phase measurement circuits are
implemented along with the design under test on the same integrated circuit (IC). These
methods require the system under test to operate in a continuous-time (CT) domain, and
the measurement suffers from high sensitivity to noise, which affects its precision and
accuracy. Moreover, these methods use additional filtering on the signals, increasing the
complexity of the circuits. To solve this issue, multiple approaches are proposed in the
literature [8,28,29] to convert CT signals into discrete-time (DT) signals. These discrete
signals are processed using digital signal processing (DSP) methods and translated to the
frequency domain. The method reported in [28] uses cross-correlation to reconstruct the
frequency response. The method proposed in [29] uses signal cross-correlation and the
fast Fourier transform (FFT) to extract the frequency response of the system. In [8], the
use of only a 64-component multi-tone signal for the entire frequency response with the
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FFT has caused a low-resolution frequency response. All of the proposed methods in
the literature do not limit or prevent the FFT or spectral leakage that is observed when a
real sinusoidal signal is used in the hardware. Moreover, all of the methods assume an
ideal sinusoidal signal with a single-frequency tone that is limited to simulations. The
spectral leakage adds a distortion in the frequency and causes inaccuracies in the frequency
response measurement.

A frequency spectrum segmentation methodology for extracting the frequency re-
sponses of circuits and systems with a high resolution and low distortion over a wide
frequency range is proposed. The proposed methodology can be both simulated and mea-
sured on hardware. A high resolution is achieved by implementing a modified Dirichlet
function (MDF) configured for multi-tone excitation signals. Low distortion is attained by
limiting or avoiding spectral leakage and interference into the frequency spectrum of inter-
est. The windowing technique is popularly used in the literature to reduce interference. The
proposed method uses a new windowing technique, called the double-frequency Hann win-
dow, for further reduction in the signal distortion and suppression of the system-induced
oscillations that can cause severe interference while acquiring signals. The proposed
window function pushes the undesired harmonic components generated by the window
modulation to designated frequency locations, which reduces the spectral leakage intro-
duced by the windowing technique. The proposed segmentation methodology together
with the MDF generates an interleaved frequency spectrum segment. Different spectrum
segments can be obtained by configuring the MDF, and these segments can be set up in a
logarithmic frequency scale to measure the spectral content in frequency decades. Overlap-
ping the spectral content of the different segments, the entire circuit or system frequency
response can be reconstructed with a relatively high resolution and low distortion, and
it can be represented in a Bode and Nyquist plot after post-processing. The ability to
simulate and measure the frequency response of the circuit and system without expensive
network analyzers helps to obtain good performance coverage for reliable fault detection
and failure avoidance.

2. Theoretical Analysis
2.1. The Sinc Function

The sinc is a mathematical function widely used in DSP applications to explain the
behavior of devices in the discrete-time domain. A monotonically decreasing function 1/x
and an oscillating signal sin(xt) with a period of 2π are combined to form sinc(xt). As
a result, sinc(xt) has sinusoidal oscillations with a period of 2π and an amplitude that
continually decreases as 1/x. The frequency spectrum of a sinc function is a uniform
magnitude with a fixed bandwidth. The definition in the time domain is given by:

sinc(xt) =


sin(xt)

xt
; x 6= 0

1 ; x = 0
(1)

where x = 2π f is the frequency component of the sine function.
Time-domain signals are transformed into the frequency domain using the Fourier

transform. The frequency spectrum of a sinc function is given as:

sinc(xt) F−→ F(jω) = Π(jω) =

{
π
x ; |ω| < |x|
0 ; |ω| > |x|

(2)

where Π(jω) represents the rectangular pulse in the frequency domain. The sinc function
in Equation (1) in the time domain is shown in Figure 1a. The magnitude of the frequency
spectrum described by Equation (2), showing the typical characteristics of the sinc function
in the frequency domain, is shown in Figure 1b.
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(a) (b)
Figure 1. Sinc function in (a) time domain and (b) frequency domain (magnitude spectrum).

The signal described by Equation (1) helps in understanding the signal behavior, but
its implementation with a continuous-time signal in the hardware is impractical. Digital
signal generators with an arbitrary waveform generator (AWG) function provide a discrete-
time approximation that preserves its key characteristics, but this causes undesired effects,
which should be considered to minimize the interference and distortion.

The discrete-time sinc function is generated by reducing the sinc function defined in
−∞ ≤ t ≤ ∞ to a finite range shown in Figure 2a and multiplying it by its rectangular pulse
shown in Figure 2b in the time domain. The finite duration continuous-time sinc signal is
multiplied by the unitary impulse train shown in Figure 2c to generate the discrete-time
sinc signal in Figure 2d. This discrete-time sinc signal can be generated using an AWG in
hardware. This signal can be represented in the frequency domain by using the convolution
operation. Consider that S1(jω) and S2(jω) are the Fourier transforms for the signals
shown in Figure 2a and Figure 2b, respectively, and are given by:

S1(jω) = F{sinc(ωt)}, (3)

S2(jω) = F{Π(kt)}, (4)

S3(jω) = S1(jω) ∗ S2(jω), (5)

where S3(jω) is the convolution between S1(jω) and S2(jω).

(a) (b)

(c) (d)
Figure 2. Sinc function generation showing (a) sinc function in continuous-time domain, (b) rect-
angular pulse in continuous-time domain, (c) unitary impulse train, and (d) practical discrete-time
sinc function.
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The closed-form signal definition from the convolution in Equation (5) in terms of the
sine integral in the frequency domain is given by [30]:

Si(x) =
∫ x

0

sin(t)
t

dt (6)

where Si(jω) represents the frequency spectrum of a sinc function limited in time, and its
spectrum is shown in Figure 3. Observe that there are differences compared to an ideal
sinc frequency spectrum. The edges are not as sharp as in Figure 1b, and the magnitude
spectrum is not as uniform as shown in Figure 1b. The oscillations observed in Figure 3 are
described in the literature as the Gibbs effect [31,32], and they are caused by the limited
time duration of the ideal sinc function.

Figure 3. Magnitude spectrum of a sinc function limited in time.

The Fourier transform of the sampled sinc function of Figure 2d is obtained by the
convolution of S3(jω) and the Fourier transform of the impulse train shown in Figure 2c.
The Fourier transform of the impulse train in the time domain is another impulse train in
the frequency domain [32] given by

S4(jω) =
∞

∑
k=−∞

δ(j(ω + kΩs)). (7)

where Ωs is the sampling frequency given by Ωs =
2π
Ts

, and Ts is the sampling time. The
Fourier transform of a practical sinc signal is given by:

S5(jω) = S3(jω) ∗ S4(jω) =
∞

∑
k=−∞

S3(j(ω + kΩs)). (8)

Observe that the frequency spectrum in Equation (8) is replicated every kΩs due to
aliasing [31,32].

The magnitude of the frequency spectrum of the practical sinc function is shown in
Figure 4, where the frequency spectrum is replicated as aliasing with a central frequency
of kΩs, for k = 0, 1, 2, and so on. Although a practical sinc signal has a bandwidth similar
to an ideal sinc function, its usage requires several considerations to minimize the impact
of unwanted aliasing and the Gibbs effects. Aliasing is controlled by limiting the signal
bandwidth using low-pass filtering and by defining the sampling time Ts. Limiting and
avoiding the unwanted Gibbs effect is challenging and depends on the application of the
signal. In FIR filters, the use of the windowing technique helps reduce the Gibbs effect but
not completely. Applying the windowing technique for practical sinc signal application
distorts the measurements instead of reducing the Gibbs effect.
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Figure 4. Magnitude spectrum of the practical sinc function

2.2. The Dirichlet Function and the Modified Dirichlet Function

Sharp edges are required in the frequency spectrum for data transmission applications.
Multiple methods are proposed in the literature to achieve sharp edges for a sinc signal
in discrete time. For instance, [33,34] proposed sinc-shaped Nyquist pulses in which a
periodic sinc comb, also called the Dirichlet function (DF) [35], is used, and it is given by:

DN(t) =


sin(NΩ1t)
N sin(Ω1t)

; Ω1t 6= πk, k = 0, 1, 2, 3, . . .

(−1)k(N−1) ; Ω1t = πk, k = 0, 1, 2, 3, . . .

(9)

where Ω1 is the frequency of separation between the spectrum components, and NΩ1 is
the spectrum bandwidth.

The Dirichlet function in the time and frequency domains is shown in Figure 5. Ob-
serve that the Fourier transform of this function is a uniformly distributed pulse with a
defined frequency and sharp edges. Our proposed work uses the Dirichlet function as a
frequency-sampled alternative for the frequency spectrum of the ideal sinc function with a
reduced Gibbs distortion. The DF has two components, as shown in Figure 5a. The first
component is configured when N is odd, and the second component is configured when
N is even in Equation (9). The frequency spectrum of these components contains all of
the odd and even components of the equivalent ideal sinc function spectrum, as shown
in Figure 5b. The combination of the frequency spectra of the two DF components config-
ures the magnitude of an interleaved ideal sinc function spectrum. The zero-magnitude
frequency components of these spectra provide an opportunity for the use of single-tone
windowing with no distortion or leakage over the spectral components of interest.

(a) (b)

Figure 5. (a) Dirichlet function and its (b) Fourier transform.
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A high number of zero-magnitude harmonic components is desired for the practical
implementation of the proposed measurement technique. The number of zero-magnitude
harmonic components between non-zero harmonic components can be increased with the
proposed modified Dirichlet function (MDF) and is given by:

RN(t) =


sin(2NΩ1t)
N sin(2Ω1t)

Ω1t 6= πk, k = 0,±1,±2,±3, ...

(−1)k(N−1), Ω1t = πk, k = 0,±1,±2,±3, ...

(10)

The proposed MDF RN(t) has four components, but only two components can be
obtained from the closed-form equation in Equation (10). The first component is defined
when N is odd, where the frequency spectrum of the MDF contains the frequency compo-
nents [2, 6, 10, . . . , NΩ1 − 2]. The second component is defined when N is even, where the
frequency spectrum contains the harmonic components [4, 8, 12, . . . , NΩ1]. The spectral
content corresponding to odd components, [1, 5, 9, . . . , NΩ1 − 3] and [3, 7, 11, . . . , NΩ1 − 1]
is missing, and it cannot be defined by the closed-form expression of RN(t).

Referring to Equation (10) which is a continuous signal, the extracted discrete spectral
contents of each component sampled at N/4 in MDF from the simulation are given by:

R1N (t) =

N
4

∑
k=1

4 cos(2 ∗ N(2k− 1)Ω1t)
N

, (11)

R2N (t) =

N
4

∑
k=1

−4 cos(N(4k− 3)Ω1t)
N

, (12)

R3N (t) =

N
4

∑
k=1

−4 cos(N(4k− 1)Ω1t)
N

, (13)

R4N (t) =

N
4

∑
k=1

4 cos(N4kΩ1t)
N

, (14)

where R1N and R4N add up to be all of the even frequency components of an ideal sinc
function, and R2N and R3N in conjunction contain the odd frequency components.

Figure 6 shows the waveform of the four components described by the MDF. In turn,
Figure 6a corresponds to the waveform of R1N (t). Observe in Figure 6b that R1N (jω) con-
tains the frequency components [2, 6, 10, . . . , NΩ1 − 2]. The waveforms of R2N (t) R3N (t),
and R4N (t) are presented in Figure 6c, Figure 6e, and Figure 6g, respectively. The spec-
tral content can be found in Figure 6d, Figure 6f, and Figure 6h, where R2N , R3N , and
R4N contain the frequency components [1, 5, 9, . . . , NΩ1 − 3], [3, 7, 11, . . . , NΩ1 − 1], and
[4, 8, 12, . . . , NΩ1], respectively. Comparing the MDF with respect to the original DF, it can
be seen in Figure 5b that the DF contains only one zero-magnitude harmonic component
between the non-zero harmonic components, whereas the MDF spectra in Figure 6b,d,f,h
contain three zero-magnitude harmonic components between the non-zero harmonic com-
ponents. The purpose of these free spaces in the spectra is discussed later.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. MDF waveforms. (a) First component of the MDF R1N (t). (b) Magnitude of frequency
spectrum R1N (jω). (c) Second component of the MDF R2N (t). (d) Magnitude of frequency spectrum
R2N (jω). (e) Third component of the MDF R3N (t). (f) Magnitude of frequency spectrum R3N (jω).
(g) Fourth component of the MDF R4N (t). (h) Magnitude of frequency spectrum R4N (jω).

Similar to the DF spectra, the combination of the four MDF spectra in Figure 6b,d,f,h
configures an interleaved frequency spectrum of an ideal sinc function. This interleaved
spectrum is shown in Figure 7.
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Figure 7. Frequency spectrum of the ideal sinc function recovered from the interleaved spectra of the
modified DF.

2.3. The MDF and LTI Systems

The output signal of an LTI system Y(s) with a transfer function H(s) in the s-domain
and the input signal X(s) shown in Figure 8 are given by:

Y(s) = H(s) X(s) (15)

Figure 8. Block diagram of a system in s-domain.

As described earlier in Section 1, the Laplace transform provides information on the
stability of the system, whereas the Fourier transform provides the frequency response.
The Laplace transform can be used to obtain a mathematical closed-form equation that
cannot be measured. On the other hand, the Fourier transform can be used to describe and
measure the system frequency response. As the frequency response of the system can be
measured by observing the input and output signals, its transfer function can be obtained
by their ratio using Equation (15):

H(jω) =
Y(jω)

X(jω)
(16)

where H(jω) is the frequency response of the system, and Y(jω) and X(jω) are the Fourier
transforms of the input and output signals, respectively. The magnitude of the complex
number H(jω) corresponds to the magnitude spectrum of the frequency response of the
system, whereas the phase of H(jω) is the phase shift between the input and output signals.
The frequency response of the system can be reconstructed simply by observing the Fourier
transform of the input and output signals.

The measurement of the frequency response of the system with one MDF requires
high computational resources and becomes challenging. When the proposed technique is
implemented in simulation, a high number of frequency components and a long FFT can
cause the simulation to slow down and sometimes break. Similar challenges are observed
during hardware implementation. Moreover, one MDF frequency measurement has a
lower resolution, and it is discussed in the next section. A spectrum segmentation approach
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is proposed to allow the implementation of the proposed MDF technique in hardware
and software.

3. Proposed Technique
3.1. Spectrum Segmentation

The spectrum segmentation consists of adjusting an MDF with the spectral content
required to measure a frequency decade to the resolution required. The measurement of
the different segments will configure the complete frequency response. The spectrum seg-
mentation allows the achievement of a uniform resolution over all the frequency spectrum
measurements. The MDF used to obtain different spectrum segments can be configured to
provide a constant resolution per decade. A Bode plot is typically used for the frequency
response with the frequency represented in a logarithmic scale using octave and decade
segments. The proposed technique describes the segmentation of decades.

The discrete-time Fourier transform (DTFT) is the Fourier transform of a discrete-
time signal whose output is continuous in frequency and periodic. However, the DTFT
cannot be implemented in hardware directly. Alternatively, the discrete Fourier transform
(DFT), which is a sampled version of the DTFT in the frequency domain, can be used for
implementation. The magnitude and phase spectra obtained from the DFT are reconstructed
using discrete-frequency components known as bins. The DFT is computed using the FFT,
which is an efficient computational algorithm to obtain the DFT.

Frequency leakage occurs when any frequency component in the signal cannot be
represented by a single bin and uses a combination between neighboring bins. Frequency
leakage is one of the critical distortions in the frequency spectra obtained through the
DFT. To reduce frequency leakage, the MDF signals should be configured in such way
that the spectral content of any MDF components must find a bin contained in the FFT.
This is limited to simulation, as an ideal sinusoidal signal with an accurate frequency
cannot be generated with a waveform generator instrument. Hence, a long separation
between the non-zero components in the spectral content is used to allow moderate
leakage in the frequency components without causing interference to the other non-zero
frequency components.

The proposed spectrum segmentation depends on the resolution of the frequency
response measurement. If the spectral content of the MDF has three decades of width, a
resolution as low as 10 points/decade is achieved for the first decade. The second and third
decades will have a resolution of 90 points/decade and 900 points/decade, respectively.
Thus, significant signal information is lost for the first decade, and a precise frequency
measurement can be achieved in the third decade of the spectrum segment.

Consider a frequency measurement in the range from 100 Hz to 1 kHz with a resolution
of 900 points/decade. The MDF bandwidth used to drive the LTI system requires 1000 fre-
quency components, of which 900 components correspond to the desired 100–1000 Hz,
90 to 10–100 Hz, and 10 to 1–10 Hz. Therefore, the MDF should include three decades
of spectral content with 1000 tones for 1 Hz bin frequency. In Figure 6, a system with
Ω1 = 2π (1 Hz) = 2π rads/s and N = 1000 for Equations (11)–(14) is given by:

R11000(t) =
250

∑
k=1

cos(2000(2k− 1)Ω1t)
250

,

R21000(t) =
250

∑
k=1

− cos(1000(4k− 3)Ω1t)
250

,

R31000(t) =
250

∑
k=1

− cos(1000(4k− 1)Ω1t)
250

,

R41000(t) =
250

∑
k=1

cos(4000kΩ1t)
250

.
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The above signals can be both simulated and generated using a waveform generator
instrument. These continuous-time MDF signals are further required to be translated into
discrete-time and are given by

R11000 [nT] =
250

∑
k=1

cos(2000(2k− 1)Ω1nT)
250

,

R21000 [nT] =
250

∑
k=1

− cos(1000(4k− 3)Ω1nT)
250

,

R31000 [nT] =
250

∑
k=1

− cos(1000(4k− 1)Ω1nT)
250

,

R41000 [nT] =
250

∑
k=1

cos(4000kΩ1nT)
250

,

where R11000 [nT], R21000 [nT], R31000 [nT], and R41000 [nT] are the discrete-time sequences that
describe the R11000(t), R21000(t), R31000(t), and R41000(t) components of the MDF, respectively.
Here, T is the sampling time, and the sampling frequency is Fs =

1
T . The sampling time

should be selected considering the highest frequency component in the MDF and must
meet the Nyquist criterion. In this case, to reduce the distortion in the 1 kHz signal and to
improve the FFT computation, the sampling frequency Fs = 65.536 kHz is considered. This
provides 2N factor samples. The resulting signal and its spectrum are shown in Figure 9.

(a) (b)

(c)

Figure 9. Characterization of 100–1000 Hz spectrum segment. (a) MDF configured to measure the
spectrum segment of interest. (b) DFT of the MDF. (c) Segmented spectrum.

A plot of the discrete-time R11000 [nT] sequence is shown in Figure 9a. The magnitude
of the frequency spectrum of R11000 [nT], obtained by computing the FFT of the sequence
shown in Figure 9a, is presented in Figure 9b. The third decade of the spectrum, in Figure 9b,
contains higher frequency components and is used to characterize the spectrum segment
of 100–1000 Hz, as shown in Figure 9c. The spectral content of Figure 9c was expected to
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have 900 frequency components, but it actually has 225. The other 675 components are
obtained by repeating the process with the sequences R21000 [nT], R31000 [nT], and R41000 [nT].
The full resolution of 900 points/decade is achieved when the MDF spectra are interleaved.
This process should be repeated multiple times as necessary to complete the full frequency
range of the frequency response.

3.2. Windowing Technique

The windowing technique is a popular DSP method used to reduce spectral leakage.
Multiple window functions are proposed in the literature. However, it is worth pointing
out that the selection of a specific window function depends on the FFT application, and
the criterion of window selection is typically a trial-and-error process. In general, the
windowing technique is used when there are low-frequency components compared to the
bins in the spectral content that cause leakage over the frequency spectrum.

Since the MDF signal is configured to provide low leakage, the main source of the
leakage is the system under test and, especially, non first-order systems. For second- or
high-order systems, the low-frequency poles introduce low-frequency components into
the system output signal. When the frequency of these components is lower than the
bin frequency of the FFT, they leak over the frequency spectrum, and the FFT cannot
represent them. This catastrophic leakage can be prevented using either a high-pass filter
or the windowing technique. As it does not require additional hardware, the windowing
technique is commonly used.

The windowing technique is applied by multiplying a signal in the time domain
with a specific window function. This operation is known as modulation. Single-tone
window functions are ideal for this work as a multi-tone window can distort the frequency
components of interest. The Hann window is a popular single-tone window, and it is
defined as:

W(t) =
1
2
(1− cos(2πFt)), (17)

where F represents the width of the window, and TD = 1/F. The Hann window is
shown in Figure 10a. Though it is useful, the risk of introducing distortion in hardware
implementation is high. A double-frequency Hann window is proposed, which also
represents a single-tone window, but strategically shifts the frequency components that
distort the signal to a location where the risk of distortion is lower than the risk found
when a regular Hann window is used. The proposed double-frequency Hann window is
shown in Figure 10b and is defined as:

WDF(t) =
1
2
(1− cos(4πFt)), (18)

(a) (b)
Figure 10. (a) Typical Hann window and (b) double-frequency Hann window.
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The effect of the Hann and double-frequency Hann windows over the signal processing
are explained by applying them to a single-tone function and are given by:

W(t) sin(Ωt) =
1
2
(sin(Ωt)− cos(2πFt) sin(Ωt)) (19)

WDF(t) sin(Ωt) =
1
2
(sin(Ωt)− cos(4π f t) sin(Ωt)) (20)

Observe that the resulting signals have two components: the original signal and the original
signal modulated with the single-tone cosine function. According to the modulation
theorem, the FFTs of these modulated components are given by:

F{x(t) cos(2πFt)} = 1
2

X(j(Ω± 2πF) (21)

F{x(t) cos(4πFt)} = 1
2

X(j(Ω± 4πF) (22)

When a signal is modulated by a window function, the frequency spectrum of the
resulting signal, which contains the original signal, and two replicas of this component
neighboring the original frequency are observed. Similar replicas are observed when these
two window functions are used with the proposed MDF. Figure 11 shows the characteristics
of the MDF windowed with the Hann window and the double-frequency Hann window.
The no-windowed signal and frequency spectrum are shown, respectively, in Figure 11a,b
for comparison. Figure 11c corresponds to the function R11000(t) windowed with the Hann
window, the frequency spectrum. Meanwhile, Figure 11d shows the spectral content
introduced by the windowing process. Observe that the frequency components introduced
are one component before and after the frequency component of interest. This is not
suitable in a practical implementation as waveform generator instruments cannot generate
ideal sine signals with an accurate frequency. Therefore, the zero-magnitude components
next to the components of interest should be reserved for waveform generator frequency
tolerances. Hence, the use of the Hann window is only convenient in simulation and cannot
be used in a practical implementation.

(a) (b)

(c) (d)

Figure 11. Cont.
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(e) (f)

Figure 11. Use of window functions. (a) No-windowed MDF R11000 (t). (b) Frequency spectrum
of the MDF R11000 (jω) with no window. (c) MDF R11000 (t) using Hann window. (d) DFT of MDF
R11000 (jω) with Hann window. (e) MDF R11000 (t) using double-frequency Hann window. (f) DFT of
MDF R11000 (jω) with Hann window.

The double-frequency Hann window shown in Figure 11e can be used for practical
implementation. This corresponds to the function R11000(t) windowed with a double-
frequency Hann window. Its frequency spectrum is shown in Figure 11f. Observe that the
spaces dedicated to compensating for waveform generator inaccuracies are unoccupied,
and the intermediate components between the two frequency components of interest are
occupied by the interference produced by the windowing process. These components are
the product of interference and can be discarded as a zero-magnitude frequency.

4. Implementation and Results

The proposed frequency response technique using MDF is verified by implementing a
second-order Chebyshev low-pass filter as the device under test (DUT). Figure 12 shows
the DUT with opamp TL084; resistors R1 and R2; and capacitors C1 and C2. The DUT
has a cutoff frequency of 10 kHz, and the frequency response is measured in the 10 Hz to
10 MHz range.

Figure 12. Chebyshev low-pass filter as device under test (DUT).

The proposed MDF with the spectrum segmentation process and the windowing
technique are used as a voltage excitation for the DUT. The six MDFs are configured to
measure different spectrum segments. The spectral content of each MDF is configured such
that the 900 points/decade resolution is achieved. The six measurements are processed
using MATLAB or Octave software to obtain six spectrum segments and are used to
integrate the system frequency response in the 10 Hz to 10 MHz range. The second, third,
and fourth components of the proposed MDF, corresponding to the 1–10 kHz, 10–100 kHz,
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and 100–1000 kHz segments, are shown in Figures 13, 14, and 15, respectively. A total of
24 measurements are taken for completing the frequency response.

Figure 13. Input and output voltages measured on hardware implementation of R2N (t) (1–10 KHz).

Figure 14. Input and output voltages measured on hardware implementation of R3N (t) (10–100 KHz).

Figure 15. Input and output voltages measured on hardware implementation of R3N (t) (100 kHz–1 MHz).

The proposed double-frequency Hann window is applied to the input and output
voltage signals during post-processing, and the FFT of these windowed signals is computed.
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Assuming that the FFT of the input segment signal is Vi(jω), and the FFT of the output
segment signal is Vo(jω), the magnitude and phase spectra segments are given by:

|T(jω)| = 20 log10(|Vo(jω)|)− 20 log10(|Vi(jω)|), (23)

φ(ω) = angle(Vo(jω))− angle(Vi(jω))
180
π

, (24)

where |T(jω)| and φ(ω) are the magnitude and phase spectrum of the corresponding
segment. The overall system magnitude and phase from the segment spectra are obtained
by interleaving the spectra of the four components of the MDF and generating the system
frequency response.

Figure 16 shows the frequency response measured from the DUT using the proposed
technique overlapped with the simulation. Observe that the measured and simulated
magnitude responses and phase responses shown in Figure 16 are a good match. A
deviation is observed in the magnitude response at a high frequency in the range of
50 kHz–10 MHz due to simulation model limitations.

Figure 16. Frequency response of DUT from simulation and measurements showing magnitude and
phase plot.

5. Conclusions

The frequency response measurement of circuits and systems is proposed using spec-
trum segmentation, a double Hann window, and a modified Dirichlet function. The pro-
posed method allows the use of low-cost waveform generators, such as AWG instruments,
to obtain high-resolution frequency responses with no increased test time. This method is
validated with hardware measurements and simulation results. The spectrum segmenta-
tion technique reduced the memory size and time requirements to compute the FFT. The
proposed technique can be embedded in critical systems, such as electric vehicles, power
distribution stations, electronic device design centers, and others in which the frequency
response characterization for analysis or fault detection is required for improved reliability.
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