
Citation: Shumba, A.-T.; Montanaro,

T.; Sergi, I.; Fachechi, L.; De Vittorio,

M.; Patrono, L. Leveraging IoT-Aware

Technologies and AI Techniques for

Real-Time Critical Healthcare

Applications. Sensors 2022, 22, 7675.

https://doi.org/10.3390/s22197675

Academic Editors: Alexandru Lavric,

Liliana Anchidin and Adrian I.

Petrariu

Received: 2 August 2022

Accepted: 4 October 2022

Published: 10 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Leveraging IoT-Aware Technologies and AI Techniques for
Real-Time Critical Healthcare Applications
Angela-Tafadzwa Shumba 1,2 , Teodoro Montanaro 1 , Ilaria Sergi 1 , Luca Fachechi 2 ,
Massimo De Vittorio 1,2 and Luigi Patrono 1,*

1 Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
2 Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, 73010 Lecce, Italy
* Correspondence: luigi.patrono@unisalento.it

Abstract: Personalised healthcare has seen significant improvements due to the introduction of
health monitoring technologies that allow wearable devices to unintrusively monitor physiological
parameters such as heart health, blood pressure, sleep patterns, and blood glucose levels, among
others. Additionally, utilising advanced sensing technologies based on flexible and innovative
biocompatible materials in wearable devices allows high accuracy and precision measurement of
biological signals. Furthermore, applying real-time Machine Learning algorithms to highly accurate
physiological parameters allows precise identification of unusual patterns in the data to provide
health event predictions and warnings for timely intervention. However, in the predominantly
adopted architectures, health event predictions based on Machine Learning are typically obtained by
leveraging Cloud infrastructures characterised by shortcomings such as delayed response times and
privacy issues. Fortunately, recent works highlight that a new paradigm based on Edge Computing
technologies and on-device Artificial Intelligence significantly improve the latency and privacy issues.
Applying this new paradigm to personalised healthcare architectures can significantly improve their
efficiency and efficacy. Therefore, this paper reviews existing IoT healthcare architectures that utilise
wearable devices and subsequently presents a scalable and modular system architecture to leverage
emerging technologies to solve identified shortcomings. The defined architecture includes ultrathin,
skin-compatible, flexible, high precision piezoelectric sensors, low-cost communication technologies,
on-device intelligence, Edge Intelligence, and Edge Computing technologies. To provide development
guidelines and define a consistent reference architecture for improved scalable wearable IoT-based
critical healthcare architectures, this manuscript outlines the essential functional and non-functional
requirements based on deductions from existing architectures and emerging technology trends. The
presented system architecture can be applied to many scenarios, including ambient assisted living,
where continuous surveillance and issuance of timely warnings can afford independence to the elderly
and chronically ill. We conclude that the distribution and modularity of architecture layers, local
AI-based elaboration, and data packaging consistency are the more essential functional requirements
for critical healthcare application use cases. We also identify fast response time, utility, comfort, and
low cost as the essential non-functional requirements for the defined system architecture.

Keywords: internet of things; edge intelligence; healthcare and wellness; piezoelectric sensors;
multi-sensor; anomaly detection

1. Introduction

The Internet of Things (IoT) paradigm has rapidly gained popularity over the years
resulting in billions of connected devices applicable to everyday scenarios in various
industries [1]. Researchers and industry players alike have developed applications that
leverage IoT-enabling technologies to develop intelligent environments such as smart
cities [2–4], smart factories [5–7], and smart homes [8–10]. Consequently, the healthcare and
wellness domain has also seen an increase in the use of wearable devices due to a growing
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demand for personalised healthcare, advances in the development of miniaturised flexible
sensing technologies, and the proliferation of IoT technologies in modern society [11,12].

On the other hand, because of the technological advances applied to healthcare to
increase the human lifespan, the number of elderly citizens in many developed countries
around the world is increasing. The increased elderly population, as a result, puts a sig-
nificant burden on existing healthcare systems and infrastructures since elderly citizens
require constant care, assistance, and monitoring because of the numerous chronic illnesses
and conditions related to ageing. In addition to the increasing number of elderly citizens,
a general increase in the number of people suffering from chronic illnesses coupled with
the worldwide shortage of healthcare workers also contributes to the burden on healthcare
infrastructures [13–16]. Several governments have dedicated significant resources to devel-
oping innovative technological solutions to provide efficient, affordable, and non-invasive
services to improve overall citizen quality of life. Therefore, several architectures based
on IoT-enabling technologies and wearable devices have been designed and developed
to improve the overall healthcare services offered to citizens and alleviate the burden on
existing healthcare infrastructures [17,18].

Some of the developed architectures are based on wearable devices that involve the
use of various combinations of physiological and environmental data collected by wearable
sensors to diagnose illnesses and provide warnings and intervention solutions in some cases.
In most cases, applying Machine Learning (ML) and Artificial Intelligence (AI) algorithms
capable of inferring meaningful patterns from the collected data provides diagnoses and
intervention solutions. However, in many existing frameworks, computationally expensive
and Cloud-reliant methods and algorithms are employed to infer patterns and meaningful
information from the collected data [19–21]. Therefore, for these Cloud-based frameworks
to function, frequent Cloud access and data transmission from wearable devices to centrally
located Cloud data centres are required, raising privacy and latency concerns. Challenges
related to achieving secured transmission using Wide Area Network (WAN) communication
technologies such as WiFi or 4G wireless technologies usually used to obtain Cloud access
largely contribute to privacy concerns [22,23].

In contrast, the large distances between the data sources and Cloud data centres
mainly contribute to latency concerns. Slow response times in Cloud-based architectures
also arise because warning or intervention solutions originate from the same Cloud data
centres located far away from the user [19,24,25]. This property, as a result, confines
the application of these frameworks to application use cases where real-time or timely
interventions are not functional requirements, thus limiting the range of possible healthcare
services offered by the Cloud-based IoT frameworks [18,21,26–28]. In response to these
concerns and limitations, the Edge and Fog Computing paradigms facilitated the realisation
of IoT-enabled healthcare application frameworks offering better response time and privacy
preservation [27,29].

AI techniques such as ML, Deep Learning (DL), Federated Learning (FL), or Continual
Learning (CL) algorithms are also applied to Edge/Fog Computing infrastructures to
allow for intelligent data processing at the network edge. Intelligent data processing
at the network edge further reduces the application response time and improves the
privacy offered to users [24,26,28,30]. Improved response time is particularly essential
in time-critical applications, such as healthcare architectures, where quickly obtaining
usable information from sensor data is extremely important, and delayed intervention may
be fatal.

In addition to the computational considerations mentioned above, utilising advanced,
high accuracy, and precision sensing technologies in the right application-specific com-
binations also improves IoT healthcare frameworks’ overall capabilities, accuracy, and
robustness. To that end, cutting-edge research has been conducted in recent years to
facilitate the creation of sensors capable of monitoring pertinent physiological signals
with high accuracy and precision while utilising minimal power. Sensors made from
bio-compatible materials easily attached to the skin and designed with comfortable form
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factors that allow them to cause limited to no intrusion to the user’s day-to-day activities
are crucial in wearable-based healthcare frameworks. Additional information about such
sensing technologies can be found in [11,31–33]. Adding multiple advanced sensors to one
framework can provide valuable correlating data to make more meaningful and complex
predictions. As a result, wearable-based IoT-aware healthcare frameworks based on mul-
tiple advanced sensors are more versatile, robust, and trustworthy. A reference for some
healthcare application-specific sensor combinations is available in a survey published by
Sabry et al. in [34]. Consequently, adopting miniature, flexible, skin-compatible sensor
technology introduces the possibility of unobtrusively monitoring physiological param-
eters that are usually imperceptible using the typical, commercially available wearable
devices [35]. Ultimately, this allows the definition, design, and development of IoT-based
healthcare frameworks that facilitate the long-term surveillance of critical parameters in
prevention, diagnosis, and rehabilitation.

Several frameworks based on Edge/Fog Computing paradigms have been success-
fully applied in the healthcare domain through telemedicine, e-health, and mobile health
applications. Other application domains have, however, seen the addition of on-device
intelligence improve response times and privacy preservation in IoT frameworks. This
result means that in addition to AI algorithms applied to the framework’s Edge/Fog/Cloud
nodes, sensing devices equipped with AI capabilities allow some on-device data analysis
and, consequently, increase the amount of sensor data that can be exploited to perform
the analysis, ultimately improving framework efficiency. Adding on-device intelligence
can also limit data transmission between framework components, thus improving privacy
preservation and device power efficiency. Typically, IoT frameworks rely on Bluetooth
Low Energy (BLE), ZigBee, or other limited-range communication technologies to transmit
raw sensor data to Edge/Fog nodes for processing. Therefore, introducing on-device data
processing using ML and AI, regardless of complexity, could result in significant response
time and power efficiency improvements by reducing the amount of data transmitted
over wireless networks. However, this type of local on-device data processing based on
AI is still in its infancy in healthcare domain applications. Therefore, it is necessary to
define implementation guidelines, tools, and technical requirements for its adoption and
integration with existing reference architectures [25].

Due to advances in the growing field of on-device AI, advances in sensing technologies,
and the success of Edge/Fog/Cloud-based IoT frameworks, we propose that combining
these technologies to develop healthcare domain frameworks can significantly contribute to
the definition of reliable personalised healthcare architectures. In this paper, we, therefore,
provide a detailed review of existing IoT-based architectures that utilise wearable devices
for various healthcare applications. We also describe the requirements and reference
architecture for a multi-layer IoT-aware system based on an advanced multi-sensor network
leveraging Edge Computing technologies and on-device intelligence for critical or time-
sensitive healthcare domain applications. The proposed architecture leverages advanced
sensing technologies that allow the measurement of minute and accurate biosignals, low-
cost communication technologies to facilitate the development of affordable wearable
devices, Edge Computing in conjunction with Edge and on-device Intelligence technologies
to facilitate secure real-time applications, and Cloud technologies to facilitate complex
data analysis.

The main contributions of this paper are as follows:

• We provide a detailed analysis of the evolution of IoT-based architectural configura-
tions applied to the healthcare domain.

• We define requirements for next-generation intelligent IoT-enabled personalised
healthcare architectures. We define functional and non-functional requirements based
on observations made from the existing literature and trends related to existing and
emerging technologies while also considering the nature of the application scenarios.

• We define a detailed reference architecture configuration that combines high-precision
sensing technologies, on-device intelligence, Edge Intelligence, and Cloud Intelligence.
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We also introduce technologies applied in the various components of the defined
architecture to aid the successful implementation of the defined architecture.

• We present potential use cases and scenarios for which the proposed architecture can
be adopted to guide researchers and interested parties.

The rest of the paper is organised as follows: Section 2 provides the review of existing
IoT-based healthcare architecture configurations, Section 3 describes the requirements
for the proposed IoT system architecture, Section 4 defines the proposed architecture,
and Section 5 proposes potential application use cases that can benefit from adopting
the proposed architecture. Finally, Section 6 gives conclusions and recommendations for
future work.

2. State-of-the-Art

Many authors have presented various architectural configurations for healthcare do-
main IoT-aware systems based on wearable devices. These configurations can be classified
into two main categories based on the approach used to acquire, store and, most importantly,
process the collected sensor data. The discussion presented here is, therefore, divided into
two main parts describing the two main architectural configuration approaches adopted in
the literature. The first, a centralised architecture approach, involves the transmission of
raw data directly from the sensing devices to the Cloud without the use of an intermediate
layer, while the second, a decentralised architecture approach, involves the use of one or
more intermediate layers that perform elaboration of data, provide temporary storage, or
application-specific decisions between the sensors and the Cloud. Solutions within the
first group usually leverage the Cloud to process data using either domain-specific non-AI
algorithms or AI algorithms to obtain intervention decisions, diagnosis conclusions, or
recommendations. They typically conform to the structure illustrated in Figure 1. In the
first part of this section, we report the works that leverage the Cloud for storage, process-
ing, and decision making and do not offload any of the computational tasks or offer user
services through intermediate layers. While in the second part, we describe the works that
involve the use of multi-layer architectures to support one or more of the following:

(a) data collection from wearable sensors,
(b) elaboration of data in Edge nodes,
(c) the temporary storage of data in Edge/Fog nodes,
(d) forwarding of information through gateways in the form of routers, switches, mobile

phones, or specialised embedded systems, etc.,
(e) use of Artificial Intelligence for data analysis on Edge/Fog nodes,
(f) the exploitation of intelligence resources provided by a Cloud server.

Figure 1. Typical Cloud-based architecture.

The first architecture configuration falling under the first group was presented by
Ahamed et al. in [36], who defined a generic architecture that combines IoT-aware wearable
devices with Machine Learning and Cloud Computing techniques for the prediction of
heart disease. In this architecture, the wearable devices transmit data directly to a Cloud
platform containing data processing, storage, and visualisation facilities that can be ac-
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cessed by the patient or medical practitioners from anywhere. Further, falling under this
group is the work by Addante et al. [37] in which a system containing a forearm-worn
wearable device that makes use of a combination of accelerometers and gyroscopes to
monitor movement and EMG sensors to obtain muscle mass information for the diagnosis
of Sarcopenia, an ageing-related muscular disorder, was defined. They also used BLE to
transfer data between the measuring device and a mobile device hosting an application to
interact with the measured data and function as a gateway to the Cloud database. Another
framework where all forms of data processing are performed using Cloud infrastructure
for the diagnosis and monitoring of chronic diseases with a focus on diabetes was devel-
oped by Abdali-Mohammadi et al. [38]. In their work, a combination of wearable and
implantable sensors were used to collect patient physiological parameters, which were
then directly transmitted to the Cloud using 3G/4G communication networks. The devel-
oped system also included the possibility of identifying emergencies and notifying nearby
hospitals, allowing emergency care provision. Further, also falling within this group is
the work defined in [39], which described a framework for monitoring, predicting, and
diagnosing heart disease using a combination of IoT sensors and Cloud-implemented
ML classification algorithms trained using data from existing repositories. Kumar and
Gandhi [40] also defined a healthcare monitoring architecture that utilised data from IoT
wearable devices. The collected data were directly stored and processed using Cloud-based
techniques, namely Apache HBase [41] for data storage and Apache Mahout [42] for the
prediction model. Similar to the works described above, several other works, such as the
ones presented in [43–45], describe IoT-aware healthcare architectures in which raw data
collected from IoT devices are directly forwarded to the Cloud through various gateways
using diverse wireless network technologies. As seen from the discussion above, various
technology alternatives were adopted to fit specific requirements or application scenarios
and improve the efficiency and reliability of Cloud-based IoT infrastructures. However,
Cloud-based architecture configurations are characterised by privacy and latency issues
mainly because of the centralised Cloud server location and the network infrastructure
used for communication and data transfer. Therefore, based on their demand for speed,
accuracy, and reliability, time-sensitive real-time solutions cannot be achieved using this
approach. Furthermore, since continuous sensing devices produce large amounts of data,
architectures solely reliant on Cloud Computing resources to process and analyse all the
data put a strain on the network and the sensing devices, which usually have limited
power available. The second group of works discussed in this section attempts to ad-
dress these shortcomings and facilitate robust solutions with improved service delivery.
The distributed architectures discussed in this section still use the previously discussed
sensor-gateway-cloud 3-layer template; however, the gateway is realised through Edge
or Fog Computing paradigms. The intermediate layer(s) perform varying levels of data
elaboration, analysis, and application service delivery offering varied scales of improved
efficiency, scalability, reliability, latency, privacy, and security. Some other works described
in this section also implement AI algorithms at the framework edge, i.e., on nodes located
in close proximity to the sensors, further improving the abovementioned parameters.

Gia et al. [46] presented an IoT for healthcare architecture for fall detection and
monitoring heart rate variability that exploits Fog Computing technologies to improve
the previously mentioned latency and security concerns and the lifetime of the sensing
devices. The defined architecture utilises wearable electrocardiogram (ECG), motion, and
body temperature sensors with environmental room temperature and humidity sensors to
collect data. The sensing devices forward data through a low-cost RF interface to gateways
that offer Fog services, including short-term data storage, data filtering, data processing,
and generating near-real-time push notifications to inform the user and authorised health
professionals of any concerning events or abnormalities. In this application, historical data
can be accessed through the Cloud. However, the short-term storage available on the Fog
node is also accessible through a local network, thus providing service reliability in the
event of a network interruption. Similarly, Hajvali et al. [47] presented a generic software
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architecture for real-time IoT healthcare systems that contains a partitioned two-level Fog
Computing layer. The two layers distribute the services available at the edge to reduce
the number of tasks performed by one device, which results in a faster response time. The
architecture also includes a smartphone that acts as a gateway between the sensor devices
and the Fog layer and, in addition, hosts an application with a GUI that facilitates the
accessing of alerts from the Fog node and local data management and visualisation. The
architecture also includes a Cloud component responsible for further data processing and
storage. The Cloud component also provides users and interested parties access to the
database and user interfaces. The authors of this work focused their attention on user
mobility; therefore, they emphasise the description of a software set-up that allows a user
continuous access to a Fog node even if their physical location changes.

However, as established in previous sections, in addition to simply adding specific
data processing algorithms to the Fog/Edge layers, AI algorithms can also contribute to the
achievement of fast response times and improvement of the accuracy of the decisions made
by IoT-aware health monitoring systems. As a result, several architectures that include
AI algorithms applied to the Fog layer have been developed. For instance, the authors
of [48] developed an architecture based on RF communication technology that implements
temperature, ECG, blood pressure, and blood oxygen measurement with the aid of Fog and
Cloud Computing technologies for remote monitoring of pregnant women. In this scenario,
the Fog node, in the form of a Raspberry Pi, is responsible for user authentication, feature
extraction, classification of collected data using a Bayesian Belief Network (BBN), and
issuing alerts to health practitioners if a critical event is detected. On the other hand, the
authors of [49] developed an integrated environment that incorporates Deep Learning (DL)
algorithms in Fog nodes for an application for coronary disease monitoring and diagnosis.
This application has two types of Fog nodes, namely, broker and worker nodes, to distribute
the computational tasks. Ribiero et al. [50] also describe an architecture that leverages
AI algorithms and advanced mathematical models in both the Fog and Cloud nodes.
The proposed architecture accurately performs localised fall detection and classification;
however, it does not leverage wearable sensor technology to measure parameters related to
fall events.

In a nutshell, IoT-aware health monitoring system architectures fall into two main
groups: centralised and decentralised architectures. Centralised architectures were the first
to be adopted for periodical monitoring and continuous monitoring frameworks where
collected sensor data are forwarded directly to the Cloud for processing. On the other hand,
decentralised architectures have distributed data processing and service delivery capabil-
ities in the Edge, Fog, and Cloud nodes per application requirements. In decentralised
architectures, the prevailing trend has, until recently, seen AI and ML algorithms applied to
Cloud and Edge/Fog nodes to perform data processing and analysis. However, recently, an
additional sub-class of decentralised architectures where AI algorithms are implemented
directly on wearable devices has emerged. An example of this type of architecture is
described by Arikumar et al. [29], who proposed a Person Movement Identification (PMI)
framework with AI algorithms for automatic feature extraction on the wearable device
and classification in Edge and Cloud nodes. The architecture they defined implements a
distributed continuous learning approach that enables on-device processing of data col-
lected from multiple sensors and accounts for differences in user-related features. This
emerging architecture allows the realisation of fast, accurate, scalable, and reliable health
monitoring architectures suitable for personalised applications. However, as illustrated in
Table 1, none of the articles available in the literature provides user services after on-device
data processing.
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Table 1. Comparative analysis: Existing architectures.

Source Cloud User Service Edge/Fog User Service AI On-Device User Service Application

[36] X
Data access

(GUI) x - Cloud - - Cardiovascular
disease

[37] X
Data access

(Web/Mobile
App)

x - x - - Sarcopenia

[38] X Patient alerts x - Cloud - - Diabetes
diagnosis

[39] X Test Report x - Cloud - - Heart disease
prediction

[40] X
Medical alerts

(doctors) x - Cloud - - Heart disease
prediction

Data access
(Web App)

[43] X
Data access
(Web App) x - Cloud - - Heart disease

prediction

[44] X
Data access

(GUI) - - Cloud - -
Multiple
disease

prediction
Alerts

[45] X - x - Cloud - - Diabetes
prediction

[51] X
Data access
(Web App) - - x XPPG HR

estimation -
Elderly

citizen health
monitoring

[46] X
Data access
(Web App) X

Push
notifications
Local host

GUI

x - -

Human fall
detection
Heart rate
variability

[47] X
Data access
(Web App) X

Alerts Local
Host GUI x - -

Disease
monitoring

and
prediction

[48] X
Authenticated

data access X Alerts Cloud - - Pregnancy
e-health

[49] X Data access X Data access Cloud &
Edge - - Heart disease

monitoring

[50] X - X Alerts Cloud &
Edge

Human fall
classification

[29] X - X -
Cloud &
Edge &
Device

XFeature
Extraction - PMI

Based on the observations made from the conducted research, obtaining some useful
information and generating alerts or alarms after the elaboration on-device would signif-
icantly improve the response time and, consequently, the efficiency and service delivery
offered by the IoT framework. Additionally, to aid the framework design and guide future
research in this field, we define requirements and outline the various components of a
reference architecture that incorporates on-device intelligence and early service delivery in
IoT-based healthcare frameworks.
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3. System Requirements

This section, based on the analysed literature and inspired by the solutions proposed
in the papers discussed in the previous section, outlines the requirements we defined
for a comprehensive and versatile multi-level architecture. The presented architecture
can be adopted by researchers interested in utilising an approach that combines IoT, AI,
Edge/Fog Computing and multiple advanced sensing technologies to their healthcare
domain application solutions. In addition, the presented architecture also allows the
inclusion of Cloud Computing technologies since they are still an integral part of IoT
architectures, as demonstrated by the trends in the literature.

The first consideration that guided our architecture design is the most commonly
used structure in the analysed works. As discussed in previous sections, most of the
architectures defined in the literature conform to a 3-layer structure, like the one illustrated
in Figure 1, whereby data processing and storage of sensor data are centralised in the
Cloud. In some cases, however, the defined architecture includes Edge Computing or Fog
Computing layers to overcome the shortcomings of the centralised architecture. It has
also been established that the response time, capabilities, efficacy, and fidelity of real-time
IoT-aware architectures can be further improved by introducing Artificial Intelligence to
the sensing devices. The quality of service offered by the architecture can also be enhanced
by providing some insights related to the application scenario after the initial on-device
elaboration. Therefore, based on these observations, an improved solution could be a
modular system that distributes duties among different modules and utilises sensing
devices with AI capabilities. In this case, end-user sensing devices can be used to collect
the data from each sensor, perform local elaboration (e.g., filtration, simple analysis, or
anomaly detection), and then forward results to a superior Edge/Fog node where further
elaboration and analysis can be performed. In this way, user privacy can be preserved by
avoiding the direct transmission of raw data collected from sensor devices. In addition,
the powerful Edge/Fog node can also contribute to the preservation of privacy by further
elaborating the initial results and only sharing inferred results to the last element of the
architecture in the Cloud. It is also essential for the system to have the ability to add
different, new sensors without affecting the other layers. Based on these considerations,
the following list summarises the functional and non-functional requirements we have
collated to guide the research community working within this context in the design of a
comprehensive architecture.

3.1. Functional Requirements

The functional requirements listed below are essential to achieve the desired functionality.

FR1: Distribution of the duties among different modules/layers.
FR2: Modularity—Independence of each layer to guarantee the possibility of changing

each layer with, for instance, a new version of the implementation software at runtime
without affecting other layers.

FR3: A first local layer to perform some elaboration of the collected raw sensor data and
package the results in a standard packet format to be transmitted to the next layer.

FR4: A second local layer that is able to receive data from the previous layer in the same
standard packet format used by the first layer.

FR5: The same second layer should support multiple packet formats.
FR6: The same second layer should locally store the data in a buffer to be robust to

connection problems.
FR7: Bidirectional communication between the first and second layers.
FR8: The same second layer should be able to forward the data, in a standard format, after

some further elaboration to a Cloud server.
FR9: Cloud server should be able to receive data in a standard format.
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3.2. Non-Functional Requirements

The requirements listed in the current sub-section do not affect the technical function-
ality. However, they are related to the architecture’s performance, accuracy, acceptability,
utility, and adaptability to application scenarios.

NFR1: Response time and accuracy—considering the nature of the application scenario,
slow response time or inaccurate outputs could have fatal consequences; therefore,
the system must guarantee accurate output and near-real-time response times.

NFR2: Usability—the system should avail user-friendly interfaces to facilitate easy ex-
ploitation of exposed services.

NFR3: Comfort—considering the nature of the scenario, i.e., continuous healthcare moni-
toring, the system should guarantee the use of highly comfortable monitoring devices
not only to ensure user acceptance but to ensure they are willingly accepted.

NFR4: Performance and Interaction—the system should guarantee reactivity to all user
requests and interactions.

NFR5: Reliability, Availability, and Maintainability—the system should be able to work
and expose services without failures.

NFR6: Scalability—considering the proposed system’s mobile nature, it would support the
possibility of increasing the number of users and, therefore, sensors in more locations.

NFR7: Low-Cost—considering the application scenario, users and healthcare officials
would prefer low-cost architectures to provide affordable healthcare infrastructures.

NFR8: Low-Power—considering the presence of battery-powered mobile healthcare moni-
toring devices, one of the most important non-functional requirements regards the
provision of energy savings.

NFR9: Security—the system should guarantee that all the manipulated data and all system
components are protected against malicious attacks or unauthorised access.

4. System Architecture

Based on the analysis reported in the literature review and the consequent observations
and requirements defined previously, this section presents the architecture for a real-time
IoT-aware healthcare system that incorporates advanced multi-sensing technologies, Edge-
based and on-device AI components. The proposed architecture contains three main layers,
namely, (i) Intelligent Data Acquisition Layer (iDAL), (ii) Edge Computing Layer, and
(iii) Data Visualisation Layer, as illustrated in Figure 2. One of the critical features of the
proposed architecture is the modularity and distribution of duties among components to
facilitate easy upgrade and fulfil functional requirements, FR1 and FR2.

This section highlights the interactions between the different layers and modules of
the proposed architecture and introduces their function and possible composition.
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Figure 2. Proposed system architecture.

4.1. Intelligent Data Acquisition Layer (iDAL)

The first layer is the Intelligent Data Acquisition layer (Figure 3), with three major
components: (a) advanced sensors, (b) a computational and storage unit, and (c) an Artificial
Intelligence module.

Figure 3. Intelligent Data Acquisition Layer.

4.1.1. Advanced Sensors

Various sensing technologies can be used to collect data relevant to the specific health-
related parameters of interest applicable to the use case to which the architecture will
be applied. For example, for a cardiac-related AAL application, a combination of skin-
compatible piezoelectric or piezoresistive sensors defined in [31–33,52,53] in conjunction
with motion, temperature, or positioning sensors, which add contextual information to the
physiological measurements, can be used in this layer. The usage of flexible sensors can
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fulfil NFR3 and facilitate the development of comfortable and reliable wearable devices
suitable for long-term surveillance of critical parameters in prevention, diagnosis, and
rehabilitation use cases in the healthcare domain. Adopting advanced miniature flexible
skin-compatible sensor technologies also introduces the possibility of accurately monitoring
tiny physiological parameters that are usually imperceptible using the typical commercial,
wearable devices [35], thus increasing the chances of fulfilling NFR1. Incorporating multiple
sensors also allows the system to gather valuable correlating data that can be used to
make more complex and meaningful deductions, thus making wearable-based IoT-aware
healthcare frameworks more robust and trustworthy.

4.1.2. Computation and Data Processing

The second part of the iDAL is the computational unit responsible for controlling the
sampling and acquisition of sensor data. To be considered for this function are Commercial-
off-The-Shelf (COTS) low-power and low-cost microcontroller units that can support the in-
terfaces and data transfer protocols implemented by the selected sensors, such as analogue
inputs, SPI, I2C, etc. Field-Programmable Gate Arrays (FPGAs) or Application-Specific
Integrated Circuits (ASICs) can also be considered to achieve higher speed, flexibility,
and exclusive control over the functionality, size, or device form factor; however, this
would significantly increase the overall cost of development, development time, and,
consequently, production.

4.1.3. Artificial Intelligence Module

In addition to the primary signal processing techniques implemented to perform initial
signal conditioning and processing, the attached microcontroller unit (MCU) is equipped
with specific AI algorithms. The AI algorithms can perform data analysis to facilitate local
decision-making by performing functions such as anomaly detection, high-level feature
extraction, classification of the measured data, etc., to achieve real-time response and
forwarding of processed data to upper layers and, thus, privacy preservation.

Some considerations also need to be made when selecting the Edge Intelligence tech-
nologies and, consequently, the level of data processing performed directly on the end
devices through Artificial Intelligence. Some of the factors that govern the choice of AI algo-
rithm used, the extent of data analysis, and the eventual output produced by the algorithm
include device-related factors such as (a) the power consumption and available computa-
tional and storage capacity, (b) algorithm-based factors, such as complexity, computational,
and storage requirements or results accuracy, and (c) application specific and operational
factors, such as privacy concerns, latency requirements, etc. Several types of AI algorithms
can be considered for this stage. For instance, the data-driven techniques for anomaly
detection algorithms described in [28,54] could be applied. In cases where multiple sensors
are all attached to the same computing/wearable device, instead of transmitting all the
raw data from multiple sensors, the ML algorithms can be used to automatically extract
the pertinent features from the combined sensor data, thus significantly prolonging the
lifetime of the constrained battery-powered devices. Reducing the amount of data to be
transmitted, in turn, reduces the required transmission time and, ultimately, the power
consumption since communication is usually responsible for most of the device power cost
of an IoT system. Pre-trained models that can be deployed to perform on-device inference
may be used for simple anomaly detection, whereby the results can then be used to issue
warnings if any unusual behaviour is observed or propose a course of action based on the
algorithm predictions. In such cases, lightweight algorithms are worth considering based
on the resource budget available in the MCU. Alternatively, a predetermined fraction of a
large partitioned Neural Network can be implemented to perform partial on-device data
elaboration. In this way, only intermediate results are forwarded to higher architecture
levels for further elaboration, thus ensuring the preservation of privacy by avoiding the
transmission of raw data as required by NFR3. As mentioned earlier, the amount of data to
be transferred over a network is proportional to the overall device power consumption and
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the required bandwidth. Therefore, forwarding intermediate results reduces the bandwidth
and power consumption cost, thereby enabling the fulfilment of NFR8. Based on these
considerations, further investigation into the implementation and selection of the extent
of on-device intelligence can be aided by consulting the architectures described in [30,55].
Sabry et al. [34] also highlight potential issues related to on-device intelligence in healthcare
applications and provide some considerations to aid algorithm selection.

Various software tools, libraries, and frameworks have also been developed to facil-
itate the deployment of AI algorithms on constrained devices. For instance, TensorFlow
lite for MCUs (TFLM) [56], an open-source library, can be used to support the deploy-
ment of Neural Networks (NNs) on a wide range of MCUs and Digital Signal Processors
(DSPs). It has been tested on several Cortex-M series MCUs and can be used to deploy
static algorithms trained using TensorFlow [57] to perform on-device inference. STMicro-
electronics [58] also developed X-Cube-AI; a software tool that allows the generation and
optimisation of AI algorithms developed using the typical ML and AI frameworks such as
TensorFlow [57], Keras [59], or PyTorch [60] for deployment on the STM32 family MCUs.
In addition, Edge Impulse [61] is a Cloud-based tool that allows the development of both
NN and non-NN models for various embedded platforms such as MCUs or mobile phones.
This tool allows the collection of sensor data directly from supported devices to train ML
models, thus enabling fast prototyping of on-device ML architectures. Another available
tool is NanoEdge AI Studio [62], which supports both learning and inference inside the
MCU. This tool allows the automatic selection of ML libraries best fitting the provided
data, making this tool suitable for developers with little or no AI or ML experience also.
This tool contains libraries for the development of anomaly detection algorithms, one-class
classification, multiple-class classification, or regression algorithms. The available tools can
be selected based on available hardware and the developer’s expertise. Other available
tools that can be leveraged for the deployment of the selected ML algorithm can be found
in [34,63].

Finally, after the elaboration and analysis of data performed by the AI module in
the iDAL layer is completed, the results, inferences, or generated alarms are packaged
and forwarded to the upper layers for further processing or management. Figure 3 illus-
trates a graphical summary of an example implementation of this layer consisting of two
sensor modules.

4.2. Edge Computing Layer (ECL)

The second layer defined to fulfil FR4 is the Edge Computing Layer, which is primarily
responsible for receiving data from the iDAL and providing a gateway to the upper layer.
The same layer is also responsible for handling and managing communication with devices
that may be equipped with different communication protocols and performing further data
analysis. This layer is capable of bidirectional communication with both the lower layer
and the upper layer to:

(a) receive data from the iDAL via standard low-power communication protocols such
as BLE

(b) send updates to the iDAL
(c) forward data to the upper layer
(d) receive updates or notifications from the upper layer

Based on the AI architecture selected in the previous levels, an AI algorithm can be
deployed in this layer in its entirety or as a fraction of a partitioned model. The choice of
this model is based on the resources available for computation, storage, or power. The ECL
should support various communication protocols since it could be responsible for serving
multiple iDAL nodes with diverse protocol requirements. This layer can also be used to
contact authorised caregivers, relatives, or health personnel in the event of detected distress
or undesired events.
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4.3. Data Visualisation Layer

Finally, the third layer is the Data Visualisation layer, which interacts with the storage
facilities and facilitates the provision of user interaction services. Authorised users can
view available data such as warnings generated by local devices and customised views of
historical events through a Web Dashboard exposed by this layer. Healthcare professionals
can also use the dashboard to provide recommendations that users can receive through
the available communication channels. This layer is also responsible for advanced data
analysis facilitated by the Cloud infrastructure. In this case, a more traditional AI algorithm
can be considered to facilitate the analysis of historical data. This layer also exposes REST
APIs to allow interaction with lower layers and contains a database to store the received
data and network configurations.

5. Discussion

As already discussed, in the present paper, we defined an architecture extracted from
and inspired by the analysed literature to provide a general and modular architecture
that researchers or practitioners in the healthcare domain can take into consideration and
exploit in their future works and solutions. Therefore, this section presents examples of the
possible scenarios that the designed architecture can serve through interesting use cases
inspired by real situations and case studies presented in the literature.

The first scenario to which our architecture can be applied is the continuous monitoring
of citizens with chronic heart conditions. Considering the grave implications of heart
malfunction to the human body, patients with chronic heart conditions, especially the
elderly population, cannot maintain a normal autonomous lifestyle. As a result, they
require constant surveillance and must frequently visit hospitals for check-ups. To improve
their autonomy and, subsequently, quality of life, the proposed architecture can be applied
to perform continuous surveillance on parameters related to heart health. In this application
scenario, flexible piezoelectric sensors placed on different body parts (chest, ankle, or wrist)
can accurately monitor cardiac function because of their capability to detect minute signal
changes. In addition to their accuracy, each sensor, if placed correctly, can also be used
to simultaneously monitor multiple parameters, such as heart sounds, blood pressure,
and heart rate. Such a framework eliminates periodic blood pressure (BP) checks using
the typical cumbersome cuffs by providing continuous BP insights. The frequency of
hospital visits to perform periodic heart health check-ups can also be significantly reduced.
In addition, an anomaly detection model can be deployed on the device to facilitate the
fusion of the sensor data and extraction of parameters. The extracted parameters are
transferred to the Edge Computing Layer (ECL), which performs further classification
on the detected anomalies. The resulting ECL classifications can then be used to provide
recommendations to the user and selected concerned parties. The implementation of Edge
and on-device intelligence allows the system to provide real-time notifications, alarms, and
recommendations, thus affording users more independence and autonomy.

Another application scenario that could benefit from this architecture is diagnosing,
monitoring, and managing patients with neurodegenerative diseases. An Edge AI algo-
rithm can be applied to perform feature extraction and anonymise data collected from
a predetermined combination of motion and motor function sensors. The collected in-
formation can be used to provide real-time activity recommendations to assist patient
rehabilitation or facilitate the provision of real-time feedback while patients are performing
their recommended rehabilitation exercises. Caregivers can also remotely monitor patient
progress and provide feedback, when necessary, through the web services exposed by
the system.

Furthermore, on a larger scale, the architecture can be implemented in nursing homes
or communities, especially those populated by the elderly, towards the realisation of self-
sustainable smart cities. In this scenario, citizens are equipped with iDAL nodes to measure
pertinent physiological parameters. ECL nodes can then be placed in strategic locations
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within the community to ensure complete coverage. In this case, implementing the Edge
Intelligence of the individual iDAL nodes assures the user that their data remain private.

Finally, the presented architecture provides a solution that can be applied to improve
the majority of the works discussed in the literature analysis and aid the design of new
IoT-based healthcare frameworks for novel application use cases. As mentioned in earlier
sections, adding on-device data processing, no matter how limited, can significantly im-
prove various performance parameters of IoT infrastructures for healthcare applications.
Therefore, using the results from the on-device analysis could significantly improve the
efficacy and efficiency of the defined architectures by signalling any anomalies or concerns
as early as possible. For instance, the fall detection architecture defined in [29] that uses
federated learning and on-device feature extraction could allow the wearable device to pro-
duce an alarm to prevent falls. Additionally, adding Edge and on-device AI and including
alarms generated by the pregnancy monitoring system defined in [48] would render the
system applicable to critical pregnancies, where the mothers require close monitoring. Any
detected abnormalities would be immediately signalled even when the user is far away
from a health facility.

In the remainder of this section, we describe a solution we adopted to implement the
early notification and anomaly detection functionality we propose for the iDAL layer and
how it can interact with the upper layers.

5.1. iDAL On-Device Intelligence Implementation

The bottom-most layer of the proposed architecture hosts intelligent sensors capable
of data processing and, if required by the application, providing a user service such as
notifications and warnings. The state-of-the-art analysis we performed revealed the need for
implementing data processing methods to increase the speed at which the system provides
user feedback to improve the overall service delivery offered by IoT healthcare frameworks.
One of the possible methods of providing user feedback, as has been discussed in earlier
sections, is the implementation of anomaly detection algorithms on the sensing device to
(a) provide onboard data processing, (b) reduce the amount of the data transmitted to the
upper layer, and ultimately, (c) provide quick preliminary user feedback. Therefore, the
first experimental work contributing towards implementing the architecture proposed in
this work involves implementing and evaluating a prototype of the iDAL layer from our
architecture with specific emphasis on the AI section.

This section describes the implementation of an on-device anomaly detection algo-
rithm developed to fulfil FR3 of the proposed architecture. The requirement calls for “a
local layer to perform some elaboration of the collected raw sensor data and package the results in a
standard packet format to be transmitted to the next layer".

5.1.1. AI Algorithm

Using an ECG monitoring scenario, we designed and deployed the simple pre-trained
anomaly detection algorithm with the structure illustrated in Figure 4 on an MCU. The
deployed algorithm is composed of an encoder to compress an input sequence into a
smaller dimension and a decoder that attempts to reconstruct the input sequence from
the compressed data. For this work, we modified the algorithm we evaluated in [64]
(Figure 5) by defining and deploying the encoder and decoder as separate models, thus
allowing us to access the encoder output in addition to the anomaly prediction during
inference. In this way, the encoder output can be transmitted to an upper layer device
containing a copy of the decoder to perform the reconstruction, resulting in a reduction in
the amount of data to be transmitted by the sensor device over the implemented wireless
communication channel. In addition, the inference results can also be made available to the
user with a significantly reduced latency. In the testing section, we verify the possibility of
implementing the proposed on-device intelligence method to achieve the expected reduced
latency and amount of transmitted data.
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Figure 4. Autoencoder with separated Encoder and Decoder.

Figure 5. Simple Autoencoder structure.

5.1.2. Test Set-Up

As mentioned earlier, we adopted an ECG monitoring use case; therefore, the first
step in the experimental procedure was training an autoencoder in TensorFlow [57] using
the publicly available ECG5000 dataset [65]. To perform our tests, we adapted the dataset,
which contains 5000 heartbeat samples obtained from monitoring a patient with severe
congestive heart failure over 20 h. The original dataset samples are annotated with labels
1–5, where 1 represents a normal heartbeat, and the other labels, 2–5, represent different
classes of abnormal rhythms. In the first phase, we focused on the normal samples to
determine the autoencoder sample reconstruction ability. Therefore, from the 2919 normal
samples, i.e., the samples annotated with label 1, we used 70% to train the model and
reserved 30% for validation and testing. In exact numbers, the splitting produced 2043
randomly selected samples for training, and of the remaining 876 samples, the first 438
were used for validation, with the last 438 reserved for testing. The rest of the dataset
samples from classes 2–5 were combined and annotated with label 0 to represent abnormal
heartbeats to test the algorithm’s anomaly detection. We used the Google Colaboratory [66],
an online notebook platform that allows browser execution of AI and ML algorithms, to
design, validate, and test the algorithm. After training, validation, and testing in Google
Colab, we converted the TensorFlow model into C byte arrays that we loaded onto a bare
metal MCU to perform inference using the TensorFlow Lite for microcontrollers [56] and
for an interpreter [64]. To verify the functionality, i.e., the reconstruction capability of the
separated autoencoder, we developed the set-up illustrated in Figure 6. In the defined
set-up:

1. The Raspberry Pi represents a sensor device that collects physiological signals in the
test scenario.

2. The first nRF52 device represents the on-device intelligence computing module con-
nected to the sensor module on which the complete autoencoder components, i.e.,
both the encoder and the decoder, are deployed.
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3. The second MCU represents the Edge computing layer hosting the separate de-
coder model.

The inference results from both MCUs are transferred back to the Raspberry PI and
compared to the expected results. In this test scenario, we used an SPI bus to transfer data
between the on-device intelligence computer and the Edge Computing device to allow
fast prototyping and high-speed data transmission. However, BLE, ZigBee, or similar
wireless technologies can be used to link between the Edge computing device and the
sensor module during the implementation phase.

Figure 6. Test set-up.

5.1.3. Results Discussion

One of the tests we performed was comparing the original dataset and the recon-
struction obtained from the stand-alone decoder deployed on the Edge computing device.
Figure 7 illustrates the reconstruction error between an ECG sequence from the original
dataset and the reconstruction from the deployed decoder. We calculated an average recon-
struction accuracy of 99.947% using the mean squared error of the difference between the
original input sequences and all the reconstructed sequences from 438 test samples.

Figure 7. Original input vs. reconstructed decoder output.
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The second set of tests we performed was to determine the time required from the
moment data are available for processing to the moment usable data for user consumption
are made available. In this scenario, we define usable information as the prediction classify-
ing a heartbeat as anomalous or normal. Our tests revealed a latency reduction of 3 ms
obtained by considering two test scenarios:

i. when available data samples are transferred over BLE to the Edge computing device
when no data processing is performed on-device, and

ii. when the on-device anomaly detection algorithm is implemented on the sensor mod-
ule using the configuration defined in Figure 3.

To obtain the time required to transmit data between the sensor module and the
Edge computing device, we performed throughput tests using the prototype of a custom
BLE-enabled sensing device pictured in Figure 8 connected to biocompatible piezoelectric
sensors. The throughput test revealed a maximum reliable data rate of 16 kb/s for data
transmission with no packet loss. Considering the ECG anomaly detection use case and the
data formatting and segmentation parameters used to compile the ECG5000 dataset we
used; the anomaly detection algorithm requires 140 data points as input. Therefore, based
on this constraint, we obtained the following results from the two scenarios.

• Scenario 1: Based on the throughput tests, and, therefore, a 16 kb/s data rate, trans-
mitting 140 samples from the sensor over BLE would require a minimum of 3.5 ms
given a 2-byte digital representation with no additional data overhead. In addition to
the transmission time, the total time required to obtain a usable result also includes
the processing time required by the Edge computing device to perform inference
and anomaly detection. Our tests revealed a minimum average processing time of
approximately 0.48 ms to obtain an anomaly prediction. We measured the required
inference time by counting the number of CPU cycles used by the MCU from the
moment all the data samples are ready for elaboration to the moment the anomaly
prediction result is available. Therefore, the total time required to obtain the first
usable result and provide feedback to the user is 3.548 ms.

• Scenario 2: In this scenario, we consider the anomaly detection algorithm on the sensor
module configured as illustrated in Figure 3. Transmitting the same data considered
in the first scenario via SPI to perform on-device anomaly detection requires 0.028
ms with a 1 MHz SPI data rate. With the 0.48 additional milliseconds required
for inference, the total time required to obtain a result that can provide valuable
information to the user in this scenario is 0.508 ms.

According to the test results, implementing the on-device intelligence method de-
scribed in this section successfully reduced latency (in this case, in reference to the time
required to produce a usable inference result) by 3 ms. As mentioned before, the anomaly
detection algorithm requires an input with 140 data points. However, implementing the
autoencoder configuration described in this section allows the sensor module to send
only five data points obtained from the encoder output to the Edge computing layer for
further processing and record keeping. This result signifies a reduction in data that must
be transferred over BLE by a factor of 28, from the initial 140 data points per sample to
5 data points per sample. Further data analysis can be performed using classification or
other specific mathematical algorithms based on the reconstructed data obtained from
the copy of the decoder deployed on the Edge Computing device. A comparison of the
minimum timing and data requirements extracted from the two scenarios described above
is summarised in Table 2.
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(a) (b)

Figure 8. Custom BLE−enabled sensing module. (a) Block diagram, (b) prototype device to scale.

Table 2. Tabulated summary of results discussion.

No On-Device Intelligence With On-Device Intelligence

Data transmission 3.500 ms 0.028 ms

Inference 0.480 ms 0.480 ms

Total required 3.548 ms 0.508 ms

Number of data points
to upper layers 140 5

6. Conclusions

The need for personalised and home-based healthcare architectures has been increas-
ing over the years, driven by factors, including the growing percentage of elderly citizens,
the global shortage of healthcare workers, and the need for overall improved healthcare
services. In a bid to provide a solution, various researchers provide several technological
infrastructures, systems, and frameworks based on technological innovations. However,
most of the frameworks utilising IoT technologies developed to date are predominantly
based on Cloud infrastructures characterised by problematic issues, such as privacy and
latency, which are undesirable for interactive and critical healthcare applications.

In order to contribute to the resolution of these issues, this work presented a modular
IoT-aware system architecture that can be applied to numerous application scenarios in the
healthcare domain.

The presented architecture encourages the amalgamation of advanced sensing tech-
nologies, low-power and low-cost IoT enabling technologies, and emergent AI techniques
to develop modular, reliable, and scalable critical healthcare infrastructures. In addition, the
modular nature of the architecture permits its suitability for a wide range of use cases since
it can be configured based on application requirements, as demonstrated in the discussion.
We also discussed and demonstrated the benefits of implementing on-device intelligence
from a latency and communication efficiency point of view. The added functionality of pro-
viding user alarms or notifications immediately after on-device AI-based data processing
has the potential to revolutionise IoT-based healthcare infrastructures.

Further developments can improve the reliability and performance of the system, such
as including blockchain technologies to increase scalability while enhancing security to
maintain the desired preservation of privacy.
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14. Džakula, A.; Relić, D. Health workforce shortage—Doing the right things or doing things right? Croat. Med. J. 2022, 63, 107.
[CrossRef]
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16. Almeida, A.; Mulero, R.; Rametta, P.; Urošević, V.; Andrić, M.; Patrono, L. A critical analysis of an IoT—Aware AAL system for
elderly monitoring. Future Gener. Comput. Syst. 2019, 97, 598–619. [CrossRef]

17. Dian, F.J.; Vahidnia, R.; Rahmati, A. Wearables and the Internet of Things (IoT), Applications, Opportunities, and Challenges: A
Survey. IEEE Access 2020, 8, 69200–69211. [CrossRef]

18. Metcalf, D.; Milliard, S.T.; Gomez, M.; Schwartz, M. Wearables and the Internet of Things for Health: Wearable, Interconnected
Devices Promise More Efficient and Comprehensive Health Care. IEEE Pulse 2016, 7, 35–39. [CrossRef] [PubMed]

19. Singh, A.; Chatterjee, K. Securing smart healthcare system with edge computing. Comput. Secur. 2021, 108, 102353. [CrossRef]
20. Dutta, D.L.; Bharali, S. TinyML Meets IoT: A Comprehensive Survey. Internet Things 2021, 16, 100461. [CrossRef]
21. Deebak, B.D.; Memon, F.H.; Cheng, X.; Dev, K.; Hu, J.; Khowaja, S.A.; Qureshi, N.M.F.; Choi, K.H. Seamless privacy-preservation

and authentication framework for IoT-enabled smart eHealth systems. Sustain. Cities Soc. 2022, 80, 103661. [CrossRef]
22. Muhammad, G.; Rahman, S.M.M.; Alelaiwi, A.; Alamri, A. Smart Health Solution Integrating IoT and Cloud: A Case Study of

Voice Pathology Monitoring. IEEE Commun. Mag. 2017, 55, 69–73. [CrossRef]
23. Henze, M.; Hermerschmidt, L.; Kerpen, D.; Häußling, R.; Rumpe, B.; Wehrle, K. A comprehensive approach to privacy in the

cloud-based Internet of Things. Future Gener. Comput. Syst. 2016, 56, 701–718. [CrossRef]
24. Wang, X.; Magno, M.; Cavigelli, L.; Benini, L. FANN-on-MCU: An Open-Source Toolkit for Energy-Efficient Neural Network

Inference at the Edge of the Internet of Things. IEEE Internet Things J. 2020, 7, 4403–4417. [CrossRef]
25. Mahmud, R.; Koch, F.L.; Buyya, R. Cloud-fog interoperability in IoT-enabled healthcare solutions. In Proceedings of the 19th

International Conference on Distributed Computing and Networking, Varanasi, India, 4–7 January 2018. [CrossRef]
26. Merenda, M.; Porcaro, C.; Iero, D. Edge Machine Learning for AI-Enabled IoT Devices: A Review. Sensors 2020, 20, 2533.

[CrossRef]
27. Surati, S.; Patel, S.; Surati, K. Background and Research Challenges for FC for Healthcare 4.0. In Fog Computing for Healthcare 4.0

Environments: Technical, Societal, and Future Implications; Springer International Publishing: Cham, Switzerland, 2021; pp. 37–53.
[CrossRef]

28. Erhan, L.; Ndubuaku, M.; Mauro, M.D.; Song, W.; Chen, M.; Fortino, G.; Bagdasar, O.; Liotta, A. Smart anomaly detection in
sensor systems: A multi-perspective review. Inf. Fusion 2021, 67, 64–79. [CrossRef]

29. Arikumar, K.S.; Prathiba, S.B.; Alazab, M.; Gadekallu, T.R.; Pandya, S.; Khan, J.M.; Moorthy, R.S. FL-PMI: Federated Learning-
Based Person Movement Identification through Wearable Devices in Smart Healthcare Systems. Sensors 2022, 22, 1377. [CrossRef]
[PubMed]

30. Wang, X.; Han, Y.; Leung, V.C.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep Learning: A
Comprehensive Survey. IEEE Commun. Surv. Tutor. 2020, 22, 869–904. [CrossRef]

31. Ha, T.; Tran, J.; Liu, S.; Jang, H.; Jeong, H.; Mitbander, R.; Huh, H.; Qiu, Y.; Duong, J.; Wang, R.L.; et al. A Chest-Laminated
Ultrathin and Stretchable E-Tattoo for the Measurement of Electrocardiogram, Seismocardiogram, and Cardiac Time Intervals.
Adv. Sci. 2019, 6, 1900290. [CrossRef]

32. Sun, R.; Carreira, S.C.; Chen, Y.; Xiang, C.; Xu, L.; Zhang, B.; Chen, M.; Farrow, I.; Scarpa, F.; Rossiter, J. Stretchable Piezoelectric
Sensing Systems for Self-Powered and Wireless Health Monitoring. Adv. Mater. Technol. 2019, 4, 1900100. [CrossRef]

33. Chen, B.; Zhang, L.; Li, H.; Lai, X.; Zeng, X. Skin-inspired flexible and high-performance MXene@polydimethylsiloxane
piezoresistive pressure sensor for human motion detection. J. Colloid Interface Sci. 2022, 617, 478–488. [CrossRef]

34. Sabry, F.; Eltaras, T.; Labda, W.; Alzoubi, K.; Malluhi, Q. Machine Learning for Healthcare Wearable Devices: The Big Picture. J.
Healthc. Eng. 2022, 2022, 4653923. [CrossRef]

35. Zeng, X.; Deng, H.T.; Wen, D.L.; Li, Y.Y.; Xu, L.; Zhang, X.S. Wearable Multi-Functional Sensing Technology for Healthcare Smart
Detection. Micromachines 2022, 13, 254. [CrossRef]

http://dx.doi.org/10.3390/s21144839
http://dx.doi.org/10.1007/978-3-030-04324-7_56
http://dx.doi.org/10.1007/978-3-319-19656-5_1
http://dx.doi.org/10.1088/1361-6463/ac3c73
http://dx.doi.org/10.3390/electronics10141660
http://dx.doi.org/10.1007/s41999-020-00323-0
http://dx.doi.org/10.3325/cmj.2022.63.107
http://dx.doi.org/10.3390/healthcare8020152
http://dx.doi.org/10.1016/j.future.2019.03.019
http://dx.doi.org/10.1109/ACCESS.2020.2986329
http://dx.doi.org/10.1109/MPUL.2016.2592260
http://www.ncbi.nlm.nih.gov/pubmed/28113167
http://dx.doi.org/10.1016/j.cose.2021.102353
http://dx.doi.org/10.1016/j.iot.2021.100461
http://dx.doi.org/10.1016/j.scs.2021.103661
http://dx.doi.org/10.1109/MCOM.2017.1600425CM
http://dx.doi.org/10.1016/j.future.2015.09.016
http://dx.doi.org/10.1109/JIOT.2020.2976702
http://dx.doi.org/10.1145/3154273.3154347
http://dx.doi.org/10.3390/s20092533
http://dx.doi.org/10.1007/978-3-030-46197-3_2
http://dx.doi.org/10.1016/j.inffus.2020.10.001
http://dx.doi.org/10.3390/s22041377
http://www.ncbi.nlm.nih.gov/pubmed/35214282
http://dx.doi.org/10.1109/COMST.2020.2970550
http://dx.doi.org/10.1002/advs.201900290
http://dx.doi.org/10.1002/admt.201900100
http://dx.doi.org/10.1016/j.jcis.2022.03.013
http://dx.doi.org/10.1155/2022/4653923
http://dx.doi.org/10.3390/mi13020254


Sensors 2022, 22, 7675 21 of 21

36. Ahamed, J.; Koli, A.M.; Ahmad, K.; Jamal, M.A.; Gupta, B.B. CDPS-IoT: Cardiovascular Disease Prediction System Based on IoT
using Machine Learning. Int. J. Interact. Multimedia Artif. Intell. 2021, 7, 78–86. [CrossRef]

37. Addante, F.; Gaetani, F.; Patrono, L.; Sancarlo, D.; Sergi, I.; Vergari, G. An Innovative AAL System Based on IoT Technologies for
Patients with Sarcopenia. Sensors 2019, 19, 4951. [CrossRef]

38. Abdali-Mohammadi, F.; Meqdad, M.N.; Kadry, S. Development of an IoT-based and cloud-based disease prediction and diagnosis
system for healthcare using machine learning algorithms. IAES Int. J. Artif. Intell. 2020, 9, 766–771. [CrossRef]

39. Ganesan, M.; Sivakumar, N. IoT based heart disease prediction and diagnosis model for healthcare using machine learning
models. In Proceedings of the 2019 IEEE International Conference on System, Computation, Automation and Networking
(ICSCAN), Pondicherry, India, 29–30 March 2019. [CrossRef]

40. Kumar, P.M.; Gandhi, U.D. A novel three-tier Internet of Things architecture with machine learning algorithm for early detection
of heart diseases. Comput. Electr. Eng. 2018, 65, 222–235. [CrossRef]

41. Apache Hbase. Available online: https://hbase.apache.org/ (accessed on 27 July 2022).
42. Mahout. Available online: https://mahout.apache.org// (accessed on 27 July 2022).
43. Khan, M.A. An IoT Framework for Heart Disease Prediction Based on MDCNN Classifier. IEEE Access 2020, 8, 34717–34727.

[CrossRef]
44. Verma, P.; Sood, S.K. Cloud-centric IoT based disease diagnosis healthcare framework. J. Parallel Distr. Comput. 2018, 116, 27–38.

[CrossRef]
45. Kumar, P.M.; Lokesh, S.; Varatharajan, R.; Babu, G.C.; Parthasarathy, P. Cloud and IoT based disease prediction and diagnosis

system for healthcare using Fuzzy neural classifier. Future Gener. Comput. Syst. 2018, 86, 527–534. [CrossRef]
46. Gia, T.N.; Jiang, M. Exploiting Fog Computing in Health Monitoring; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019.
47. Hajvali, M.; Adabi, S.; Rezaee, A.; Hosseinzadeh, M. Software architecture for IoT-based health-care systems with cloud/fog

service model. Clust. Comput. 2022, 25, 91–118. [CrossRef]
48. Beri, R.; Dubey, M.K.; Gehlot, A.; Singh, R.; Abd-Elnaby, M.; Singh, A. A novel fog-computing-assisted architecture of E-healthcare

system for pregnant women. J. Supercomput. 2022, 78, 7591–7615. [CrossRef]
49. Verma, P.; Tiwari, R.; Hong, W.C.; Upadhyay, S.; Yeh, Y.H. FETCH: A Deep Learning-Based Fog Computing and IoT Integrated

Environment for Healthcare Monitoring and Diagnosis. IEEE Access 2022, 10, 12548–12563. [CrossRef]
50. Ribeiro, O.; Gomes, L.; Vale, Z. IoT-Based Human Fall Detection System. Electronics 2022, 11, 592. [CrossRef]
51. Pinheiro, G.P.; Miranda, R.K.; Praciano, B.J.; Santos, G.A.; Mendonça, F.L.; Javidi, E.; da Costa, J.P.J.; de Sousa, R.T. Multi-

Sensor Wearable Health Device Framework for Real-Time Monitoring of Elderly Patients Using a Mobile Application and
High-Resolution Parameter Estimation. Front. Hum. Neurosci. 2022, 15, 836. [CrossRef]

52. Natta, L.; Mastronardi, V.M.; Guido, F.; Algieri, L.; Puce, S.; Pisano, F.; Rizzi, F.; Pulli, R.; Qualtieri, A.; Vittorio, M.D. Soft and
flexible piezoelectric smart patch for vascular graft monitoring based on Aluminum Nitride thin film. Sci. Rep. 2019, 9, 8392.
[CrossRef] [PubMed]

53. Natta, L.; Guido, F.; Algieri, L.; Mastronardi, V.M.; Rizzi, F.; Scarpa, E.; Qualtieri, A.; Todaro, M.T.; Sallustio, V.; Vittorio, M.D.
Conformable AlN Piezoelectric Sensors as a Non-invasive Approach for Swallowing Disorder Assessment. ACS Sens. 2021,
6, 1761–1769. [CrossRef]

54. Zhang, Y.; Chen, Y.; Wang, J.; Pan, Z. Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals. IEEE Trans.
Knowl. Data Eng. 2021. [CrossRef]

55. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge
Computing. Proc. IEEE 2019, 107, 1738–1762. [CrossRef]

56. TensorFlow Lite for Microcontrollers. Available online: https://www.tensorflow.org/lite/microcontrollers (accessed on 10
February 2022).

57. Tensorflow Library. Available online: https://www.tensorflow.org/ (accessed on 15 December 2021).
58. STMicroelectronics. Available online: https://www.st.com/content/st_com/en.html (accessed on 1 March 2022).
59. Keras. Available online: https://keras.io/ (accessed on 1 March 2022).
60. PyTorch. Available online: https://pytorch.org/ (accessed on 15 January 2022).
61. Edge Impulse. Available online: https://www.edgeimpulse.com/ (accessed on 1 March 2022).
62. NanoEdge AI Studio. Available online: https://www.st.com/en/development-tools/nanoedgeaistudio.html (accessed on 1

March 2022).
63. Ray, P.P. A review on TinyML: State-of-the-art and prospects. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 1595–1623. [CrossRef]
64. Shumba, A.T.; Montanaro, T.; Sergi, I.; Fachechi, L.; Vittorio, M.D.; Patrono, L. Embedded Machine Learning: Towards a Low-Cost

Intelligent IoT edge. In Proceedings of the 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech),
Split/Bol, Croatia, 5–8 July 2022; pp. 1–6. [CrossRef]

65. Dataset: ECG5000. Available online: http://www.timeseriesclassification.com/description.php?Dataset=ECG5000 (accessed on
20 January 2022).

66. Google Colaboratory. Available online: https://colab.research.google.com/ (accessed on 20 January 2022).

http://dx.doi.org/10.9781/ijimai.2021.09.002
http://dx.doi.org/10.3390/s19224951
http://dx.doi.org/10.11591/ijai.v9.i4.pp766-771
http://dx.doi.org/10.1109/ICSCAN.2019.8878850
http://dx.doi.org/10.1016/j.compeleceng.2017.09.001
https://hbase.apache.org/
https://mahout.apache.org//
http://dx.doi.org/10.1109/ACCESS.2020.2974687
http://dx.doi.org/10.1016/j.jpdc.2017.11.018
http://dx.doi.org/10.1016/j.future.2018.04.036
http://dx.doi.org/10.1007/s10586-021-03375-4
http://dx.doi.org/10.1007/s11227-021-04176-7
http://dx.doi.org/10.1109/ACCESS.2022.3143793
http://dx.doi.org/10.3390/electronics11040592
http://dx.doi.org/10.3389/fnhum.2021.750591
http://dx.doi.org/10.1038/s41598-019-44784-1
http://www.ncbi.nlm.nih.gov/pubmed/31182738
http://dx.doi.org/10.1021/acssensors.0c02339
http://dx.doi.org/10.1109/TKDE.2021.3102110
http://dx.doi.org/10.1109/JPROC.2019.2918951
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/
https://www.st.com/content/st_com/en.html
https://keras.io/
https://pytorch.org/
https://www.edgeimpulse.com/
https://www.st.com/en/development-tools/nanoedgeaistudio.html
http://dx.doi.org/10.1016/j.jksuci.2021.11.019
http://dx.doi.org/10.23919/SPLITECH55088.2022.9854248
http://www.timeseriesclassification.com/description.php?Dataset=ECG5000
https://colab.research.google.com/

	Introduction
	State-of-the-Art
	System Requirements
	Functional Requirements
	Non-Functional Requirements

	System Architecture
	Intelligent Data Acquisition Layer (iDAL)
	Advanced Sensors
	Computation and Data Processing
	Artificial Intelligence Module

	Edge Computing Layer (ECL)
	Data Visualisation Layer

	Discussion
	iDAL On-Device Intelligence Implementation
	AI Algorithm
	Test Set-Up
	Results Discussion


	Conclusions
	References

