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Abstract: Object detection is a common application within the computer vision area. Its tasks include
the classic challenges of object localization and classification. As a consequence, object detection is a
challenging task. Furthermore, this technique is crucial for maritime applications since situational
awareness can bring various benefits to surveillance systems. The literature presents various models
to improve automatic target recognition and tracking capabilities that can be applied to and leverage
maritime surveillance systems. Therefore, this paper reviews the available models focused on
localization, classification, and detection. Moreover, it analyzes several works that apply the discussed
models to the maritime surveillance scenario. Finally, it highlights the main opportunities and
challenges, encouraging new research in this area.

Keywords: maritime surveillance; classification; localization; detection; artificial intelligence; neural
networks

1. Introduction

With the growth in ocean exploration by cruise ships, ocean liners, and other marine
ships, the need for monitoring systems has increased considerably. With this, monitoring
stations have become increasingly equipped to carry out the identification of possible
issues. Among the maritime monitoring applications, one can mention potential collision
prediction [1], navigation support, tracking of ships drift [2] target tracking, maritime
safety [3]. Visual ship tracking provides crucial kinematic traffic information to maritime
traffic participants, which helps to accurately predict ship traveling behaviors in the near
future. Each of these applications requires different operating architectures [4].

Automatic maritime surveillance assumes the use of sensors that can provide enough
information for automatic situational awareness tasks, such as localization and classification.
In localization, a single object is found in an image. In classification, the object is defined as
belonging to a specific class. Detection combines the characteristics of these two techniques
to locate and classify multiple targets in the scene.

The fusion of different sensing sources can provide a better situational view of the
monitored environment and help one take the necessary actions. Sensors based on sound
or electromagnetic waves, such as sonar and radar, are generally employed in long-range
applications. Optical sensors can be more economical alternatives for applications that
require greater detail of the ships and aim for low power consumption. They can be
employed in ship tracking and classification tasks, requiring only that these sensors be
combined with visual detection techniques that are efficient, fast, and robust to enable the
advancement of maritime applications [5].

The number of sensors involved can also vary, and the most common ones for this
purpose are thermal cameras, optical cameras, and radar. Choosing the best techniques
to obtain maritime situational information is not trivial since the literature offers a huge
amount of model options that employ optical data. To make their application even more
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complicated, weather or water conditions, such as wind speed, tidal changes, rain, and fog,
can, for example, blur or entirely obstruct objects in an image. Additionally, the increasing
distance between the monitored object and the sensors can also aggravate visual tasks, as it
can cause a high-scale variation.

At the beginning of the research on ship detection, such as the one on object detection
in general, methods employing simple and handcrafted features were used, but recently,
convolutional neural networks (CNNs) have been added as part of this field of study
because of their extraordinary ability to extract and represent visual features [6]. For
example, in automatic navigation systems, the role of CNNs is to interpret the visual
data collected by the cameras. Thus, the detection information is added to the data from
different sensors, allowing the data fusion processing system to have enough information
for decision-making.

The paper is organized as follows. Section 2 describes the theoretical background
of the techniques, as well as presenting related works. Section 3 explores the different
datasets found in the literature, detailing ship classes and image sample characteristics.
Section 4 shows the challenges and open questions. Finally, Section 5 concludes this work
with some concluding remarks and a discussion of future work, and outlines some lines of
future research.

2. Related Works

In marine monitoring scenarios, localization, classification, and detection techniques
are applied to data received from sensors to extract information on the location and type of
the monitored ship. For example, in the case of optical sensors, commonly called cameras,
an analysis of the images is performed within the viewing angle. In this case, images are
received frame by frame and processed with the desired algorithm, be it for localization,
classification, or detection.

Several works are proposed by autonomous authors or those affiliated with some
universities or research centers to perform the tasks in the localization, classification, and
detection of ships [7]. Figure 1 shows a generic block diagram for optical sensor image
processing systems. This system has four main stages: image acquisition, preprocessing,
processing, and information output.

Image 

Acquisition

Preprocessing

Techniques

Processing 

Techniques

Information

Figure 1. Components of an image processing system.

The first stage is responsible for frame capture, followed by signal preprocessing and
the application of corresponding techniques for localization, classification, or detection.
In the first stage, individual or joint optical sensors convert the light reflected by the
objects into arrays of pixels representing the scene. The next stage, which may or may not
exist depending on the system, is preprocessing. Here, the image is prepared for feature
extraction using techniques for noise reduction, deblurring, feature intensification, and
image quality enhancement [8].

The image enhancement process is usually applied so that the processing models
perform better due to higher quality samples. With that, as long as the preprocessing is well
implemented, the next step, such as extracting features or object segmentation, performs
better [9]. Some jobs do not have a preprocessing stage, while others divide some of these
stages into more than one task. The inclusion of the preprocessing step directly influences
the parameters related to the performance of the models.
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Among the factors that are influenced, it is possible to mention the total time of the
image processing system and factors related to accuracy metrics. To calculate the factors
related to the accuracy metrics, it is necessary to initially obtain four response parameters
from these models: “true positive”, “true negative”, “false positive”, and “false negative”.

Once these parameters are obtained, it is possible to calculate the accuracy, which is
the total number of correct predictions divided by the total number of predictions made
for a dataset, and precision, which quantifies the number of positive class predictions that
belong to the positive class. Some works also feature recall, which quantifies the number
of positive class predictions made out of all positive examples in the dataset, and the
F1-score, which provides a single score that balances the concerns of precision and recall in
one number.

2.1. Image Acquisition

During image capture, several types of sensors can be used. However, the focus of this
work is on the use of optical sensors, be they remote, installed on satellites or aircraft, or
those that observe from a side view, such as those installed in inshore or offshore scenarios,
such as on other ships or fixed constructions on land, usually near the coast.

Optical images can still be divided into visible and infrared (IR) spectra, and the range
of both is very similar, from the order of meters to at most a few kilometers. The main
differences between optical sensors are related to sensitivity to the environment and the
quality and quantity of visual information generated by the sensor [7].

Comparing the sensitivity to illumination, both sensor types have problems working
outside their respective designations, i.e., while the visible light sensor performs poorly for
nighttime applications, the IR sensor presents high saturation in images captured during
the day. In addition, the visible light sensor is less robust to the effects of light reflection on
ships caused by water dynamics. However, the visual data generated are more detailed
when compared to the quality and quantity of elements captured by a visible sensor [7].
Thus, this sensor can lead to the training of detectors with higher reliability.

Optical remote sensing images suffer from weather conditions, such as rain, waves,
fog, and clouds, which causes the need, in some cases, for preprocessing of the image to
improve the image quality that will be analyzed.

2.2. Preprocessing Techniques

The preprocessing step can be used to improve the quality of images by introducing
techniques that allow obtaining a dataset with better quality images through the attenuation
of interference caused by elements of the environment, such as extreme brightness and
contrast, in addition to the quality of the camera lenses used in the capture process [10].

Among the various techniques that can be used in preprocessing, it is possible to men-
tion super-resolution techniques [11,12] and deblur [13,14]. The main benefit of improving
images before they are used in location, classification, or detection models is usually the
improvement of accuracy achieved only by increasing the quality of the dataset [15]. An
example of detection enhancement can be seen in Figure 2.

Super-resolution techniques are used to recover quality and improve the resolution
of an image. With this, instead of receiving low-resolution images, the model starts to
operate with more detailed images, leading various situations to an instant performance
improvement [16]. The field of image super-resolution has been dominated by methods
based on convolutional neural networks in recent years [17]. Among the examples of
models related to the super-resolution task, one can mention the models based on training
to minimize the mean squared error (MSE), such as super-resolution convolutional neural
network (SRCNN) [18], super-resolution residual network (SRResNet) [19], enhanced deep
super-resolution network (EDSR) [20], multi-scale deep super-resolution (MDSR) [20],
and deep back-projection networks (DBPN) [21], and also models based on generative
adversarial networks (GANs), such as super-resolution generative adversarial network
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(SRGAN) [22], enhanced super-resolution generative adversarial network (ESRGAN) [23],
and rank super-resolution generative adversarial network (RankSRGAN) [24].

Input 
Image

Processing 
Techniques 

Preprocessing 
Techniques 

Result

Skip 
Preprocessing

Low Quality Low Quality

Skip 
Preprocessing

High Quality High Quality

Low Quality Enhanced Quality Enhanced Quality

Figure 2. Detection enhancement with preprocessing.

In addition to being based on different forms of training, these models also differ in
the layer structures that make up their architectures, which influence their performance,
both in aspects related to accuracy and their processing time. Super-resolution models
trained through an MSE estimator use the distance between training images and associated
predictions as a cost function. As a result, these models tend to produce smoother images.
On the other, models based on GANs use generators to create new false images that can
mimic the expected result so that the discriminative model has the maximum difficulty
distinguishing between the synthesized images of the generator and the actual images. This
process generates output images with more realistic detail but can cause some unwanted
noise to enter the image during the super-resolution process [25].

2.2.1. SRCNN

The SRCNN model is based on an CNN architecture, trained to learn an end-to-end
mapping between low and high-resolution images for the super-resolution (SR) problem.
It was one of the first architectures that applied the concept of deep learning in the super-
resolution task, achieving one of the best results for this task in 2015. When the authors
proposed the use of CNNs, the most common was to use the traditional sparse-coding-
based SR methods [18]. The model is divided into three stages; the first is responsible for
performing the extraction and representation of low-quality images within the network.
The second step is the application of a nonlinear mapping, where the layers of CNN extract
as much information about the image. The last step is to rebuild the image at a higher
resolution than the image applied to the template entry [18].
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2.2.2. SRResNet

The model SRResNet was developed with an architecture based on residual network
(ResNet), but with modifications in the optimization of the MSE loss function to achieve
high upscaling factors, 4×, as quoted in [22]. With this optimization, the model was
consolidated in 2017 as the new state-of-the-art, and its performance was evaluated by peak
signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM), two metrics
widely used in image quality assessment [26].

Another proposal by the authors of [22] was to change the MSE loss function using
model resources visual geometry group (VGG). With this, the authors compared the
optimized version of the MSE with the version modified to use the VGG loss metrics. The
result was that the model improved the visual metric mean opinion score (MOS) but had
lower performance on the metrics of PSNR and SSIM [22].

2.2.3. SRGAN

The model SRGAN is trained through a generative architecture based on the ResNet.
This architecture generates images with super-resolution and has its loss analyzed through
a second structure with a discriminative function, which only acts during training. The
commission’s proposal SRGAN is to use a new resource-based loss function of the model
VGG, which, when combined with the discriminating network, helps to detect the differ-
ence between the image generated about the reference image. According to metric-based
tests MOS [27], which evaluates the perceptual quality of an empirically obtained image
through a visual classification scale, the trained model achieves results close to the state of
the art in the literature [22].

2.2.4. EDSR

The model EDSR, as well as the other SR models already presented, also has its
architecture based on ResNet. These models have characteristics similar to SRResNet.
However, unnecessary modules are removed from the architecture to optimize the model.
Among these changes, one can mention the residual blocks, which have removed the
batch normalization (BN). This causes the model to be simplified and memory usage to
be reduced [20]. Just as SRResNet achieves 4× upscaling factors, the EDSR model is also
capable. In the work [20], the authors trained the model for upscaling of 2×, 3×, and 4×.
In addition to achieving model time optimization and simplifying the architecture, the
authors also had superior results compared to other networks that were tested, such as
SRCNN, SRResNet, and MDSR.

2.2.5. MDSR

The model MDSR was proposed by the same author who developed the EDSR model
such that their architectures are described in [20]. The MDSR network has a certain increase
in complexity compared to EDSR because it uses extra blocks with different scales at the
beginning of the architecture. Removing the BN layers, as suggested in [20], is also adopted
in this model [20]. Unlike EDSR, which reconstructs only a super-resolution image scale
on the MDSR network, an initial upscaling is applied that operates with parallel image
processing structures of different sizes. This allows for reducing various problems caused
by variations in image scale. Both models, EDSR and MDSR, were proposed in the NTIRE
2017 Super-Resolution Challenge [28], taking first and second place, respectively. With this,
the authors claimed that they managed simultaneously to achieve the state of the art in the
topic of super-resolution and simultaneously transformed the architecture ResNet into a
more compact model.

2.2.6. ESRGAN

In three respects, the model ESRGAN is an improved version of the network SRGAN.
The first was the replacement of residual blocks by residual-in-residual dense block (RRDB)
to facilitate training, followed by the exchange of layers of BN by residual scaling and
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smaller initialization, as suggested in [20] because it allows the training of a more profound
architecture. The second difference was the replacement of a GAN joint for a relativistic
average GAN (RaGAN); instead of judging whether an image is true or false, this generative
network can identify which image is more realistic. Finally, the perceptual loss was
improved using VGG features before and after activation as in the SRGAN. This last change
makes the model provide sharper edges and visually more satisfying results [23]. With
the modifications made, the model reached the state of the art in 2018, presenting the best
results of perceptual quality, with first place in the challenge perceptual image restoration
and manipulation—super resolution (PIRM-SR) [17]. The test evaluated several models
under the quality of visual perception metrics, PSNR and SSIM. From the evaluation of the
performance of the models in this challenge, it was possible to notice that the increasing
values of PSNR and SSIM were not always accompanied by an increase in perceptual
quality. In many cases, this resulted in increasingly blurred and unnatural outputs, which
gives more meaning to the previously cited results of [22].

2.2.7. RankSRGAN

The RankSRGAN model is based on the GANs architecture but adopts a siamese
architecture to learn perceptual metrics and rank images according to the quality score
found during its training. This model combines different SR algorithms to improve percep-
tual metrics by combining other models [24]. To train the ranker, the authors used three
templates, SRResNet, SRGAN, and ESRGAN. With their combination, RankSRGAN was
able to optimize the natural image quality evaluator (NIQE) parameter [29], a visual metric
that measures the naturalness of the image in the scene. With this, the model achieved
superior performance to the individual models used when applied to the dataset of the
PIRM-SR Challenge 2018 [24].

2.2.8. DBPN

The DBPN model is an improved version of the SRCNN network, but instead of using
predefined upsampling, it uses interleaved upsampling and downsampling layers. Unlike
other methods that build the SR image feed-forwardly, our proposed networks focus on
directly increasing SR resources by using multiple stages of ascending and descending
sampling that feeds error predictions into each depth. The values of the error feedback
of the steps of increase and scale reduction were used to guide the network to obtain a
better result. The model performed similarly to the state-of-the-art performance in 2018.
In addition, the network was trained with 8× magnification, higher than that used in the
creation of SRResNet [19] and EDSR [20].

Unlike super-resolution techniques, deblurring techniques were developed to remove
noise and blur present in the image, which hinders the visualization of the image. When
noisy images are treated before being inserted into detection and classification systems,
the system performance can increase considerably [30]. Some of the techniques that can
be applied to the deblur task are deblur generative adversarial network (DeblurGAN),
DeblurGAN-V2, and deblurring and shape recovery of fast moving objects (DeFMO).

2.2.9. DeblurGAN

The DeblurGAN template is composed of a GAN architecture, and its purpose is to
remove blur in images. The model features an architecture of CNN, composed of residual
blocks (ResBlocks) consisting of a convolution layer, instance normalization layer, and
ReLU activation [31]. The authors of DeblurGAN validated their results by applying the
you only look once (YOLO) model to perform the detection and classification of objects in
images with blur and images processed by the deblur model. There is a gain in accuracy in
the YOLO results when inserted images are improved by the DeblurGAN model, proving
that it significantly contributes to image quality and consequently to the performance of
subsequent processing systems [31].
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2.2.10. DeblurGAN-V2

The DeblurGAN-V2 model is based on the construction of the original model Deblur-
GAN but with some modifications to improve the [32] network. Among them, the gener-
ative model in DeblurGAN-V2 integrates the technique feature pyramid network (FPN).
This technique was initially developed for object detection purposes [33]. Still, in the case of
the DeblurGAN-V2 model, the authors used FPN for the construction of a noisy image [32].
In addition to integrating the FPN technique, the new version allows the selection of dif-
ferent backbones. Each of the different backbones is designed to improve some of the
performance parameters. For example, with the Inception-ResNetV2 architecture, you
obtain a next-generation blur. In contrast, with the mobile network-depthwise separable
convolution (MobileNet-DSC) architecture, you obtain an increase in processing speed,
some 10 to 100 times faster than the top competitors in 2019 [32].

2.2.11. DeFMO

Motion blur is one of the existing blur types, and it is caused by the rapid movement
of objects when captured by cameras or by the quick scroll of the camera to capture still
objects, recording photos or videos, with blur [34]. Thus, DeFMO is designed to act on this
type of blur. The proposed network is a novel based on a ’self-supervised’ loss function that
improves the model’s accuracy when applied to images with motion blur. By presenting a
good generalization capability, this model can be applied to different areas in computer
vision, such as the improvement of security cameras, microscopes, and photos with high
noise levels [35]. This model is the first fully neural FMOs deblurring that fills the gap
between deblurring, 3D modeling, and FMO subframe tracking for trajectory analysis.

2.3. Processing Techniques

Most previously proposed models for image processing, that is, location, classification,
or detection of ships, have focused on using handcrafted resources applied to image
processing. These models are built with the expert knowledge of designers. Within
the scope of handcraft features models, it is possible to point out several works that
employ different techniques, such as Gabor filter in [36], for automatic target detection,
discrete cosine transform (DCT) in [37] for maritime surveillance on non-stationary surface
platforms, as well as Haar–Cascade [38], scale-invariant feature transform (SIFT) [39], local
binary pattern (LBP) [40], support vector machine (SVM) [41], and histograms of oriented
gradients (HOG) [42] for the remote sensing of ships.

As a result, the extracted features reflect the limited aspects of the problem, generating
a low response accuracy of the models and a low generalization. Thus, deep learning in
the computer vision research community, such as CNNs proved to be more suitable for
developing and training resource extractors [43].

The techniques based on CNN dominate the most recent works, as shown in Table 1,
which details the evolution of the works over the years, pointing out aspects such as the
type of image used, applications, and techniques involved in each of the works. They
won great strength after winning the ImageNet challenge in 2012 and have been achieving
excellent results in several image processing tasks for obtaining visual information [44].

Another point that collaborates with this type of network is the evolution of the sizes of
the available datasets, given that CNNs usually require a large number of training samples.
With this, the use of detection models based on CNNs has accelerated even more because,
according to [45], a good object detector should improve when given more training data.

Within these networks, there is a subclass, the region-based convolutional neural
networks (R-CNNs), whose working principle is based on a selective search for object
detection, generating region proposals, as shown in Figure 3. Work related to this type of
technique began with the R-CNN, proposed by Ross Girshick [46]. Since then, other varia-
tions have been proposed, such as fast R-CNN [45], faster R-CNN [47], mask R-CNN [48],
single-shot detector (SSD) [49], YOLO [50], YOLOv2/9000 [51], YOLOv3 [52], YOLOv4 [52],
and YOLOv5 [52]. These models have some modifications in their topologies to increase
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their speed and prediction performances or even to add a new function, as is the case of
segmentation in mask R-CNN.

Input 
Image

Compute CNN 
Features

Extract Region 
Proposals

Classify Regions

Cropped Regions

CNN

Ship: Yes
Buoy: No

Ship: No
Buoy: Yes

Figure 3. Regions with CNN features.

2.3.1. R-CNN

It emerged with the task of localizing objects through a CNN that could have high
detection capability even with a small amount of annotated samples for its training. It is
basically divided into three modules. The first is responsible for generating several region
proposals without a specific category, by a method called selective search (SS) [53]. The
second is an CNN, which extracts a fixed number of features for each of the proposals.
Finally, the third module is based on a linear SVMs trained specifically for each possible
class. With this, this network can not only locate the object, but also inform which of the
possible classes it belongs to. This classification is performed through a score generated by
the [46] classifiers.

2.3.2. Fast R-CNN

Fast R-CNN introduces single-stage training with an update of all layers and avoids
disk storage for feature caching [45]. Regarding the detection task, it has the advantage of
achieving higher mean average precision (mAP) compared to its standard version. In this
model, the linear SVMs used in R-CNN is replaced by a softmax classifier. Using the same
training algorithm and hyperparameters used in R-CNN, they train a new SVM to be the
classifier for fast R-CNN and justify the use of softmax by achieving a slight advantage in
mAP over it [45].

2.3.3. Faster R-CNN

This model uses the region proposal network (RPN), which comprises CNNs capa-
ble of providing region proposals to fast R-CNN, informing at the same time the object
boundaries and the scores of each proposed region. RPN calculates proposal regions much
faster and more efficiently compared to SS. Moreover, it brings another advantage by shar-
ing convolutional layers between the proposal generation network and the classification
network, optimizing the network training [47].

2.3.4. Mask R-CNN

It follows the same principle as faster R-CNN but has a second output in the model for
segmenting objects [48]. The pixel-by-pixel object segmentation is performed through the
superposition of an outline, applied by this second output. This overlay mask is applied to
each region of interest (RoI) and is based on the fully connected neural network (FCNN)
model [54].
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Table 1. Models and features on related works.

Image View Approaches

Papers Side View Remote Localization Classification Techniques/Models

2017 [55] - x x - FusionNet

2017 [56] x - - x VGG16

2018 [57] x - x - Faster R-CNN+ResNet

2018 [58] - x x - ResNet-50

2018 [59] - x x - SNN

2018 [60] - x x x Faster R-CNN+Inception-ResNet

2018 [61] - x x - RetinaNet

2018 [62] - x x x R-CNN

2018 [63] - x x - R-CNN

2019 [64] - x - x VGG19

2019 [65] - x - x VGG16

2019 [66] x - - x Skip-ENet

2019 [67] - x x x Cascade R-CNN+B2RB

2019 [68] - x - x ResNet-34

2019 [69] x - x - YOLOv3

2019 [70] - x x x VGG16

2019 [71] x - x - Faster R-CNN

2020 [72] - x x x SSS-Net

2020 [73] - x x x YOLOv3

2020 [74] - x x x CNN

2020 [75] x - x - CNN Segmentation

2020 [76] - x x - YOLO

2020 [77] - x x x ResNet-50+RNP

2020 [78] x - - x CNN

2020 [79] x - x x YOLOv4

2020 [80] - x x - YOLOv3

2020 [81] - x - x VGG16

2020 [82] x - x - Mask R-CNN+YOLOv1

2021 [83] - x x x Mask RPN+DenseNet

2021 [84] - x x - VGG16

2021 [85] x - x x SSD MobileNetV2

2021 [86] x - x x YOLOv3

2021 [87] x - x - Faster R-CNN

2021 [88] x - x - R-CNN

2021 [89] x - x x BLS
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Table 1. Cont.

Image View Approaches

Papers Side View Remote Localization Classification Techniques/Models

2021 [90] x - x - YOLOv5

2021 [3] x - x x MobileNet+YOLOv4

2021 [91] - x x x Cascade R-CNN
2021 [92] x - x x YOLOv3

2021 [93] - x x x YOLOv3

2021 [94] x - x x YOLOv3

2021 [95] - x x x YOLOv4

2021 [96] x - x x ResNet-152

2021 [97] - x x - Faster R-CNN

2022 [92] x - x x YOLOv4

2022 [98] - x x - YOLOv3

2022 [99] x - x x MobileNetV2+YOLOv4

2022 [100] - x x x YOLOv5

2.3.5. SSD

Compared to previous methods that take two stages, SSD is a more straightforward
method because it encapsulates all computations in a single deep neural net, eliminating
the need to generate object proposals in multiple stages. This increases the speed of the
system and facilitates training by providing a unified structure for training and inference.
It scores bounding boxes and adjusts to best match the shape of the object and uses boxes
of different proportions to handle objects of different sizes [49].

2.3.6. YOLO

Like SSD, this is also a single-stage detector, which can have its optimized performance
within its unified detection model. In this method, object detection is performed as a
regression task for bounding boxes, which, at the same time, provides the object locations
with their respective classes. The primary source of error in this network is in the incorrect
location of small objects [50].

3. Datasets

Datasets are structured collections of data that are used by computer vision models
during their training and validation stages. Different datasets have been created throughout
the literature for visual tasks.

Image databases, in general, whether for ship classification or other purposes, usually
have their images divided into classes. The number of images, the number of classes, and
the complexity of visual separation of these objects directly affect the training and the
results of computer vision systems.

Some datasets have a considerable imbalance concerning the number of images in
each class, or even very similar classes. In datasets with many classes, many training
iterations may be necessary to achieve good accuracy and other parameters related to
system accuracy, such as precision, recall, and F1-score. Even in datasets with few classes,
if the similarity between the objects of the two classes is high, it can also require a large
number of iterations [101].

In the case of the maritime scenario, for example, architectures generally make many
more mistakes when relating classes to ships than when differentiating a ship from a buoy
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or even some piece of wood, metal, or rubber lost at sea. This occurs because the ability to
visually separate different categories of objects depends on the similarity between them in
the image classification process. Therefore, some categories are more difficult to distinguish
than others [102].

To suppress this problem, some models also create classes of mountains, trees, build-
ings, sky, and pier objects, to minimize false ship detection. However, to avoid high
pollution of output result elements, some of these networks do not visually deliver the
markup of these classes [7].

As long as the images are well curated, the detection and classification performance
tends to increase with the expansion of the training data, as long as it is of good quality. For
this reason, increasingly more extensive databases are being built, such as the the MARVEL
dataset [103], which has more than 2 million images.

Considering general-purpose datasets, it is possible to cite MS COCO [104], CIFAR-
10 [105], PASCAL VOC [106], OpenImage [107], and ImageNet [108] as some of the most
used datasets containing ship images [109]. These datasets contain thousands and even
millions of images divided into different classes, which serve as the basis for the training
and validation of object detection and classification models. Each of these datasets contains
a class of generic ships. According to Table 2, it is possible to obtain 11,570 images with the
sum of the samples of these datasets.

Table 2. Generic datasets.

Dataset Ship Count

COCO [104] 3146
CIFAR-10 [105] 6000

PASCAL VOC [106] 353
OpenImage [107] 1000
ImageNet [108] 1071

However, specialized ship datasets have many more images of ships and subdivide
these ships into sub-classes, giving more detail to the identified object. Table 3 lists some
of these specialized datasets, providing the number of classes, the number of images of
the ships, and the spatial view of these ships, where the photo datasets are divided into
two groups: photos taken from the sides of the ships, in any angle within the 360° of the
ship, or photos taken from the top of the ship, usually captured by satellites and classified
as remote.

Table 3. Remote and side view ship datasets.

Dataset Side View Remote Images Ship Classes

VAIS [110] x - 2865 15
ABOShips [109] x - 9880 9
MCShips [111] x - 14,709 13
Singapore [7] x - 17,450 6
SeaShips [112] x - 31,455 6
MARVEL [103] x - 2,000,000 29
HRSC2016 [113] - x 1061 19

Airbus Ship Detection [114] - x 208,162 1
BCCT200 [115] - x 800 4

ShipRSImageNet [116] - x 3435 50

3.1. Dataset Diversity

Going into the diversity of datasets, when analyzing the MARVEL dataset, as shown
in Figure 4, there is a significant imbalance between the number of samples in each class, as
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this is a natural reflection of a realistic environment, where there are many more ships of
one type than of another. In addition, some ship types are pretty similar in size and shape,
while others are remarkably different, as shown in Figure 5, which can lead to a better
classification between very distinct classes and not so good for similar ones. Finally, there
are also pose, brightness, background clutter and scale variations, which can negatively
influence the visual system performance.

The diversity of a dataset is based on the visual variation of its samples. In the
case of ship images, the most common differences between samples are variations in
background, scale, position, illumination, quality, size, viewpoint, and possible occlusions.
These variations can be caused by several elements, such as the distance and position
chosen for capturing the photo, the capture devices themselves, and the climatic and
environmental conditions.

The detection and classification models must maintain a certain sensitivity to these
differences, providing stable results, even with the complexities found in maritime en-
vironments. Therefore, the data used for training and validation of image processing
architectures must have diversity so that the architectures can adapt to all these influences
during training [112].
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Figure 4. Samples by classes in the MARVEL Dataset.
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Passengers Ship

Container Ship

Trawler

General CargoOil Products Tanker

Tug

Vehicles Carrier Yacht Tanker

Figure 5. Examples of classes in MARVEL dataset.

3.1.1. Background and Lighting

The information present in an image is used in the most diverse computer vision tasks.
When considering, for example, face recognition, the separation between a front face and
the background is easily performed by a background subtraction algorithm and generates
a low computational cost due to the standard geometric shape of the face [117].

In the case of ships, there is a greater diversity in formats, sometimes even within
the same class. This means that a single ship often can have more than one tag since its
characteristics become confused with those of the environment. To solve this problem,
there exist some techniques, such as the non-maximum suppression algorithm, that help
avoid excessive tags by eliminating overlapping regions [118].

Another factor that can mainly compromise the detection stage is the lighting present
in the images, which can sometimes cause objects in the scene to be mistaken as part of the
ships and thus generate problems during the training.

3.1.2. Scale and Spatial Vision

During training, the images of the ships collected have their characteristics and pat-
terns used to build models that will make the classification process. Therefore, the scale of
the ships within the image is of the utmost importance, as tiny images can contain a limited
richness of detail.

Generally, the datasets and applications are separated into two classes of viewpoints:
those that work with side view images, i.e., datasets where the pictures were taken from
the sides of the ships as shown in Figure 6, and remote sensing images, which work with
pictures taken from the top of the ships, usually with images taken by satellites [7].

Regardless of the type of application, whether the side view or remote view is chosen,
once the model is trained with images of greater diversity, it is able to better generalize
each of the classes, becoming more capable for use in a real scenario. If the system is to
identify ships always from the same point of view, the choice of training samples always in
the same position may be better to obtain good results.
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Figure 6. Different types of ship views.

3.1.3. Size, Quality, and Resolution

Generally, most models benefit from the larger size, quality, and resolution of images
when the application does not involve storage, time, or processing power. This is because
when a model receives higher quality images, it is able to extract more characteristics
from the objects in it, which consequently can positively influence the assertiveness of
the architecture.

Images with low pixel count, or even blurred images, such as Figure 7, may cause
the system to be unable to extract the characteristics necessary to separate the classes.
Consequently, the resulting architectures may have a degree of assertiveness lower than
expected. This is usually the reason for applying the preprocessing step to the images
before the detection or classification process [9].

Figure 7. Comparison of different image resolutions.

3.1.4. Occlusion and Position

Because the image collection is performed both offshore, in harbors or at satellites, a
ship may appear partially within the image. This can be caused by the ship or by occlusions,
which might be caused by other objects or even by other ships, shown in Figure 8.

Thus, according to the authors of [112], one should not ignore occlusion. Instead, it
should be considered so that the trained model handles the occlusions presented in the
validation step. At the same time, some care must be taken so that the position of the ship
within the frame still preserves features that contribute to the training. Similarly, the partial
occlusion of some objects must also preserve features of the original ship. Otherwise, these
samples can directly interfere with an architecture’s ability to perform good training.
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Figure 8. Example of occlusion.

3.1.5. Annotations and Labels

In machine learning and deep learning dataset, an annotation is a file that contains
some data information referring to the image. The primary information stored in this file
are the coordinates of the object’s spatial position within the image and the class to which
the object belongs [119].

The labeling process can be carried out using annotation tools, either manually or with
some automatic processing. When annotating an image, each image’s metadata are added
to the dataset. Some of the datasets used in the literature already have annotations that can
be used during the model training stage [112].

These annotations are essential because they allow models to understand where an
object is positioned within a given image and its classification, so both detection and
classification models can use these data as a reference when adjusting their weights during
the training phase. With this, the model considers only the area of interest in the image.
Then, after the model is trained on the labeled images, it later uses these training weights
to identify these classes in new, previously unseen images.

These annotations usually come in separate files that accompany the images. However,
the simplest ones are generated with just the four boundary points, which are used to build
the box that marks the position of the ship, as shown in Figure 9. With this, the models
have access to the object’s position within the image and to which class it belongs. Either
detection models or simply direct classification models can use these data as a reference
when adjusting weights during training. This enables the model to identify the parts of
interest in the image. Once the model is trained with the labeled images, it uses these
training data to later identify these classes in new and previously unseen images.

Bounding BoxInput Image

+
Labeled Image

Figure 9. Example of a bounding box.

The annotation files accompanying the images are usually separated in another format,
such as “.xml”. The simplest ones come with four positions, which are the boundaries
used to construct the box that marks the position of the ship, as shown in Figure 9. Some
more complex annotations may contain multilevel classifications, segmentation data, and
multiple object tags.
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Along with the four coordinates, usually, the class to which the ship belongs to is
also described so that the system can use these data when building the model. Files with
more complex annotations can also bring climate, relative humidity, latitude, and longitude
positions of the ship. However, most detection and classification systems disregard that
information and only need the object’s classes and bounding boxes to perform the training.

Annotations enrich the information about the object in the image so that the detection
model is able to learn from this information. To this end, numerous annotation software pro-
grams are widely used as crucial tools for preparing images for training. These tools were
developed because of the increasing demand for training data and are widely employed.

Table 4 shows a comparison of the tools, which are divided into categories. The
working environments being local, those tools that require the software to be installed on a
machine, and browser, those that can be only used through a web-browser. The tools can
be used either in online or offline modes, as shown in the Table 4. Each tool has different
characteristics, such as the processing data that are the input data that the tool annotates,
e.g., images and videos, and can even support 3D point cloud annotations, commonly used
by radio detection and ranging (RADAR) and light detection and ranging (LiDAR) sensors.

Another essential feature is that these tools offer different types of annotations, being
the most used polygons and rectangles. However, some tools can even offer brushes and
pencils to draw each object differently. Each tool offers different file formats for saving, that
is, the format in which the annotations for each image or video will be saved to be used
during training.

Semi-automatic labeling tools delimit objects in an image or video using a pre-trained
detection model. The advantage obtained in this process is the time savings compared to
manual labeling. The result is a pre-labeled set of images, which allows the user to perform
subsequent tasks, such as checking and correcting labels already created or even training
new models with the semi-automatically labeled samples. Table 4 compares different
labeling tools that use manual and semi-automatic methods, as well as describing the
operating characteristics of the different approaches.

The availability in the table refers to either paid or free tools. Furthermore, some
remarks can help choose the labeling tool, such as the online support service that some offer.

In the works involving the classification task, the ships are divided into classes,
whether directly applied to classify an image or even after a localization. However,
within the area of ships monitoring, there are few specific standards and regulations
for autonomous marine systems, which already use this detection technology with sensor
systems [43]. There are some agencies to assist in the creation, regulation, and control
of these systems, such as the International Organization for Standardization (ISO), Inter-
national Maritime Organization (IMO), International Association for Marine Electronics
Companies (CIRM) International Association of Classification Societies (IACS), Interna-
tional Electrotechnical Commission (IEC), International Association of Marine Aids to
Navigation and Lighthouse Authorities (IALA), European GNSS Agency (GSA), Interna-
tional Telecommunication Union (ITU) and various classification societies themselves [43].
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Table 4. Comparison of tools for labeling images and videos.

Tools Environment Conectivity Processing Data Annotation Types Output Data (Semi)Automatic
Labeling Availability Remarks

ImgLab [120]
Browser
and local On/Offline Images

Points, circles,
rectangles, and polygons.

dlib XML, dlib pts,
VOC, and COCO No support Free -

VoTT [121]
Browser
and local On/Offline Images and videos Rectangles and polygons.

CNTK, Azure,
VOC, CSV,

and VoTT(JSON)
Support Free -

CVAT [122]
Browser
and local On/Offline Images and videos

Points, lines, cuboids,
rectangles, and polygons.

VOC, COCO,
etc. Support Free -

Labelimg [123] Local Offline Images Rectangles.
VOC, YOLO,

and CSV. No support Free -

Labelme [124] Local Offline Images and videos
Points, circles, lines,

rectangles, and polygons. VOC, COCO, etc. No support Free -

VGG Image
Annotator

(VIA) [125]
Browser On/Offline

Images, videos,
and audios

Points, circles, lines,
ellipses, rectangles,

and polygons.

VOC, COCO,
and CSV No support Free -

SuperAnnotate [126]
Browser
and local On/Offline

Images, videos,
and texts

Points, lines, ellipses,
cuboids, rectangles,

polygons, and brushes.
JSON and COCO Support Paid

Online
support

Supervisely [127]
Browser
and local On/Offline

Images, videos, and
3d point cloud

Points, lines,
rectangles, polygons,

and brushes.
JSON Support Paid

Online
support

MakeSense [128] Browser Online Images
Points, lines,

rectangles, and polygons.
YOLO, VOC,
and COCO Support Free -

LabelBox [129] Browser Online
Images, videos,

and text

Points, lines,
rectangles, polygons,

and brushes.
JSON and CSV Support Paid

Online
support

DarkLabel [130] Local Offline Images and videos Rectangles. VOC and YOLO Support Free
Online
support

Autoannotation [131] Browser On/offline Images Rectangles. YOLO Support Free -
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As the control agencies have not yet created definitive standards, each author follows
the class division that best suits their work. Even though they still do not follow a pattern,
some of these classes are found more frequently than others in the datasets of related works,
as shown in Table 5. In this table, the works that use the separation of ships into classes
are presented with their respective classes. The amount of images divided for training and
testing in each of the works is also presented.

Table 5. Class division in related works.

Papers Type Classes Train Test

2008 [132] 2 Aircraft Carrier and Destroyer - 270

2009 [133] 4 Carrier, Cruiser, Destroyer and Frigate - 98

2010 [134] 4 Ark Royal, Arizona, Arleigh and Connelly - 32

2017 [42] 12 Military Ships (Aircraft Carrier, Submarine, San Antonio, Arleigh Burke, Whidbey Island) 200 80

2017 [56] 5 Containers, Fishing Boats, Guards, Tankers, Warships - 300

2018 [60] 9 Passenger Ship, Leisure Boat, Sailing Boat, Service Vessel, Fishing Boat, Warship, Generic
Cargo Ship, Container Carrier and Tanker. 30000 20

2018 [62] 3 Cargo Ship, Cruise and Yacht - -

2019 [68] 4 Barge, Cargo, Container and Tanker - -

2019 [64] 3 Oil Tankers, Bulk Carriers and Container Ships - -

2020 [77] 7 Aircraft Carrier, Destroyer, Cruiser, Cargo Ship, Medical Ship, Cruise Ship and Transport Ship. 24 6

2020 [73] 3 Passenger Ships, General Cargo Ships and Container Ships - -

2020 [74] 4 Destroyers, One Bulk Barrier, Submarine and Two Aircraft Carriers - 500

2020 [78] 2 Fishing Ships and Military 398 16

2020 [81] 23

Non-ship, Aircraft Carrier, Destroyer, Landing Craft, Frigate, Amphibious Transport Dock, Cruiser,
Tarawa-Class Amphibious Assault Ship, Amphibious Assault Ship, Command Ship, Submarine,

Medical Ship, Combat Boat, Auxiliary Ship, Container Ship, Car Carrier, Hovercraft, Bulk Carrier,
Oil Tanker, Fishing Boat, Passenger Ship, Liquefied Gas Ship and Barge

5165 825

2021 [83] 4 Warcraft, Aircraft Carrier, Merchant Ship and Submarine - -

2021 [86] 6 Warship, Container Ship, Cruise Ship, Yacht, Sailboat and Fishing Boat - -

2021 [91] 15

Aircraft Carrier, Oliver Hazard Perry Class frigate, Ticonderoga-class Cruiser, Arleigh Burke Class
Destroyer, Independence-class littoral combat ship, Freedom-class littoral Combat Ship,

Amphibious Assault Ship, Tanker, Container Ship, Grocery Ship, Amphibious Transport Ship,
Small Military Warship, Supply Ship, Submarine and Other.

4800 1200

2021 [3] 8 Bulk Cargo Ships, Engineering Ships, Armed Ships, Refrigerated Ships, Concrete Ships, Fisheries
Vessels, Container Ships and Oil Tankers - -

4. Challenges and Issues

This section is established based on proposals for future work from a review of the
literature as well as the related works already mentioned above. Among the main problems,
challenges, and research opportunities cited are those related to datasets, image process-
ing techniques, data fusion, and practical applications. In addition, some recent works,
such as [81], also point to some of these problems, which will be discussed throughout
this chapter.

4.1. Datasets

Datasets represent an important part in the construction of object location, classification
and detection models. In vessel datasets, it is possible to find problems common to other
datasts used in automatic target recognition (ATR) problems, such as overlapping objects.
However, other problems encountered, such as the high similarity between different classes
of vessels, deterioration of ships and a great variety of models for each class, are inherent
problems, or even more common in maritime environments than in computer vision
problems in general.

There is some difficulty in accurately finding the object when the image has a con-
siderable background complexity [77]. In [5], a maritime ship tracker is proposed, but the
authors state that the proposed tracker can only work in certain weather conditions and
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only for some types of ships. In [135], the authors also state that the presented technique
shows errors in specific scenarios where the sea color is drastically changed or when the
horizon line suffers partial occlusion by other objects.

Based on these problems, the authors of [136] make a practical study of detection with
several architectures, such as faster R-CNN, YOLOv2, and YOLOv3 in datasets of images
with weather and lighting interference to evaluate the accuracy of the models. In [137], the
authors explain that images related to the maritime scene suffer several influences related
to weather and lighting factors, resulting in unclear targets in the image.

The proposed solution presented in the study is to attack the problem on three fronts,
improving the image acquisition hardware technology, creating an image preprocessing
step, and increasing the dataset used for training, with images that have multiple targets
and high diversity [137]. Regarding the issue of diversity, the use of datasets in the CNN
models must have good image quality and also represent the shapes of the objects, which
are taken from multiple sides [78].

Many authors point out that the lack of substantially extensive datasets hinders the
construction of their models. The search for high-quality datasets is a shared objective
that ranges from authors who develop simpler models to those who seek to validate their
systems in more complex environments. For example, the authors of [39] claimed that the
popularization of high-resolution remote sensing data could make the proposed method
widely applicable. In [65], the authors claimed that they will compare their proposed model
with state-of-the-art results while expanding the datasets. In [138], the authors also stated
that they will make efforts to expand the dataset to try to obtain a robust detection of the
system. Even some work on more recent detector enhancements, such as the YOLOv5,
still points out that they intend to perform retraining on large datasets to evaluate the new
results [90].

Some works, such as [42], point to good results for the task of automatically locating
and recognizing coastal ships in remote sensing images of large scenes. However, they
state that they have their efforts in the development of new multimodel methods capable of
recognizing more types of ships and that for this, it is necessary to obtain samples of other
classes of ships. In this search for an increase in the number of classes capable of being
recognized by the models, another problem faced and reported by other works, including
those focused on new datasets, is the imbalance of samples in each class. This can be easily
seen when when internally analyzing the structure of large databases such as MARVEL,
for example [103]. Thus, some authors, such as [83], reaffirm this problem, citing that the
efforts of their works have been to reduce the class imbalance, feeding the less favored
classes with more samples, thereby decreasing the risk of overfitting that can be caused by
the imbalance during the training of the models. The authors of [70] also pointed out the
risks of overfitting when the dataset contains many small or poor-quality images.

As an alternative to the difficulties presented by the authors regarding limited databases,
adding bad images to the model, or even the imbalance between classes, Ref. [68] suggested
leveraging synthetically generated images to compose the training data since they rein-
forced the idea that CNNs outperform classical object recognition methods when provided
with enough data for good training. In their study, they demonstrated that the same ship
classifier trained on a bank of real-only images performs worse compared to the same
classifier trained on that same dataset with the addition of synthetic images [68].

A second alternative to the limitation posed by the dataset would be transfer learning.
Transfer learning is a machine learning technique that stores the knowledge gained from
solving a problem and applying it to a different but minimally related problem [139]. For
example, Ref. [140] presents the application of this type of technique in a ship recognition
task in infrared images. With this, even if there is an imbalance between the samples of
each class, it is possible to improve the model’s performance. The work presented in [64],
which uses visible light remote sensing images, also suggests that transfer learning solves
the limitation of the number of images on datasets and improves the convergence speed of
the model.
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Finally, the last challenge pointed out by the authors in the context of the dataset is
about images annotated with precise bounding boxes to provide an effective and available
database for training and validation. The idea is to try to reduce as much as possible the
images that are in the wrong classes or with no boat present, called negatives. With that,
the result of the complete training or transfer learning tends to improve even more [110].
Therefore, a second proposal made in [111] is, instead of discarding negative images, using
them during training to explore the effect of these samples within the system in order to
develop a more robust algorithm.

4.2. Image Processing Techniques

The techniques chosen to build object localization, classification, and detection systems
are another essential part of the system through which the received images are converted
into information. In the tests performed in [141], a large dataset of images captured by
several optical satellite sensors was submitted to a hierarchical classification architecture,
which was able to eliminate candidate regions belonging to objects that did not represent
ships. Moreover, other hierarchical classification techniques can be applied with newer
architectures. The authors admit the need to improve the model or refine the training
parameters to improve the detector. This would be another way to mitigate problems
related to complex backgrounds in the received images, now improving the technique
instead of dataset changes.

When discussing improvements improvements in detectors and classifiers, it is also
possible to find several works that advocate this idea, such as [63,89], which followed the
line of improving or adjusting parameters in the model to increase accuracy, instead of
improving with the evolution of the dataset only. In [142], the authors advocated increasing
the dataset and the number of classes provided for training. Another objective is to adapt
the detection models by changing their parameters and the architectures themselves to
compare their results to the original ones and verify the accuracy increase.

Another work that aims for future improvements by improving the architecture is the
one presented in [143], where the authors used the SSD detection techniques, aiming for
automation in the container terminal. In [86], the authors also relied on the optimization
of existing methods, where the YOLOv3 architecture is optimized to detect ships at a
higher frame rate without sacrificing detection loss. Other work also has as future tasks the
optimization of the ship target recognition capability so that the entire model performance
can be further improved [74]. The experiment data are part of public Google Earth data
and commercial satellite imagery [74]. To select these parameters that optimize the system,
Ref [144] stated that the empirical way can work very well, but stated that a more systematic
way to select these parameters can be a target of future research.

Furthermore, regarding the techniques, there are some recent works such as [145,146],
which operate on a sky-sea basis, i.e., using the dividing line between sea and water to help
locate the ship, and have interesting effectiveness for open sea applications. The work [147]
suggests research that combines CNNs with handcrafted techniques to perform a sea–land
separation, decreasing the application restriction of these systems. The work [148] also
intends to deal with the problem of low contrast that sometimes occurs in a dynamic ocean
scenario, which generates waves with a different reflected color tone than expected in a
pixel analyzed in the image where the ocean is present.

Among the works that present possibilities for combining techniques for future re-
search, there is the case of [149], which introduced a method to exclude confusing samples
and thereby reduce the problem of overlapping classes. Future work in this paper aims to
integrate this method with other techniques. This is also the research theme in [81], but
instead of using features from other models in their own, the authors performed the inverse
process. They proposed two feature representation schemes that can be incorporated into
most CNN models and bring an increase in the classification performance of the models,
taking advantage of the possibility of end-to-end training. The work basis in a new bench-
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mark and an attribute guided multilevel feature representation network for fine-grained
ship classification in optical remote sensing image [81].

Besides the combination of multiple techniques in a single architecture, it is also possi-
ble to find works that point to future tasks, the inclusion of preprocessing models. These
tasks range from simpler challenges, such as cropping, aligning and resizing images [115],
to even more complex ones, such as noise removal [150–152] and image super-resolution
systems [12,16]. Enhanced images, generated by these types of techniques, increase suc-
cessful detection and reduce false detection [153]. Based on that, Ref. [154] suggested as
future work the use of super-resolution GAN models to improve image quality and thus
be able to identify attributes over long distances.

The performance of a ship ATR system is not only defined by the chosen algorithm,
but also by the image quality and the result generated by the feature extraction technique.
By improving the processing model and the image quality, the target recognition rate will
be improved [155]. For example, Ref. [66] proposes that in the future, their segmentation-
based model be used by another one for image preprocessing so that the final architecture
can be used in different weather or light conditions. In parallel, the authors also hope to
incorporate distance estimation algorithms to contribute to research on autonomous surface
vehicles. Similarly, Ref. [156] also aims to develop detection models for target tracking.

4.3. Data Fusion

Within the literature, there are some works, such as [43], which already explore the
situational awareness field. In this type of approach, the optical sensors do not act in
isolation, and there is a fusion of data with other sources of information, which allows the
generation of a positioning map of ships in an autonomous way.

For this map to be generated, there is a global effort regarding the creation of regula-
tions and standards which allow the reliability and integrity of the information generated.
Furthermore, this type of approach aims to design an artificial intelligence (AI) algorithm
capable of merging the different types of sensors and information sources. The idea of this
fusion is to implement a system capable of obtaining a positioning inference of less than
3 m, as well as collaborating for autonomous navigation [43].

The current availability of sensors capable of collecting information at different levels
of an object allows observations made from different acquisition sources to be combined to
obtain a more detailed description of the scene. For example, Ref. [157] presents as a focus
of future studies the increase in the robustness of the system through multispectral remote
sensing, aiming to identify ships that are close to land.

Each of the sensor types has its advantages and disadvantages. Among them, it is
possible to mention costs, dependence on the angle of the observation aspect, variation of
resolution with distance, susceptibility to atmospheric influences [158]. The differences and
advances in the different types of sensors mean that research into new image processing
methods and tools never stands still. Just as each data source can generate unique informa-
tion, combining features generated by these different sources makes sense. The systems
developed for this purpose propose the use of fusion techniques during this processing
chain in order to obtain at the end a situational awareness of the region or maritime object
under analysis [158].

Some works in the literature already bring some of these fusion proposals. For example,
in [159], the authors create an autonomous collision avoidance system using a fusion of
different sensor sources as global positioning system (GPS), RADAR, LiDAR, automatic
identification system (AIS), and optical sensors, but say that more studies are needed in
various conditions of real maritime traffic to verify stability and robustness.

In [109], the authors also intend to evaluate the benefits of autonomous navigation and
the improvement of navigation safety through tracking techniques. In this line, Ref. [160]
reinforces that some more handcrafted image processing methods can reduce computational
costs during tracking, that is, the continuous observation of navigation. In [60], the focus
of future work is on the use of data involving AIS. In [161], the authors propose the
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combination of radar information in addition to AIS and tracking to evaluate suspicious
activities within the maritime scenario. The work [162] also considers the integration of the
detection method with RADAR and AIS systems for future implementations.

From more recent works, such as [43], to works more than a decade old, such as [163],
they all have the exploration of complete surveillance solutions as a common point.
Whether they are based on electro-optical and infrared sensors, with the use of multi-
ple image processing techniques, or works that bring together data from various families
of sensors, the ultimate focus of the system should be to support the fusion of information
to interpret scene activity, associate targets with the offense committed or the threat they
correspond to, and generate situational information to a control center [163].

4.4. Practical Applications

Within the entire literature review, several works cited that they aim at the practical
implementation of their systems to provide the collection of visual information in the
maritime scenario [164]. For this to be possible, it is necessary to evaluate several variables,
and computational capacity is usually one of the most important deciding factors when
evaluating the feasibility of practical implementations. For this reason, some works that aim
to create computer vision systems that run in real time, such as [165], make several analyses
related to processing time and the use of devices with different computational capacities.

Some authors, such as [157], conclude that their system responds more efficiently if
their candidate region search method is applied offline. However, the algorithm must be
employed to create a real-time situational view. Therefore, papers such as [166], which
demonstrate operation only for still images, suggest using it on continuous video streams.
In a review in [110], the authors suggest performing parallel data collection in addition to
processing. They claim that to develop systems for autonomous surface ships, datasets
with images collected and annotated from cameras installed on moving ships are needed.
With this, the dataset used to train the computer vision model will be extremely close to the
maritime scenario in which the autonomous ship will navigate, making the system more
robust than if the model only trained it with images of ships docked in ports.

In [56], the authors say that the architecture adopted there can be applied to real-time
computer vision problems by installing cameras at harbors. They also say that systems will
store the images collected during operation to retrain the system, making it more robust
with samples of different degrees of illumination captured throughout the day.

When the scenario of practical implementations is explored, it is possible to find
works where an embedded target detection system was implemented using the YOLOv4
architecture [79]. However, the authors themselves say that there is room for further
improvement in the detection rate in the experiment and that they intend to retrain the
same system with more data and other categories to achieve better results.

Finally, the authors of [6] propose and implement an object detection algorithm for
maritime surveillance, where low processing power embedded systems are the focus
of the application. The processing architecture was built to reduce the volume of data
processed in maritime surveillance systems. In this work, future research directions focus
on designing lighter weight detection architectures to achieve good performance, even on
computationally limited devices.

5. Conclusions and Future Work

This paper presents a review of ship localization, classification, and detection methods
based on optical sensors. This literature review made it possible to find the main chal-
lenges and open problems, besides exploring the techniques and architectures used by
several authors.

It is possible to state that CNNs have been explored with greater intensity over the
years regarding processing techniques. It is possible to recognize the advancement of this
type of technique with the observation of high-precision architectures, with the ability
to detect small objects, even in scenarios with noise and other sources of interference.
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Moreover, the evolution of the computational capacity of devices allows these techniques
to be employed in practical applications, replacing the need for human intervention in
several tasks [88].

Still exploring the techniques and models already devised, several detection algorithms
and practical maritime decision-making systems should be applied to the same dataset
to evaluate all works with the same metrics and datasets, just as several face verification
works use labeled faces in the wild (LFW) as a standard benchmark [167]. As in [62], several
authors have already said that they intend to verify this scalability of the technique on other
datasets. This idea is indeed valid since each of the datasets brings some particularities that
are new challenges for the model.

Research within datasets has shown that there is no uniformity in their use. Each
author works with their database. Therefore, more effort is needed to create large-scale
datasets that are readily available, so that the community can begin to have a more reliable
standard of comparison. About labeling, many authors claim to have done it manually.
Therefore, the ideal would be to explore CNNs that could be adapted to generate the
bounding boxes or pixel-by-pixel labeling automatically or semi-automatically.

The combination of deep learning and navigation data has the potential to solve
maritime situational awareness problems. This task is quite challenging but of equal or
greater importance for applications in maritime environments. The situational awareness
of all objects present can bring many benefits to any system. Different architectures are
proposed to improve the ability of automatic target recognition and search, each with its
advantages and disadvantages.

The research involving practical implementations is mainly based on the fact that
all the extra tasks of localization, simple or hierarchical classification, a combination of
detection techniques, preprocessing, AIS, and data fusion may increase the amount of input
data and results in an additional computational cost. From this arises the focus of analyzing
these computational costs based on the available technological conditions.

Therefore, it is possible to conclude that all research efforts within the literature review
fall within the following four research lines:

1 Creating large-scale fine-grained datasets with higher diversity and already labeled
samples, using synthetic data, and improving the balance between classes.

2 Creating, optimizing, and combining image processing techniques, including prepro-
cessing and the use of transfer learning or similar techniques.

3 Usage of different sensors and data sources to operate in conjunction with the optical
sensors, thereby generating a situational awareness of the monitored maritime region.

4 Practical analysis of the systems, indicating their performance and speed in real
scenarios, where the complexity may be higher than in the datasets.

With this, it is possible to conclude that this paper describes the main open problems
pointed out by the literature, aiming to influence the research of new work and better
delimit the challenges to be overcome.
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Abbreviations
The following abbreviations are used in this manuscript:

ATR Automatic Target Recognition
AIS Automatic Identification System
B2RB Bounding-Box to Rotated Bounding-Box
BLS Broad Learning System
BN Batch Normalization
CNN Convolutional Neural Network
DCT Discrete Cosine Transform
DeFMO Deblurring and Shape Recovery of Fast Moving Objects
DeblurGAN Deblur Generative Adversarial Network
EDSR Enhanced Deep Super-Resolution Network
ESRGAN Enhanced Super-Resolution Generative Adversarial Network
FPN Feature Pyramid Network
FusionNet Fusion Network
GAN Generative Adversarial Network
HOG Histograms of Oriented Gradients
IACS International Association of Classification Societies
IALA International Association of Marine Aids to Navigation and Lighthouse Authorities
IEC International Electrotechnical Commission
IEEE Institute of Electrical Electronic Engineers
IMO International Maritime Organization
IR Infrared
ISO International Organization for Standardization
ITU International Telecommunication Union
LBP Local Binary Pattern
LFW Labeled Faces in the Wild
LiDAR Light Detection and Ranging
mAP Mean Average Precision
MobileNet-DSC Mobile Network-Depthwise Separable Convolution
MDSR Multi-Scale Deep Super-Resolution
MLP Multi-Layer Perceptron
MOS Mean Opinion Score
MSE Mean Squared Error
NIQE Natural Image Quality Evaluator
PIRM-SR Perceptual Image Restoration and Manipulation—Super Resolution
PSNR Peak Signal-to-Noise Ratio
RADAR Radio Detection And Ranging
RaGAN Relativistic average GAN
RankSRGAN Rank Super-Resolution Generative Adversarial Network
ResNet Residual Network
ResBlock Residual Block
RetinaNet Retina Network
RNN Recurrent Neural Network
RoI Region of Interest
RRDB Residual-in-Residual Dense Block
RPN Region Proposal Network
R-CNN Region Based Convolutional Neural Network
LiDAR Light Detection and Ranging
SIFT Scale-Invariant Feature Transform
Skip-ENet Skip Efficient Neural Network
SNN Spiking Neural Networks
SR Super-Resolution
SRCNN Super-Resolution Convolutional Neural Network
SRGAN Super-Resolution Generative Adversarial Network
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SS Selective Search
SSD Single-Shot Detector
SSIM Structural Similarity Index Measure
SSS-Net Single-Shot Network Structure
SRResNet Super-Resolution Residual Network
SVM Support Vector Machine
VGG Visual Geometry Group
YOLO You Only Look Once
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