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Abstract: The unmanned surface vehicle (USV) has attracted more and more attention because of its
basic ability to perform complex maritime tasks autonomously in constrained environments. How-
ever, the level of autonomy of one single USV is still limited, especially when deployed in a dynamic
environment to perform multiple tasks simultaneously. Thus, a multi-USV cooperative approach
can be adopted to obtain the desired success rate in the presence of multi-mission objectives. In this
paper, we propose a cooperative navigating approach by enabling multiple USVs to automatically
avoid dynamic obstacles and allocate target areas. To be specific, we propose a multi-agent deep
reinforcement learning (MADRL) approach, i.e., a multi-agent deep deterministic policy gradient
(MADDPG), to maximize the autonomy level by jointly optimizing the trajectory of USVs, as well as
obstacle avoidance and coordination, which is a complex optimization problem usually solved sepa-
rately. In contrast to other works, we combined dynamic navigation and area assignment to design a
task management system based on the MADDPG learning framework. Finally, the experiments were
carried out on the Gym platform to verify the effectiveness of the proposed method.

Keywords: USV; trajectory design; policy gradient; multi-agent deep reinforcement learning; multi-
object optimization

1. Introduction

Nowadays, various kinds of unmanned robots are developing rapidly with the arrival
of the 5G era. Typical robots include the autonomous underwater vehicle (AUV), unmanned
surface vessel (USV), unmanned ground vehicle (UGV), and unmanned aerial vehicle
(UAV) [1–4], which play important roles in the artificial intelligence (AI)-enabled next-
generation (6G) network. As an important unmanned marine tool, the USV is also a
promising technique to provide wireless communication due to its low cost and high
flexibility [5,6]. Especially when it comes to complex tasks, such as maritime joint search
and rescue, maritime multi-target search, the construction of marine information networks,
and other missions. However, it is difficult to rely on one single USV to complete the task,
while multi-USV cooperation can be a good solution to the problem. This paper studies the
multi-USV dynamic path planning and area assignment problem, which will effectively
improve the autonomy and reliability of the USV in the increasing field.

As a generic technology among different robotics systems, the optimization objectives
mainly include path length, time or energy consumption, risk measure, maneuverability,
etc. They are classified into four kinds based on the model of consumption space, i.e., the
grid-based methods [7–10] solved by the heuristic strategies, such as the A* algorithm,
D* algorithm, Dijkstra algorithm, and Q-learning algorithm in reinforcement learning the-
ory, or intelligent strategies represented by particle swarm optimization and evolutionary
algorithms; the sampling-based methods such as probabilistic roadmap, rapidly-exploring
random tree (RRT) [11–13], or deep reinforcement learning method represented by experi-
ence replay based DQN algorithm; the mathematical optimization methods such as mixed
integer linear programming (MILP) and model predictive control (MPC) [14–16]; and the

Sensors 2022, 22, 6942. https://doi.org/10.3390/s22186942 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22186942
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4287-6644
https://doi.org/10.3390/s22186942
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22186942?type=check_update&version=2


Sensors 2022, 22, 6942 2 of 14

potential field methods such as the artificial potential field (APF) and the interfered fluid
dynamical system (IFDS) [17–19].

In addition to the classification mentioned above, when the purpose of agents is taken
as the dividing boundaries, the path planning problem is divided into the single agent path
planning problem (SAPP) and the multi-agent path planning problem (MAPP). For the
requirement of accessing a series of intermediate points during the monitoring mission
in SAPP, Ning Wang et al. [20] proposed a successive waypoints tracking method using a
BT-guided model-free solution to solve the SWT problem. Yong et al. [21] proposed the
dynamic augmented multi-objective particle swarm optimization algorithm to solve the
problem that obstacles and water flows exist at the same time to find the shortest and safest
route to the target, which is subject to collision avoidance. The rapidly random-exploring
tree (RRT) algorithm and its variants are some of the more popular path planning methods
in SAPP. However, they suffer sensitivity to the initial solution, which requires a lot of
memory and time to converge to the optimal solution. In order to solve this problem,
Wang et al. [22] propose the NRRT* to achieve nonuniform sampling in the path planning
process by learning quantities of successful planning cases from the A* algorithm. Thus,
the sampling process is guided, and the efficiency of the algorithm is improved. The
sampling mechanism is also used in reinforcement learning which has been prevalent in
recent years. In [23], Tom Schaul et al. proposed the prioritized experience replay method
to speed up the convergence of the training process, and the effectiveness was verified on
the Gym platform.

For the multi-objective optimization problem in SAPP, Hongqiang Sang et al. [24]
proposed a novel deterministic algorithm named the multiple sub-target artificial po-
tential field (MTAPF) based on the heuristic A* algorithm. The optimal path is divided
by this algorithm into multiple sub-target points to form a sub-target point sequence.
Ning Wang et al. [25] proposed a multilayer path planner (MPP) with global path-planning
(GPP), collision avoidance (CA), and routine correction (RC) for an unmanned surface
vehicle (USV). In addition, some methods inspired by these problems or traditional search
strategies are suggested, such as the bridge access path-planning method [26,27].

However, it is difficult to complete tasks only by relying on one single agent in certain
scenarios, such as maritime joint search and rescue, maritime multi-target search, the
construction of the marine information network, etc. Thus, the MAPP approach becomes
another effective method to deal with complex multi-objective problems. Yu Wu et al. [28]
proposed a new cooperative path planning algorithm based on an improved particle
swarm optimization (IPSO) algorithm aimed at maximizing the search space, minimizing
the terminal error, and generating paths in a centralized or distributed mode. In the same
way, Pradhan B. et al. [29] realized multi-robot navigation tasks by combining particle
swarm optimization (PSO) with the feed forward neural network (FFNN). To optimize
search capability, Yu Wu et al. [30] proposed a clustering improved ant colony optimization
(CIACO) algorithm, which strengthens the global and local search ability in the early and
later phases of iterations. Xinghai Guo et al. [31] proposed a chaotic and sharing-learning
particle swarm optimization (CSPSO) algorithm. The path planning problem is divided
into two stages: global path planning and path control, to solve the extended TSP, and the
nonlinear multi-objective model. For the multi-objective joint optimization problem, Milad
Nazarahari et al. [32] proposed an enhanced genetic algorithm (EGA) to improve the initial
paths in continuous space and jointly optimize the path length, smoothness, and safety of
the agent.

However, the alternating algorithm may not converge as the number of optimized
variables of USV is increased [33]. In addition, the optimized results can only be used for
the current environment, while, when the environment changes, the proposed optimization
algorithms can become invalid.

Deep reinforcement learning (DRL), as a branch of artificial intelligence (AI), provides
an alternative solution for such complex optimization problems, such as resource allocation
for V2V communications [34], the stochastic shortest path (SSP) problem [35], and mode
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selection and resource allocation for the fog radio access networks [36]. The DRL method
can deal with a large state space and time-varying environments [37].

However, in the multi-agent reinforcement learning scenario, each agent is unstable
and the environment is changing. In this paper, we propose to use the multi-agent deep
deterministic policy gradient (MADDPG) algorithm to solve the area assignment and
dynamic trajectory design problem in a multi-USV cooperation task. The algorithm utilized
centralized training within the decentralized execution framework [38]. Each USV can be
regarded as an agent. The contributions of this paper can be summarized as follows:

• We propose a multi-agent DRL method for the joint optimization problem in the
multi-USV cooperation scenario, where they share the common reward function to
achieve the maximum success rate of the system. The number of UAVs can be arbitrary
in the proposed MADRL algorithm, while the conventional methods can only deal
with the simple case, i.e., no more than two USVs;

• We consider a scenario in which obstacles change position at fixed intervals and the
USV needs to adjust its actions in real-time to avoid collisions with obstacles and other
USVs, ultimately achieving the task of dynamic trajectory design and area assignment.
Our algorithm is designed for 2D space, in which the trajectory of the UAV can be
shown in 2D;

• We develop an efficient task management framework, which adopts centralized train-
ing and the decentralized execution method. In order to improve the learning ability
of the agent and better adapt to the environment, we add the “soft update” mechanism
in MADDPG, so that the target network can better track the learning policy. All USVs
work in a cooperative way to achieve the reasonable allocation of target areas. In
order to maximize cooperative rewards, all experiences are trained together, while all
behaviors are at the disposal of the USV itself. The output of the actor network is the
action of the USV, which is based on the USV’s own observation.

The rest of the paper is organized as follows: In Section 2, we present the system
model and problem formulation. Section 3 demonstrates the MADDPG method for the
cooperative multi-USV network. Section 4 shows the simulation results and discussions.
Finally, Section 5 elaborates on the conclusion of this paper.

2. System Model

This paper considered a multi-USV cooperative dynamic navigation and area allo-
cation scenario with random obstacles on the sea surface, K USVs, N obstacles, and K
target areas, as shown in Figure 1. Each USV departs from the same point and adjusts the
target area to be reached according to the safety of the surrounding environment and the
distance required to reach the target area. Specifically, each USV should keep a certain
distance from other USVs during navigation to ensure communication as well as safety. At
the same time, when encountering obstacles, it can smoothly avoid obstacles under the
premise of keeping the maximum communication distance with other USVs. In order to
simulate the real dynamic port situation, obstacles involved dynamic obstacles and static
obstacles, among which dynamic obstacles would change their positions randomly after
each training episode.

Next, we will describe the multi-USV system and the problem formulation for the
proposed multi-USV cooperative dynamic navigation and area allocation scenario.
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Figure 1. Multi-USV communication system.

2.1. Multi-USV System

We considered a two-dimensional environment in which K USVs were represented by
U, each USV’s position at time t is denoted by

(
xU

i (t), yU
i (t)

)
, and the matching target is rep-

resented by Ti, among which the obstacle is denoted by Oi, and the positions of targets and
obstacles are represented by

(
xT

i , yT
i
)

and
(

xO
i , yO

i
)
, respectively. For an arbitrary USV, the

path taken can be denoted by Pi =
{(

xU
i (0), yU

i (0)
)
,
(
xU

i (1), yU
i (1)

)
, . . . ,

(
xU

i (n), yU
i (n)

)}
and the path length by

KU
∑
i

di. Thus, the discrete dynamics model of each USV can be

expressed as: {
vt+1

i = vt
i +

Ft
i

m ∆t
pt+1

i = pt
i + vt

i ∆t
(1)

where vt
i and pt

i , respectively, represent the speed and position of the ith USV at time t, and
∆t represents the sampling period where F is a force vector. The distance between the USV
and the obstacle is represented by dO

i , and the distance between USVs is represented by dU
i ,

while the distance from the USV to the matching target is represented by dT
i .

2.2. Problem Formulation

In the given system model, our goal is to enable all USVs to autonomously navigate to
their respective target areas by optimizing all trajectories, and each target is only assigned
to one USV. Then, we have

KU∪
i=1

T′i = T, i ∈ {1, . . . , KT}
∀i 6= j, T′i 6= T′j i, j ∈ {1, . . . , KT}

(2)

where T represent all assignable regions. All USVs can navigate by adjusting their positions
dynamically to avoid static and dynamic obstacles, which can be expressed as

∀i, j, Oj /∈ Pi i ∈ {1, . . . , N}, j ∈ {1, . . . , UK} (3)
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During the mission, each USV needs to maintain a certain distance to stay within
communication distance. We utilized Z to describe the communication graph of K USVs,
where E is the edge set, defined as

E =
{(

Ui, Uj
)∣∣d(ri, rj

)
= pi − pj ≤ ρc

}
(4)

where ρc is the maximum communication distance. In other words, when the distance
between two USVs is less than the maximum communication distance, there will be an
undirected edge between them, and they can communicate with each other. Accordingly,
each USV collaboratively adjusts its position and selects the target area based on the hazards
of its environment. The collision-free path is then formulated as:

∀i, j,
(

xU
i (t), yU

i (t)
)
6=
(

xU
j (t), yU

j (t)
)

(5)

Thus, in this article, a multi-agent deep reinforcement learning-based trajectory design
and area assignment algorithm are proposed.

3. MADDPG Approach for Cooperative Multi-USV Network

The multi-USV collaboration optimization issue is challenging as it requires a joint
kinetic USV trajectory and area assignment. In fact, this is NP-hard, and the approach
of exhaustion is usually invalid for such a multiple USVs scenario. As the quantity of
USVs increases, the calculation intricacy will elevate remarkably. As far as we know,
there is research utilizing the traditional optimization algorithm to tackle this problem in
these intricate settings. The MARL can solve this dynamic multi-objective optimization
problem effectively and accurately. Therefore, in this section, we will delineate how to
utilize the MARL approach to tackle the multi-USV collaboration issue. In Section 3.1, we
formulate the proposed problem as a Markov process and define the agent, state, action,
and reward separately. Section 3.2 presents the MADDPG algorithm for the multi-USV
joint optimization scenario.

3.1. Markov Game for Multi-USV Cooperation

To study the best behavior mode in given states, we employ a Markov decision process
(MDP) [39] to formulate the AUV motion planning, as the Markov decision process (MDP)
offers a mathematical framework for simulating the randomized strategies that can be
implemented with Markov states in a given scene. The method is modeled as tuples
(S, A, R, P, γ), and in this case, the tuples are action set A, state set S, state transition
probability P, discount factor γ, and reward function R of the system. The action selection
of the agent, a functional mapping from each state st

i ∈ S to action at
i ∈ A, is modeled as

policy π. The value function vπ(s) of the process is defined as the expected sum of discount
rewards that act continuously from and along with state s. In case a policy π can attain the
best from any initial state st

i ∈ S , we detect it as an optimal policy π∗. This is the target of
this training of the deep neural network with a deep reinforcement learning module.

Agent: Each USV can be considered an agent. USVs maintain a certain distance from
each other during navigation to facilitate communication, and each USV obtains a state
containing its own information and the information of the surrounding environment in the
process of interaction with the environment. The environment in this problem is completely
observed; therefore, the observations are equivalent to the state. Each actor has its own
actor and critic network which act as the executor and evaluator of the policy, respectively.
Each agent observes its own state, takes actions according to its own strategy, and then
obtains rewards from the environment to reach the next state, as shown in Figure 2.
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Figure 2. The framework of MADDPG for the cooperative multi-USV network.

State: The state of any agent is a one-dimensional vector with five components,[
x, y, dU

i , dO
i , dT

i
]
. The first two elements represent the current 2D position of the agent, the

third entry dU
i represents the distance between agents, and the fourth entry dO

i represents
the distance between agent i and the surrounding obstacles. The fifth element dT

i represents
the distance from agent i to the current matching target which can be changed with the
changes in the USV’s selection.

Action: The action for each agent is the output of its actor network, which is expressed
by νi = ui(oi). This is a Gaussian distribution where vi is composited by the velocities
of the x and y axes. An action is executed by the formula

→
a =

→
v ∗ ∆t +Nt, where

→
a is a

displacement vector and Nt is a random noise. The action is determined by the position of
the target area and the risk factors of the surrounding environment.

Reward: Each USV obtains its own reward, which depends on the current state,
current actions, and the next state (s, a, s′) at each time slot t. In our proposed multi-USV
scenario, the reward consists of four parts: communication distance lmax limitation penalty,
distance penalty, threat area penalty, and collision penalty. We utilized Rl to represent the
communication limitation reward, which depended on the next state of the agent. There
will be a large minus penalty −Rl for the agent if the agent is out of the communication
space in the next state. The space limitation is set as follows

0 ≤ Xk,t ≤ lmax, ∀k ∈ K, t ∈ T (6)

and
0 ≤ Yk,t ≤ lmax, ∀k ∈ K, t ∈ T (7)
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where Xk,t and Yk,t represent the horizontal and vertical coordinates of USV, respectively.
In the same way, we denote Rk,o as the collision penalty, which can be described as Rk,o = −

K
∑

k=1
zk,o,tPk,o(t)

zk,o,t = {0, 1}, ∀k ∈ K, o ∈ O, t ∈ T
(8)

where zk,o,t = 1 means there has been a collision, and Rk,o(t) is the collision penalty of USV.
Additionally, we set up a threat area penalty Rk,r to maintain a certain communication
distance between the USVs and prevent collisions. Then, we have

Rk,r = dmin(ui ,uj)
+ σ− dut

i ,u
t
j

(9)

where dmin(ui ,uj)
= agent.size + agent.size, σ represents the width of critical area of

agents, and dut
i ,u

t
j

represents the distance between agents. In order to guide the USV closer

to the target, we give the USVs a reward dependent on the distance between the USV and
the target as

Rk,t =
K

∑
k=1

kdis√
(xi − xt)

2 + (yi − yt)
2

(10)

where Rk,t is the distance reward for USV, and (xi − xt), (yi − yt) are the coordinates of the
USV. Moreover, kdis is the hyperparameters set manually. Thus, the whole reward Rw,t is

Rw,t = Rl + Rk,o + Rk,r (11)

3.2. Multi-Agent DDPG Approach

In the collaborative MARL scenario, each agent engages in interactions with the envi-
ronment and acquires team rewards to facilitate collaboration. Single-agent reinforcement
learning algorithms, such as proximal policy optimization (PPO) and the deep Q network
(DQN), can be straightly utilized to deal with collaborative scenarios by letting each agent
learn its optimum Q function in an independent manner. Nevertheless, the environment
can be unstable from the perspective of any agent. To tackle the unstable issue in MARL,
we utilized the MADDPG algorithm [38] learning a centralized Q-function for each agent as
per the global information. When all the actions of the agents are known, the environment
is stable. This is due to

P
(
s′ | s, a1, . . . , aL, π1, . . . , πL

)
= P

(
s′ | s, a1, . . . , aL

)
= P

(
s′ | s, a1, . . . , aL, π′1, . . . , π′L

)
(12)

for any πi 6= π′i , in which πi is the policy of agent i.
The aim of each agent is to select the beneficial policy that maximizes the accumulated

reward J(θ) = Es∼pπ ,a∼πθ
[R] prior to the description of the MADDPG arithmetic. Let us

start with the policy gradient (PG) algorithm utilized for the continuous control issue. The
crucial goal of the PG is to straightly adjust the parameter θ of policy π at the orientation of
∇θ J(θ), which is expressed as

∇θ J(θ) =
∫
S

ρπ(s)
∫
A
∇θπθ(a | s)Qπ(s, a)dsda = Es∼pπ ,a∼πθ

[∇θ log πθ(a | s)Qπ(s, a)] (13)

where the policy πθ is stochastic. At each step, the action is sampled as per the conditional
probability density πθ(a|s). When the action space dimension is very large, the PG algo-
rithm may need more samples, which will induce a remarkable computational challenge.
Unlike the random policy requiring the exploration of the full state and action space in
(12), the deterministic policy gradient (DPG) takes a deterministic policy into consideration
µθ : S→ A , which merely needs to integrate over the state space, as



Sensors 2022, 22, 6942 8 of 14

∇θ J(θ) =
∫
S

ρµ(s)∇θµθ(s)∇aQµ(s, a)
∣∣∣∣
a=µθ(s)

ds = Es∼pµ

[
∇θµθ(s)∇aQµ(s, a)|a=µθ

(s)
]

(14)

It is obvious from (14) that the DPG arithmetic prevents the integral over the entire
action space, which can decrease the computational intricacy and ameliorate the training
efficiency. In contrast to PG, DPG can tackle the difficult enhancement issue with high-
dimensional actions.

As the extension of DPG, DDPG adopts the deep neural network (DNN) to approx-
imate the policy µ and critic Qµ(s, a). Nevertheless, the updated network Qµ

(
s, a
∣∣θQ)

cannot be straightly utilized for estimating the target value, which will induce the update Q
divergent. Hence, the DDPG algorithm utilizes the soft target updates rather than straightly
copying the weights of the update Q.

Specifically, DDPG utilized a copy of the actor and critic networks to calculate the
target value, which is denoted as Q

′
(s, a) and µ

′
θ(s), respectively. For the sake of suiting

the environment and ameliorating the exploration efficiency, another trick of DDPG is to
add stochastic noise into the actor policy, as presented in Algorithm 1.

Algorithm 1. Training algorithm using the MADDPG framework.

Parameters: batch size β, training episodes. M, training step T, action noise N and the number of

USVs N, actor networks’ weights for each agent θ
µ
′

i
1: For episode = 1 to M do
2: Initialize observations Oinit , Onew ← Oinit .

Initialize: Actor network µ, critic network Q with weights θµ, θQ.
Initialize: Target actor, critic network: µ′, Q′, with weights θµ′ ← θµ , θQ′ ← θQ .
Initialize: Replay buffer D with capacity C, exploration counter.

Counter = 0
3: for step t = 1 to T do
4: if Counter < C then
5: each USV i randomly chooses ai;
6:
7: else
8: ai = µθi

(
oi

new

)
+N

9: end if
10: Execute actions a = [a1, a2, . . . aN ], and observe reward R, new states onew;
11: Store transition (o, a, r, onew ) into experience replay buffer D;
12: Sample a mini-batch of β transitions (om, am, rm, om

new) from replay. Buffer D;

13: Set ym = Rm + γQµ′

i
(
om

new, a′1, . . . , a′N
)∣∣∣

a′i=µ′i(oi)

14: Update critic by minimizing the loss

L(θi) =
1
S

S
∑

m=1

(
ym −Qµ

i (o
m
new , a1, . . . , aN)

)2

15: Update actor using the sampled policy gradient:

∇θi J = 1
S

S
∑

m=1
∇θi µθi

(
om

i
)
∇ai Q

µ
i (o

m, a1, a2, . . . , aN)
∣∣∣
ai=µθi (o

m
i )

16: Updating actor networks
Updating critic networks
Update target networks with updating rate τ:

θ
µ′

i ← θ
µ
i + (1− τ)θ

µ′

i
θQ′

i ← θQ
i + (1− τ)θQ′

i
17: end for
18: end for

Now we resort to the MADDPG algorithm that extends DDPG to the multi-agent
scenario. Specifically, a multi-agent game with L agents, µθ =

{
µθ1 , . . . , µθL

}
, which is
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parameterized by θ = {θ1, . . . , θL}, can be regarded as the set of all deterministic policies
for all agents, the gradient of the expected return for each agent is expressed as

∇θi J
(
µθi

)
= EG,a∼D

[
∇θi µθi (ai | si)× ∇ai Q

µ
i (o, a1, a2, . . . , aL)

∣∣∣
ai=µθi

(si)

]
(15)

where Qµ
i (o, a1, a2, . . . , aL) is a centralized function with the inputs of all the agents’ action

a = {a1, . . . , aL}, as well as the observation information o. G = {o1, o2, . . . , oL} represents
the information that the environment feeds back to the agent, including the distance
between agents, the distance between agent i with surrounding obstacles, and the distance
from agent i to each targets, all of which constitute the observation of all agents that are
denoted by

[
x, y, dU

i , dO
i , dT

i
]
. In our networks, the inputs of the critic network are the sates

of all the USVs, the distance between USVs, as well as distance from the USV to the target
area. The output of the critic network, i.e., Qµ

i (o, a) is returned to the actor network for
evaluating the action, which can be seen in Figure 2. The actor i executes the action based
on its own policy µθi , and the critic uses the Qµ

i function to evaluate the action of the actor.
In order to remove the correlation of the samples generating from the environment, the
framework adopts the experience replay mechanism to store the experience of each agent,
which is a finite buffer with capacity M expressed as the tuple (o, o′, a1, . . . , aL, r1, . . . , rL).
When the replay buffer is full, the oldest samples will be discarded. In order to better
adapt to the environment and improve the stability of exploration, we updated the target
network in a “soft update” way, so that it can slowly track the learning strategy, which can
be expressed as θ′ ← τθ + (1− τ)θ′ . In each time step, a batch size of tuples was selected
to train the network, and the critic-network was updated by minimizing the loss function as

L(θi) = Eo,o′ ,a,r

[(
Qµ

i (o, a1, . . . , aL)− y
)2
]

(16)

where
y = ri + γQµ′

i
(
o′, a′1, . . . , a′L

)∣∣∣
a′i=µ′(o′i)

(17)

The update policy of the actor-network is expressed as

∇θi J ≈ 1
m∑

k
∇θi µi

(
ok

i

)
∇ai Q

µ
i

(
ok, ak

1, . . . , ak
L

)∣∣∣∣∣
ai=µi(ok

i )

(18)

where m and k represent the minibatch size and the experience index, respectively.

4. Simulation Results

In this section, we present the simulation results as well as the performance analysis
of the proposed algorithm. In Section 4.1, the settings for the simulation are developed.
Section 4.2 presents the algorithm training configurations. In Section 4.3, we present the
detailed figures for the reward, collision rate, and trajectories.

4.1. Environment Settings

We consider a 400 * 400 square training environment based on the open AI platform,
which consists of USVs, targets, and threat areas. The geometric coordinate system is
established with the environmental center as the origin of the coordinates. As the target
area and static obstacle are regarded as parts of the environment, their settings would not
be changed during the training process. In contrast, the dynamic obstacle changes position
randomly after each training episode. In our settings, the maximum communication
distance ρc is set to 0.9 and the width of critical area σ is set to 0.1. In this coordinate system,
the size of the threat area is set to 0.25, while the size of the agent and target area are set
to 0.04 and 0.20, respectively. We present two indicators to measure the effectiveness of
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training: the collision rate of USVs’ collisions during the current episode and the collision
rate between the agent and the critical area during the total episode.

4.2. Training Configuration

In the given scenario, we set 60 episodes with 1000 steps each during the training
process. As the mission is continuous, we manually aborted the training process in each
training, and the environment was reset automatically after each episode. Since the capacity
of the memory buffer we set was 3000, the training process did not start until the buffer
was full, thus each USV adopted a random policy in the first 3000 steps, and then the whole
network started to be trained in each step afterward.

The whole training networks of the mission planning for the AUV are constructed
based on the PyTorch framework, where the training process is implemented on the
NVIDIA GeForce RTX 3060 GPU. The critic network consists of five fully connected lay-
ers, including three hidden layers, of which the hidden units are set as 64, 52, and 30,
respectively. The ReLU function is adopted as the non-linearity function in the networks.
Specifically, the first hidden layer with 64 neurons obtains the concatenated vector of obser-
vations o and actions a, and the data then proceed through the following second and third
hidden layers, with 52 and 30 neurons, respectively. The whole process is offline and can
be divided into two parts: off-line centralized training and on-line decentralized execution.
The advantage of using this method is that the system will have competitive execution
speeds compared to the traditional methods during the testing stage, and the calculation
could be gathered in the training stage.

4.3. Simulation Figures

Figure 3 shows the episode rewards obtained by USVs under different algorithms. The
RL algorithm based on the policy gradient is used as the benchmark comparison algorithm.
The experimental setting is for two USVs to perform navigation and assignment tasks with
two target areas under the condition of no obstacles. It can be seen that the MADDPG has
a significant advantage over the DDPG and REINFORCE algorithms, as it can get a higher
reward, which proves the effectiveness of the proposed algorithm in solving multiple USVs’
navigation and area allocation tasks.
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Figure 3. Rewards versus episodes under different RL algorithms.

Figure 4 shows the collision rate of USVs in different task environments. We observe
the experimental effects when the number of USVs is 4, 3, and 2, and the number of target
areas is 1, 2, 3, and 4, respectively. It can be seen from the figure that with the increase in
training times, the collision rate of USVs in each turn will gradually decrease and tend
to converge. At the same time, the total number of collisions will gradually decrease and
stabilize, as can be seen in Figure 5.
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Figure 6 shows the experimental conditions of the USV reward. It can be seen that in
the early stage of the training, because of the blindness of the exploration stage, the reward
for each USV will undergo a dramatic decline in the lowest (about 500 rounds), but with
ongoing exploration, the neural network with gradually learn the best strategy.
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Figure 7 shows the dynamic trajectory of USVs in different test environments. Obsta-
cles will move randomly after each training round, while the position of the target area
remains unchanged. The number of USVs and target areas can be set manually. When
encountering obstacles, it will adjust the direction according to the security of the surround-
ing environment and the position of the target area. When approaching the target area, it
will automatically coordinate the area to be reached according to the position of each target
area to complete the task assigned by the area.
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5. Conclusions

In this paper, a multi-agent reinforcement learning framework is proposed to solve
the trajectory design and area assignment for the multi-USV cooperation scenario. In this
framework, each USV needs to select the closest target area so as to obtain the shortest
route, during which each USV should keep a certain distance from others to keep within
the communication distance and avoid collisions. All UAVs use the MADDPG to try to
find the optimal policy to obtain a better reward, while traditional optimization methods
can hardly handle the scenario with a large number of UAVs. Thus, the proposed method
can be applied to the trajectory design and area assignment for multi-UAV scenarios. The
simulation results show the effectiveness of the proposed framework.
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