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Abstract: In the last decade, there has been continuous competition between two methods for detect-
ing the concentration of dissolved oxygen: amerometric (Clark electrode) and optical (quenching
of the phosphorescence of the porphyrin metal complex). Each of them has obvious advantages
and disadvantages. This competition is especially acute in the development of biosensors, however,
an unbiased comparison is extremely difficult to achieve, since only a single detection method is
used in each particular study. In this work, a microfluidic system with synchronous detection of the
oxygen concentration by two methods was created for the purpose of direct comparison. The recep-
tor element is represented by Saccharomyces cerevisiae yeast cells adsorbed on a composite material,
previously developed by our scientific group. To our knowledge, this is the first work of this kind in
which the comparison of the oxygen detection methods is carried out directly.

Keywords: oxygen sensor; optical sensor; biosensor; microfluidics; lab-on-chip; modified nanodia-
mond; nanostructured surface; surface modification; adhesion control; fluorinated material; biofouling

1. Introduction

The creation of sensors and biosensors for monitoring the environment is one of the
most important priorities in science, because of the close connection between human health
and socio-economic development. In this field, biosensors have been widely employed as
cost-effective, fast, in situ, and real-time analytical techniques [1–4]. A biosensor usually
consists of two main parts: a biological recognition element and a physical or chemi-
cal transducer [5]. The biological recognition part, in turn, can be one of three options:
molecular, cellular, and tissue sensing components [6]. Various enzymes, DNA, antigens,
antibodies, and biofilms are used as molecular recognizers. The significant advantage of
these molecular-based biosensors is their high selectivity [7]. However, they have some dis-
advantages, such as the high cost of macromolecule isolation, limited detection capabilities,
and a short lifetime of identifying molecules, which significantly limits the use of this type
of bioreceptor [8].

In turn, sensors that are formed from cells or intact tissues have recently undergone
rapid development in new methods of microfabrication and immobilization, and these very
recent advances have provided these types of biosensors with unique advantages [9,10].
Whole-cell biosensors with prokaryotic or eukaryotic cells are typical examples of this
type. The monitoring of various metabolic events in such systems is usually carried out
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through the analysis of the kinetics of respiration, which is a fundamental cellular process
that responds to physical and chemical changes in the environment and is thus suitable for
generating analytical signals [11]. Successful examples of such sensors include the detection
of wastewater contamination [12], evaluation of petroleum hydrocarbon contamination [13],
fermentation monitoring [14], and other technological processes [15].

The biochemical oxygen demand (BOD) parameter is used for monitoring the purity
of an aqueous environment [16] and it represents the amount of dissolved oxygen required
for the biochemical oxidation of organic substances contained in a sample at a certain
temperature over a specific time period. Such an analysis takes five days according to the
classical methodology [17], so considerable efforts are directed towards the development of
methods for the rapid assessment of this characteristic using certain strains or communities
of microorganisms [18–20].

Two types of transducers could be used to detect oxygen concentration as a measure
of metabolic activity in whole-cell systems: electrochemical (Clark electrode) and optical
(phosphorescence quenching of a tracer molecule) sensors [21]. It is important to note
that they compete with each other [22], and so far both are used in the development of
new analytical systems, since the choice of transducer is generally dependent on multiple
factors, such as access to equipment and facilities, or substrate properties and materials
of choice. Each of the methods has both advantages and disadvantages. In the case of the
Clark electrode, the advantages are as follows: the method is well established, mechanically
more robust than optical fiber sensors, and easily sterilized. The known disadvantages: con-
sumption of O2 during measurement, the drift of readings over time and their dependence
on hydrodynamic conditions, a more laborious maintenance procedure, and interfering
action of a number of substances, such as H2S. Advantages of the optical method: it does
not depend on the flow rate and salt background, it works well in electromagnetic fields, is
stable after calibration, has a noninvasive readout, and planar sensors or nanosensors could
be applied to imaging of O2. Disadvantages of optical measurement: it’s more expensive
than electrodes, photobleaching of the dye can occur, it’s interfered with by chlorine but not
by H2S, and has a brittle fiber tip (in the case of fiber sensors). Some works aim to identify a
clear leader in this race, considering both the primary transducers themselves and biosensor
systems as a whole. However, in the former case, it turns out that the uncertainties of the
results for both analyzers are quite similar but the contributions of the uncertainty sources
are different [23]. In the latter case, it is impossible to make a correct comparison, since
the research conditions (strains, immobilization method, experimental conditions, target
analyte, etc.) differ from article to article [21]. For this reason, one of the main goals of this
work was to conduct a direct experimental comparison of two detection methods under
identical conditions while working with the same receptor element in a synchronous mode.
To our knowledge, this is the first work of this kind.

To achieve this goal, we decided to use microfluidic technology due to a number
of advantages [24–28]. It allows for minimizing the volume of the analyzed sample,
achieving good reproducibility of the hydrodynamic and temperature conditions of the
experiment, which leads to a decrease in the dispersion of readings. Another advantage
is the possibility of flexible modification and coupling of various stages of analysis in
a compact device. These properties of the microfluidic system on the one hand make
it an ideal tool for comparing two different methods, and on the other hand, largely
eliminate the shortcomings of the electrochemical method associated with the influence
of hydrodynamic conditions on the readings, and make the need for direct comparison
of transduction methods obvious in order to identify the preferred way of organizing the
measuring system. There are many cases of successful applications of this technology,
for example, miniaturized electrochemical sensing platform or for measuring dissolved
chemical oxygen demand (COD) in surface waters [29], antimicrobial susceptibility test
(AST) using an optical oxygen sensor film for in-situ and real-time continuous measurement
of extracellular dissolved oxygen [30], in-line analysis of organ-on-chip systems [31], and
biomedical applications [32].
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2. Materials and Methods
2.1. Reagents and Materials

The nutrient medium was prepared using D-glucose (Panreac, Barcelona, Spain),
peptone (Condra, Spain), tryptone (Condra, Spain), and yeast extract (Helicon, Moscow,
Russia).

Biosensor measurements were performed using a sodium-potassium phosphate buffer
solution pH = 6.8 (33 mM KH2PO4 + 33 mM Na2HPO4, Dia-m, Moscow, Russia).

All other reagents and solvents used were chemically pure and produced by ChemMed
(Moscow, Russia) and Sigma–Aldrich (Moscow, Russia).

2.2. Microfluidic Setup

The experimental setup is shown in Figure 1. The eluent is pumped from the buffer
tank using the software-driven HPLC-Pump K-120 (KNAUER Wissenschaftliche Geräte,
Berlin, Germany), passes through the inlet assembly with a variable volume loop (Beckman
Coulter, Brea, CA, USA), and then enters the specially designed microfluidic cell. Loops
with a volume of 20, 50, 100, and 200 µL were used in the work.
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Figure 1. Experimental setup: (a)—overall view; (b)—the developed microfluidic cell with installed
amperometric Clark electrode (top), optical oxygen sensor (bottom). A PET film with an eluent
channel is shown in the inset; (c) schematic representation of a microfluidic cell in section, side view.
The bioreceptor is placed in the center of the cell directly into the liquid flow, the amperometric
(top) and optical (bottom) sensors are in close proximity, performing measurements in the same
microvolume.

The microfluidic cell (Figure 1b,c) consisted of two sheets of Plexiglas and a PET layer
between them, fastened together by four screws. The PET film thickness was 100 µm. A
channel for the flow of liquid 3 mm wide, as well as holes for fasteners, were made using a
laser. The Clark electrode, model DKTP-02 (Econix-Expert, Moscow, Russia), was mounted
in the center of the upper half of the cell. The optical oxygen sensor DKTP-03 (Econix-
Expert, Moscow, Russia) was fixed in the center of the lower half of the cell. Both types
of sensors were connected to the universal oxygen analyzer Expert-009 (Econix-Expert,
Moscow, Russia) [33,34] whose readings were automatically transferred to a computer and
synchronously collected by specially developed software. The inlet and outlet of the liquid
flow was through HPLC tubes, which were fixed by standard 1/8 fittings with zero dead
volume. This design of the cell made it possible to place two types of sensors as close as
possible to each other so that measurements were carried out synchronously in the same
microvolume in which the biosensor was placed.

2.3. Sensor Fabrication

A previously developed composite material was used as a substrate for the biore-
ceptor [35–37]. It consists of mesoporous SiO2 particles with an adsorbed indicator dye,
which are evenly distributed in a gas-permeable fluorinated material. Pt (II) 5,10,15,20-
tetrakis (2,3,4,5,6-pentafluorophenyl)-porphyrin (PtTFPP, Frontier Scientific, Logan, UT,
USA) was adsorbed onto Merck silica gel 60 (Merck KGaA, Darmstadt, Germany) followed
by distribution in fluorine-containing polymer, fluoroplastic 42 (F42, HaloPolymer, Moscow,
Russia).

Formerly, we have shown that the introduction of modified detonation nanodiamond
(DND) into the surface of a sensor material makes it possible to significantly vary its wetta-
bility, making it possible to control the adhesion of the biomaterial [38–40]. The described
approach was also applied in this work. The methodology for the DND modification has
been described in detail earlier [41]. UDA-GO-SP brand (Sinta, Minsk, Belarus) was used
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as starting material. Pristine DND was heated for 5 h in Ar-atmosphere with 3% of CCl4 at
400 ◦C. The obtained DND with acid chloride groups on the surface (DNDchl) were further
heated in pure ammonia for 1 h at 1 atm and 300 ◦C. Partial substitution occurs under
the described conditions, giving DND of a mixed composition (DNDamine + chl). The
particle size distribution was measured using LS 13 320 XR Particle Size Analyzer (Beckman
Coulter, Brea, CA, USA) to control possible particle aggregation during the treatment.

Preliminary studies have shown that it is DNDamine + chl in an amount of
4.6 × 10−4 g·cm−2 that makes it possible to achieve maximum surface biofouling [38,39],
which is exactly necessary for the formation of a stable bioreceptor. The process of nanodia-
mond anchorage to the surface layer has been studied in detail earlier [40]. DNDs were
placed in glycerol (12 g·dm−3) and the suspension was kept for 20 min in an ultrasonic
bath. Then 30 µL was immediately applied to the samples. Annealing was carried out in a
drying oven (SNOL-3,5,3,5,3,5/3,5-I2M, Thermix, Moscow, Russia) at the temperature of
160 ◦C in an argon atmosphere for 12 h.

The obtained material was tested in two types of experiments: (i) without biomaterial
when sodium sulfite solution was introduced as a response simulator, (ii) with adsorbed
yeast cells, and when glucose solutions of various concentrations or natural water samples
were injected. In the latter case, the correlation between the analytical signal and the BOD5
parameter determined by the standard method was estimated.

2.4. Model Experiments

Model experiments were carried out with a sodium sulfite solution with a concentra-
tion of 0.5–5 g·dm−3 as a sample simulator to evaluate the response time and establish the
optimal operating parameters for various operating modes of the created setup. The liquid
flow rate was varied in the range from 0.5 to 2 ml·min−1 and the volume of the inlet loop
was 20, 50, 100, and 200 µL.

2.5. Bioreceptor Formation

Pure cultures of the yeast Saccharomyces cerevisiae, known for rapidly accumulating
biomass and easily forming biofilms, were used as a model biological object [42]. The
cultivation in a liquid microbiological medium was carried out at 28 ◦C. The composition
was as follows (g·dm−3): K2HPO4, 0.655; NH4Cl, 1.0; MgSO4 × 7H2O, 0.2; FeSO4 × 7H2O
0.01; CaCl2 0.0075; Sucrose 50.0. Pre-sterilization of the medium was carried out for 40 min
at 110 ◦C and 1.5 bar using an autoclave. Absorbance at 660 nm was used for biomass
growth estimation (SF 2000 spectrophotometer, OKB Spectr, Saint-Petersburg, Russia).
Goryaev chamber at 1200 magnification served for visual cell counting.

After the incubation time (4 days), the vial was opened, and the solution was cen-
trifuged at 5000 rpm for 5 min using Hettich EBA 200 (Andreas Hettich GmbH & Co.,
Tuttlingen, Germany) to separate the medium (supernatant) from the cells. The resulting
wet biomass was washed from the remnants of the medium with saline (0.9% NaCl solution)
and centrifuged again. The procedure was performed several times. Thus, a concentrate
of wet biomass in saline solution was obtained. 30 µL of suspension was applied to the
sensor material. After drying at room temperature for 60 minutes, a finished bioreceptor
was obtained. It was used immediately. At the end of the working day, the biosensor was
disposed of.

2.6. Control of Biofilm Formation

The colorimetric MTT assay was used for the estimation of biofilm formation on the
sensitive elements’ surfaces [43,44]. This method allows one to establish the viability of
cells by assessing the cellular metabolic activity by the ability to reduce the yellow salt of
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Samples were placed
in 0.5 ml of a 0.1% MTT solution followed by incubation for 1 h at 29 ◦C. Then the liquid
was drained, and stained samples were washed with water. An ethanol 96% was added
and left for 45 minutes to extract the dye from biofilms. The optical density of the extract
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was determined at a wavelength of 590 nm using Expert-003 photometer (Econix-Expert,
Moscow, Russia). The quality of the biofilm formation was judged by the color intensities
of the obtained solutions.

2.7. Confocal Laser Scanning Microscopy (CLSM)

Confocal laser scanning microscopy (Leica SP5 microscope (Leica, Wetzlar, Germany))
made it possible to visualize the biofilm. Cells were stained with fluorescent dye SYTO®

11 (S7573 ThermoFisher, Waltham, MA, USA) diluted 1:1000 in phosphate buffer. Lectin
IV from wheat germ agglutinin (WGA) conjugated with fluorescent dye Alexa Fluor
488 (W11261 ThermoFisher, Waltham, MA, USA) was used for polysaccharide matrix
staining [45]. The Nomarski contrast method allowed for detecting undyed particles. An
argon laser with a wavelength of 488 nm (for detecting WGA fluorescence) and 594 nm
(for detecting SYTO 11) was used. The resulting images were analyzed using the ImageJ
software package with the BioFormats 5.8.2 plugin.

2.8. Determination of BOD by the Standard Dilution Method

The dilution method was used as a reference method for determining BOD5. The
analysis was carried out in accordance with the procedure specified in [17]. Dissolved
oxygen content was determined using an Expert-001-4.0.1 BOD thermooximeter (Econix-
Expert, Moscow, Russia).

3. Results
3.1. Preliminary Experiments without Bioreceptor

Primary testing of the developed system was carried out without the use of a biore-
ceptor, using a sodium sulfite solution of various concentrations as a response simulator.
The recording of the readings of both sensors began simultaneously with the injection
of the sample into the flow. Examples of the observed dependencies (primary analytical
signal vs. time) are shown in Figure 2. For the Clark electrode, the primary signal is the
current in the electrochemical cell, which is directly proportional to the content of dissolved
oxygen. In the case of the optical method, the lifetime of the excited state of the indicator
dye is recorded, which is inversely related to the oxygen concentration by the well-known
Stern-Volmer equation [46]:

τ0/τ = 1 + kq τ0 [Q], (1)

where τ0 and τ are the lifetimes in the absence and the presence of the quencher Q, kq—is
the bimolecular rate constant of the fluorescence quenching process due to a short-range
interaction of species.

Figure 2 shows that both sensors respond to sample injection, but the reaction of
the optical sensor starts a little earlier. The latter can be explained by the fact that the
optical sensor is in direct contact with the analyzed solution, while the reaction in the Clark
electrode occurs in an internal electrochemical cell separated from the liquid flow by a
gas-permeable membrane that introduces a diffusion delay. This phenomenon may also be
related to the higher detectable threshold of the Clark electrode, i.e., a visible response may
require the reaction to reach a higher level in order to be detected.

Registered dependencies can be processed in various ways to obtain an analytical
signal. In this work, three methods were used: (i) calculation of the peak area, (ii) peak
height determination, and (iii) slope calculation (rate of change of the primary signal) after
the sample entered the microfluidic cell (Figure 3). In the latter case, a range of points was
selected in the left half of the peak between two transition zones. The first one is due to the
beginning of the sensor reaction to the sample entering the cell, and the second is due to
the signal approaching its extremum. A linear trend line was superimposed on the selected
points, and the slope was taken as an analytical signal. The criterion for discarding points
falling into the transition zones was the correlation coefficient set for the linear trend in the
form R2 ≥ 0.99.
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Figure 3. Methods for the recorded signal processing: (a)—calculation of the peak area; (b)—
determination of the peak height; (c)—determination of the slope (the rate of change of the primary
signal) after the sample enters the cell.

The results of the data processing for the preliminary experiment with sodium sulfite
samples are shown in Figure 4. It can be seen that both types of sensors exhibit linear
dependencies for all considered methods, but the best results were obtained when deter-
mining the slope. It is also worth noting that the dependencies for the Clark sensor, unlike
the optical sensor, do not pass through the origin. This may be due to the principle of
operation of this transducer, in particular, the presence of a background current and the
dependence of the analytical signal on the hydrodynamic measurement conditions. The
observed discrepancy between the calibration dependencies of the two types of sensors also
indicates a lower threshold of determined concentrations of the optical sensor compared
to the amperometric one. The limit of detection (LOD) for the electrochemical and optical
sensors was 0.1 and 0.05 g·L−1, respectively. The limit of quantification (LOQ) was 0.5 and
0.2 g·L−1, respectively.
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Figure 4. Calibration dependencies for different methods of the original data processing (calculated
areas, heights, and slopes): (a–c)—Clark electrode; (d–f)—optical sensor. Readings of the optical
sensor vs. Clark electrode: (g)—peak area; (i)—peak height; (j)—slope.

For further measurements, the slope factor processing was used, since it has the best
linearity of response as well as the best correlation between the readings of the optical sensor
and the Clark electrode. The determination of the peak area was abandoned to minimize
the time of a single measurement. In addition, there was the worst correlation between the
readings of the two sensors for this processing method.

3.2. Yeast Bioreceptor Properties

First, we wanted to make sure the cells are firmly attached to the surface of the
substrate. For this, a freshly prepared receptor was compared with a receptor after a
working day. A sensor substrate without biomaterial was used as a control. Figure 5a
shows that the results of respiratory MTT assay differ little for the samples; the sensor
during the working day practically did not lose its activity.
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surface (1200×) of a freshly prepared sensor with applied Saccharomyces cerevisiae yeast and a sample
after a working day. Fluorescent staining: the cells are shown in red, and the polysaccharide biofilm
matrix is indicated in green.

Photographs obtained by confocal laser scanning microscopy (Figure 5b) show that
immediately after yeast application, there are quite a lot of cells on the surface (red staining,
about 5% of the visible field), and their amount changes little after the sensor has been
used for one working day. At the same time, the number of biofilms noticeably increases,
which indicates favorable conditions for vital activity after the immobilization on the
optical sensor surface. The optimal concentration of Saccharomyces cerevisiae yeast cells on
the surface of the biosensor substrate was found to be 12.5 mg·cm−2. Such a bioreceptor
demonstrated a stable and fast response to the substrate injection.

3.3. Application on Model Glucose Solutions

The dependence of the response of the model bioreceptor on the concentration of
glucose in the microfluidic cell was studied (Figure 6). Since a whole-cell receptor element,
which is a catalytic-type bioreceptor, was used in this work, the resulting dependencies are
described by the Michaelis–Menten equation:

v =
vmax[S]

KM + [S]
(2)

where ν—the rate of the enzymatic reaction; νmax—the sensitivity to the enzymatic reaction;
KM—the apparent Michaelis constant; [S]—the initial concentration of the substrate.

The found value of the kinetic constant KM is 2.7 g·L−1, which is equal to such a
concentration of the substrate at which the rate of the enzymatic reaction, is half of the
maximum value. Therefore, the linear section of the calibration dependence is in the range
of glucose concentrations from 0 to 2.0 g·dm−3, so further measurements were carried
out in this range of substrate concentrations. The highest reproducibility of the analytical
signal was determined by varying the volume of the loop (volume of the injected sample)
from 0.02 to 0.20 mL and the flow rate from 0.50 to 2.00 mL·min−1. It was found that the
optimal solution for both types of transducers was as follows: loop volume of 0.20 mL
and a flow rate of 1 mL·min−1 (Figure 7). For these conditions, the dispersion of values is
18% for a glucose concentration of 0.5 g·dm−3 and less than 5% in the concentration range
of 1–2 g·dm−3. The observed dependencies obtained for different types of primary data
processing are close.
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A comparison of optical and amperometric sensors shows that the optical sensor has
better reproducibility and linearity of the calibration dependence. In addition, the slope of
the calibration, built using the height of the peak, is 2 orders of magnitude, and in the case
of calibration using the slope of the left side of the peak, it is an order of magnitude higher
than the corresponding values for the Clark electrode.

3.4. BOD5 Estimation on Real Samples

At the final stage of the study, a model bioreceptor based on Saccharomyces cerevisiae
was also tested on a series of 10 real samples taken from several fish farm aquariums
and wastewater. The main task was to identify the correlation between the analytical
signal and the parameter BOD5, which characterizes the contamination of the sample with
organic substances and is determined by a certified method [17]. The results are presented
in Figure 8. It can be seen that, in general, the BOD5 values determined using different
transducers are quite close to the values found by the classical method. However, the
electrochemical sensor in the range of low concentrations exhibits an underestimation,
and the overall slope of the correlation dependence significantly deviates from 1. This
behavior of the Clark electrode makes it less attractive as a transducer in this kind of
system, especially when operating in the low concentration range, when deviations are
most noticeable. Moreover, it is important to consider other aspects of the two types of
sensory modalities in addition to differences in analytical capabilities. The Clark electrode,
although more cost-effective, is much more demanding on regular maintenance. A thin
gas-permeable membrane is prone to mechanical damage, and the electrolyte may become
contaminated and require replacement. In the case of the optical method, the measuring
device itself does not come into contact with the analyzed medium, so no maintenance is
required. The indicator dye is placed in a material of a small area and can be easily replaced
after working out the resource. Exactly the same replacement will need to be carried out in
the case of the electrochemical sensor since the cells are fixed on a special substrate, which
requires periodic replacement.
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Figure 8. Dependence of the estimated BOD5 parameter on that determined by the classical method.

4. Conclusions

The present work demonstrated for the first time a direct experimental comparison of
two methods for measuring dissolved oxygen: electrochemical and optical. This goal was
achieved through the integration of the sensors into the microfluidic system.
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A yeast-based element was used as a receptor; the formation of biofilms was con-
firmed by a complex of methods. A practical example of synchronous measurement of the
respiratory activity of model bioreceptor cells by two types of sensors clearly shows the
advantage of the optical sensor in response time to changes in oxygen concentration, which
is associated with the absence of an additional diffusion membrane layer. On the contrary,
the indicator dye is located as close as possible to the bioreceptor element, allowing one
to achieve better metrological characteristics during the optical measurement in the same
process. The estimation of the BOD5 parameter using the created model bioreceptor made it
possible to reveal the underestimation of the values measured by the electrochemical sensor
in comparison with the certified method, while the optical sensor exhibited an almost 1:1
ratio. The known dependence of the readings of the electrochemical sensor on the liquid
flow rate was not revealed under the conditions of the experiments, since all measurements
were performed at a constant flow rate, which put both types of sensors on an equal footing
when compared. However, a clear advantage of the optical measurement method was
established as a result of the assessment.

The proposed methodological approach can be used for further comparative studies
since the demonstrated advantage of the optical method in relation to Saccharomyces cere-
visiae yeast does not mean that this will also be true for other biological objects. It is also
important to note the good adhesive properties of the developed substrate used for cell
immobilization. It can be used in the future to isolate the microbiome of a particular water
body in order to assess its substrate specificity or resistance to toxic effects.
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