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Abstract: In this work, we fabricate cesium lead bromide nanofibers (CsPbBr3 NFs) via the attachment
of cesium lead bromide nanocrystals (CsPbBr3 NCs) on the surface of electrospun cellulose nanofibers
(CNFs) and employ them in a sensor to effectively detect gaseous nitrogen. The CsPbBr3 NFs are
produced initially by producing CsPbBr3 NCs through hot injection and dispersing on hexane,
followed by dipping CNFs and ultrasonicate for 1 h. Morphological characterization through visual,
SEM and TEM image, and crystalline structure analysis by XRD and FT-IR analysis of CsPbBr3 NFs
and NCs show similar spectra except for PL due to unavoidable damage during the ultrasonication.
Gaseous nitrogen is subsequently detected using the photoluminescence (PL) property of CsPbBr3

NFs, in which the PL intensity dramatically decreases under various flow rate. Therefore, we believe
that the proposed CsPbBr3 NFs show significant promise for use in detection sensors in various
industrial field and decrease the potential of fatal damage to workers due to suffocation.

Keywords: cesium lead bromide nanofibers; cesium lead bromide nanocrystals; cellulose nanofibers;
nitrogen gas; hot injection method; electrospinning

1. Introduction

Nitrogen is a colorless and odorless inert gas accounting for 78% of the atmospheric air
that causes little chemical reaction [1]. Due to the properties of nitrogen, it is used in various
industrial fields to prevent oxidation or to prevent accidents such as fire [2]. Moreover,
nitrogen is an essential element of fertilizer required for plant growth [3]. However, the
colorless, odorless, and depression characteristics of nitrogen gas can be rather toxic in
industrial sites, in which nitrogen is constantly used to prevent corrosion of products.
When the gas is leaked, it is difficult to immediately identify, followed by fatal damage to
workers due to suffocation as the concentration of oxygen in the atmosphere decreases [4,5].
Therefore, it is necessary to develop a sensor that can efficiently detect nitrogen gas in
industrial fields.

Nitrogen gas is detected through sensors that measure oxygen concentration or nitro-
gen oxide in preparation for nitrogen leakage in most industrial sites [6,7]. The fabricated
sensors are operated as the leaked nitrogen lowers the oxygen or nitrogen oxide concen-
tration, making it difficult to determine the immediate leakage of nitrogen [8]. Therefore,
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optical sensors can replace current sensors, which has the advantage of not only possibly
responding to the leakage of nitrogen gas faster than existing sensors, but also directly
detect the nitrogen gas, not through the detection of alternatives. Currently known optical
sensors include chlorophyll meters, canopy reflectance sensors, and fluorescence-based
flavonols meters, which are mostly used to determine the nitrogen state of the vegetable
crop [9–11]. For example, chlorophyll meters measure the chlorophyll in the surface area,
which is sensitive to nitrogen, and thus, nitrogen contained in leaf can be measured by
transmission or fluorescence [12]. However, using a nitrogen-detectable optical sensor for
existing vegetable crop is not suitable in an industrial field.

Perovskite light-emitting materials, have strong absorption characteristics, bright
fluorescence, narrow full width at half maximum (FWHM) value, and high charge mobility
and defect tolerance, leading to various applications such as solar cells, photodetectors,
light-emitting diodes (LED), and sensors [13–16]. Among them, all inorganic cesium
lead halide perovskite nanocrystals (CsPbX3 NCs, X=Cl, Br or I), compared with organic-
inorganic hybrid perovskites, have superior characteristics on stability and narrow color
purity fluorescence over a wide band of absorbance [17]. Therefore, application studies on
various optoelectronic materials have been actively conducted using these excellent optical
properties. For example, Maity et al. successfully fabricated CsPbX3 NCs-coated film that
showed specific recognition behavior towards ammonia gas at room temperature [18].
Therefore, it is determined that CsPbX3 NCs with remarkable characteristics could be
applied as an excellent sensor that detect nitrogen gas.

In this regard, photoluminescence sensors based on CsPbBr3 NCs attached on cellulose
nanofibers (CNFs), so-called cesium lead bromide nanofibers (CsPbBr3 NFs), and detection
availability on nitrogen gas are further determined. CsPbBr3 NCs are synthesized through
a hot injection method in which two different precursors are quickly reacted under high
temperature, leading to the nucleation of nanocrystals, while CNFs are fabricated by
electrospinning technology, in which nanofibers are uniformly and abundantly formed
as a mat when high voltage is applied on cellulose solution. Subsequently, CsPbBr3 NCs
are successfully attached on the surface of CNFs through ultrasonication, CsPbBr3 NFs
are finally fabricated. Generated CsPbBr3 NFs are then placed on various concentration of
nitrogen gas, and the decrease of luminescence is observed. Therefore, CsPbBr3 NFs-based
optical sensors are believed as next generation sensors in industrial field to detect exposed
nitrogen gas effectively and directly.

2. Materials and Methods
2.1. Materials

Cellulose acetate (C164H174O111, average Mn~30,000), cesium carbonate (Cs2CO3, 99%),
lead(II) bromide (PbBr2, 99.999% trace metal basis), 1-octadecene (ODE; C18H36, technical
grade 90%), oleylamine (OLA; C18H37N, technical grade 70%) and hexane (C6H14) were
purchased from Sigma-Aldrich Chemicals (St. Louis, MO, USA). N,N-dimethylacetamide
(DMA; C4H9NO), acetone (C3H6O, 99.5%) and oleic acid (OA; C18H34O2) were obtained
from Daejung Chemicals & Metals Co., Ltd. (Siheung, Korea).

2.2. Synthesis of Cesium Lead Bromide Nanocrystals through Hot-Injection Method

Cesium lead bromide nanocrystals (CsPbBr3 NCs) were produced through hot-injection
method. Two precursors, which were cesium oleate (Cs-oleate) and lead bromide precur-
sors (PbBr2 precursors) were prepared. Cs-oleate was initially prepared by mixing 0.352 g
of Cs2CO3 and 10.0 mL of ODE, followed by reacting at 120.0 ◦C for 1 h under nitrogen
atmosphere. After the reaction, 0.65 mL of OA was added and the rection was continued
for 30 min to form Cs-oleate. PbBr2 precursors were prepared by adding 0.356 g of PbBr2
and 20.0 mL of ODE, followed by reacting at 120.0 ◦C for 1 h under nitrogen atmosphere.
Next, 4 mL of OA and OLA were added and kept on a reaction in a same condition for
15 min. Subsequently, the temperature of PbBr2 precursors was raised to 200.0 ◦C for
5 min, followed by rapid addition of 3.2 mL of Cs-oleate in precursors, the nucleation of
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the solutions occurred and CsPbBr3 NCs were successfully fabricated. Formed CsPbBr3
NCs were centrifuged at 10,000 rpm for 10 min, followed by discard of supernatant fluid
and addition of 20 mL of hexane.

2.3. Fabrication of Cesium Lead Bromide Nanofibers

Initially, cellulose nanofibers (CNFs) were produced through electrospinning. The
solution of 20 wt.% cellulose solution was prepared by mixing 2.0 g of cellulose acetate on
10.0 mL of mixed acetone and DMA with the ratio of 2:1. The prepared solution was then
electrospun through a high-voltage supply (Nano NC, Seoul, Korea) and a syringe pump
(Legato 100, KD Scientific, Holliston, MA, USA) under an applied voltage of 16.0 kV and
21-gauge single use injection needles with a flow rate of 1.0 mL h−1.

Cesium lead bromide nanofibers (CsPbBr3 NFs) were further fabricated through
coating the surface of CNFs with CsPbBr3 NCs. CsPbBr3 NCs were uniformly coated on
the surface of CNFs by ultrasonication bath. First, CNFs were well dipped on CsPbBr3
NCs-dispersed hexane and ultrasonicated for 1 h. Subsequently, well-coated CNFs were
dried in a vacuum oven in set as 70 ◦C overnight, which finally formed CsPbBr3 NFs.

2.4. Detection of Nitrogen Gas through Fabricated Cesium Lead Bromide Nanofibers

The detection of nitrogen gas was carried out inside the gas sensor device. Initially,
fabricated CsPbBr3 NFs were cut into 15 × 15 mm sample and placed on the glass of the
same size. UV light was emitted through sapphire glass in the sensor device using external
light source. The photoluminescence (PL) signals of the CsPbBr3 NFs were measured
through a detector and a spectrophotometer connected to the computer device. Pure
nitrogen gas (99.9%), the target gas, and air composed of 78% of nitrogen and 21% of
oxygen, the carrier gas, was then injected to CsPbBr3 NFs at a flow rate of 100.0 sccm
using a mass flow controller (MFC; GMC1200, ATOVAC, Yongin, Korea). The PL spectra of
CsPbBr3 NFs were recorded 0, 5, 10, 15, 20, 25 and 30 min after the injection of nitrogen gas.

2.5. Characterization

Morphological characterization of the synthesized CsPbBr3 NFs, NCs and CNFs were
conducted using high-resolution scanning electron microscopy (HR-SEM; SU8010, Hitachi,
Japan) and field-emission transmission scanning electron microscopy (FE-TEM; JEM-2100F,
JEOL, Tokyo, Japan). The crystalline structure was further analyzed using high-resolution
X-ray diffraction (HR-XRD; X’Pert-PRO MRD, Philips, Amsterdam, The Netherlands) and
Fourier-transform infrared spectroscopy (FT-IR; JASCO FT-IR 6600, Tokyo, Japan) in the
range of 400 to 4000 cm−1. The PL intensity of the samples were recorded using Raman
spectroscopy (RAON-Spec, NOST, Seongnam, Korea). Chemical composition and state of
the samples were conducted using X-ray photoelectron spectroscopy (XPS; Thermo Fisher
Scientific K-alpha System, Waltham, MA, USA). Finally, the size of the CsPbBr3 NFs and
NCs were estimated using ImageJ software.

3. Results
3.1. Formation of Cesium Lead Bromide Nanocrystals-Coated Cellulose Nanofibers

CsPbBr3 NFs were fabricated by the integration of CsPbBr3 NCs and CNFs, which
were synthesized through hot injection and electrospinning, respectively, as shown in
Figure 1. Initially, hot injection was the way to synthesize CsPbBr3 NCs at high temperature
using ionic chemical bonds in three-component compounds that were difficult to dissolve
in a normal solvent (Figure 1a) [19]. CsPbBr3 NCs could be produced by reacting two
precursors, which were Cs-oleate and PbBr2 precursors, under high temperature of 200.0 ◦C.
At this time, the precipitation of Cs+, Pb2+ and Br− ions might be controlled by the reaction
in the high boiling point solvent ODE, and NCs were stabilized in the colloidal phase using
OA and OLA mixture [20]. Therefore, it is possible to evenly produce CsPbBr3 NCs with a
size of 4 to 15 nm in large quantities when NCs were synthesized using the hot injection
method compared with the existing synthesis method.
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Figure 1. Schematic illustration of CsPbBr3 NFs fabrication; (a) synthesis of CsPbBr3 NCs through
hot injection method, and (b) fabrication of CNFs by electrospinning, followed by production of
CsPbBr3 NFs with attachment of CsPbBr3 NCs on the surface of CNFs.

CNFs were generated through electrospinning having a uniform size to a constant
thickness (Figure 1b). Electrospinning, which could make a polymer in a form of nanofibers,
used an external strong electric field to radiate fibers in a non-contact manner, thus obtaining
fibers having a much thinner and uniform diameter [21]. In the case of CNFs, the charge
was uniformly distributed on the surface of the droplets of the cellulose solution supplied
from the needle as an electric field was applied, and a conical droplet called Taylor cone
was formed and discharged toward the collector when the electrostatic repulsive force
exceeded the surface tension [22]. As a result, randomly electrospun CNFs were obtained
as a nonwoven membrane on the surface of the collector. CNFs produced in this way were
supported on CsPbBr3 NCs dispersed in hexane, and NCs were adhered to the surface of
CNFs after ultrasonication, resulted in the formation of CsPbBr3 NFs.

3.2. Characterization of Cesium Lead Bromide Nanocrystals-Coated Cellulose Nanofibers

Morphological characterization of fabricated CsPbBr3 NFs was specifically analyzed
through visual, scanning electron microscope (SEM) and transmission electron microscope
(TEM) as shown in Figure 2. First, CsPbBr3 NFs were generally yellowish under bright
field, while the green fluorescence was confirmed under UV field (Figure 2a). This indi-
cated that there was no significant difference from the fluorescence of CsPbBr3 NCs, in
which the fluorescence did not change even though NCs were attached to CNFs through
ultrasonication (Figure S1a). In addition, SEM image analysis confirmed that the general
size of CsPbBr3 NFs was slightly deformed as NCs were coated on the surface of CNFs
with a uniform size (Figure 2b). The surface of the CNFs was roughly changed due to
the adhesion of CsPbBr3 NCs when analyzed under high magnification (Figure 2c). The
results showed a significant difference from the SEM images of pure CNFs, which had
a smooth surface before the attachment of NCs and verified that the surface change was
due to the adhesion of NCs (Figure S1b). Finally, TEM images confirmed that CsPbBr3
NCs were successfully and regularly attached to the surface of CNFs (Figure S1c). The
size of CsPbBr3 NCs synthesized through hot injection was approximately 6.92 ± 1.51 nm,
while the size of NCs attached on the surface of NFs was 6.81 ± 1.40 nm, showing no big
difference (Figure S2). Moreover, CsPbBr3 NCs were well distributed on the surface of
CNFs without forming agglomerates when compared to pure NCs (Figures 2d and S1d).
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light and UV field, scanning electron microscopy (SEM) images at (b) low and (c) high magnification,
and (d) transmission electron microscopy (TEM) image of NCs.

The XRD diffractograms of CsPbBr3 NFs were analyzed to verify their crystalline
structures (Figure 3a). CsPbBr3 NFs showed 2θ values of 15.14◦, 21.53◦, 30.73◦, 34.37◦,
37.74◦ and 43.81◦, corresponding to the (100), (110), (200), (210), (211) and (220) planes,
respectively, indicating the cubic crystalline structure of Pm−3m space group [23,24]. The
curved baseline was formed due to CNFs backbone [25]. Interestingly, the characteristic
peaks were equal to CsPbBr3 NCs synthesized through hot injection method, indicating
that crystalline structure of attached NCs were not affected by ultrasonication during
fabrication process of CsPbBr3 NFs (Figure S3). The Fourier transform infrared (FT-IR)
spectra of CsPbBr3 NFs were further recorded to investigate the different chemical and
functional groups (Figure 3b). The results showed that common peaks appeared at 2962.62,
1376.71, 1234.64 and 1043.94 cm−1, which were attributed to C−H stretching, CH3 bonding,
C−O stretching, and C−OH bonding, respectively [26]. The appeared peaks all contributed
to the molecular structure of CNFs. The characteristic peak was attributed at 674.06 cm−1

associated to C-Br bonding, which verified that CsPbBr3 NCs were well attached on carbon
molecule placed on the surface of CNFs [27]. Moreover, fabricated CsPbBr3 NFs and
CsPbBr3 NCs presented the emission spectra as depicted in Figure 3c. Both NFs and
NCs displayed Gauss curves with sharp emission peaks position centered at 520.82 and
489.46 nm with narrow FWHM value of 16.12 and 21.16 nm, respectively. As NCs were
attached on the surface of CNFs, the emission peak had red shifted due to unavoidable
damage during ultrasonication.

The chemical composition and valence state of CsPbBr3 NFs were examined by X-
ray photoelectron spectroscopy (XPS). The full-survey XPS spectrum of CsPbBr3 NFs in
Figure 3d confirmed the coexistence of C, O, N, Cs, Pb and Br with atomic ratios of 77.33%,
13.81%, 1.88%, 1.43%, 1.08% and 4.47%, respectively. For further evaluation, deconvolution
of the XPS spectra was performed (Figure S4, Table S1). The high-resolution XPS spectrum
for C 1s displayed three peaks with binding energies of 283.93, 285.45, and 288.22 eV,
corresponding to the C−C, C−O and C=O transitions exhibited in CNFs, respectively
(Figure S4a) [28]. In case of O 1s XPS spectrum shown in Figure S4b, two peaks with
binding energies of 531.12 and 532.22 eV were observed, which could be ascribed to C=O
and C−O transitions, respectively, which also existed in CNFs [29]. The peaks of N 1s
spectra of CsPbBr3 NFs were shown at 398.78 and 400.61 eV, which corresponded to metal
nitride and C−NH2 respectively (Figure S4c) [30]. The Cs 3d peaks were deconvoluted
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into two characteristic peaks corresponding to Cs 3d5/2 and Cs 3d3/2 peaks at 723.43 eV
and 737.41 eV (Figure S4d) [31]. Moreover, Pb 4f peaks displayed two characteristic peaks
with binding energies of 137.22 and 142.06 eV, which corresponded to Pb 4f7/2 and Pb 4f5/2
(Figure S4e) [32]. Finally, three characteristic peaks were observed in the Br 3d spectrum, in
which the binding energies of Br 3d5/2, Br 3d3/2 and C−Br were 67.19, 68.10 and 74.24 eV,
respectively (Figure S4f) [33]. The presence of Cs, Pb and Br all indicated that CsPbBr3 NCs
were well presented on the surface of CNFs. In addition, the presence of C-Br verified that
the chemical bond between NCs and CNFs occurred between C and Br, which matched
well with FT-IR analysis. Therefore, the XPS results strongly confirmed that CsPbBr3 NFs
were well synthesized as CsPbBr3 NCs were formed and attached to the surface of CNFs.
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Figure 3. (a) X-ray diffraction (XRD) pattern, (b) Fourier-transform infrared (FT-IR) spectra, (c) pho-
toluminescence (PL) spectra, and (d) wide scan X-ray photoelectron spectroscopy (XPS) analysis of
the fabricated CsPbBr3 NFs.

3.3. Detection of Nitrogen Gas through Ceisum Lead Bromide-Coated Cellulose Nanofibers

Nitrogen gas detection was conducted using the proposed CsPbBr3 NFs under var-
ious concentrations. Our proposed sensing platform can achieve the rapid diagnosis of
nitrogen gas with a high level of sensitivity and accuracy. To investigate the sensing per-
formance of CsPbBr3 NFs, we carried out experiment for nitrogen gas detection under
various concentrations (Figure 4). In general, lead halide-based perovskites are shown the
atmosphere-dependent degradation mechanisms including lattice shrinkage and phase
segregation, which can be induced to decrease the stability of the crystal structure, resulting
the PL quenching [34,35]. First, the detection of nitrogen gas was tested by exposing the
CsPbBr3 NFs to different concentrations (1 to 20 ppm) at room temperature (Figure 4a).
It was observed that PL intensity decreased under all concentrations of nitrogen gas. It
was also shown that the PL intensity of CsPbBr3 NFs was sensitive to concentrations below
5 ppm. The PL intensity at 30 min was further represented in Figure 4b with various
concentration of nitrogen gas. It was observed that the PL intensity was similar at 30 min
with the concentration between 0.1 to 1 ppm of nitrogen gas. However, the change in the
PL intensity with 1 to 20 ppm of nitrogen gas was proportional to concentration with R2
value of 0.99433. The concentration of nitrogen gas was distinguishable by the measured
PL intensity over 1 ppm.
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Figure 4. (a) Response of CsPbBr3 NFs at 520 nm under varios nitrogen gas concentration from 1 to
20 ppm and (b) sensitivity of CsPbBr3 NFs-based nitrogen gas sensor in concentration range of 0.1 to
20 ppm after 30 min of exposure time. (c) Response of CsPbBr3 NFs at 520 nm with various nirogen
gas flow rate from 1.0 to 25.0 sccm, and (d) sensitivity of CsPbBr3 NFs-based nitrogen gas sensor in
flow rate from 1.0 to 25.0 sccm after 25 min of exposure time.

The detection of nitrogen gas was further tested by exposing CsPbBr3 NFs to different
flow rate from 1.0 sccm to 25.0 sccm in N2 carrier gas at room temperature (Figure 4a).
The changes in the PL intensity of the CsPbBr3 NFs with exposure time were presented in
Figure 5. The PL intensity was rapidly reduced within 30 min when the injected flow rate
was high. However, the PL intensity was slowly decreased when the flow rate was low
as 1.0 sccm. The similar response at low nitrogen gas flow rate was due to the influence
of humidity, in which the contact between water molecules and CsPbBr3 NCs on the
surface of CNFs degraded the PL properties of NCs. When water molecules settled on the
surface of hydrophilic surface of CNFs matrix, nitrogen gas was trapped on the surface,
leading the reduction of PL of CsPbBr3 NCs [36]. The response of gas sensor reached to
almost maximum value after 25 min of nitrogen gas injection. The response at 25 min was
represented in Figure 4b with various flow rate of nitrogen gas. It was observed that the
decrease of PL intensity was well fit in curve at 25 min with the flow rate between 1.0 to
25.0 sccm of nitrogen gas. Therefore, the results suggested that detection of nitrogen gas
under gaseous state through CsPbBr3 NFs had individual practical potential for on-site
detection in industrial field.

The PL intensity in the presence of various gas was further observed to determine
the selectivity of fabricated gas sensors (Figure S5a). Initially, the PL intensity of CsPbBr3
NFs dramatically decreased in the nitrogen gas. In comparison, with the addition of gas
such as argon and oxygen, a change in the PL intensity did not occur. This indicates that
the PL intensity is not strongly affected when different gases come into contact with the
CsPbBr3 NFs. Additionally, the repeatability of fabricated gas sensors under nitrogen gas
was measured (Figure S5b). Interestingly, the recovery did not occur when the sensors
were exposed to the atmosphere right after the detection of nitrogen gas. The results
indicated that the fabricated CsPbBr3 NFs-based sensors were one-time usable nitrogen
gas detectable sensors.
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4. Conclusions

In summary, we successfully fabricated CsPbBr3 NFs through the attachment of
uniformly synthesized CsPbBr3 NCs onto the surface of electrospun CNFs and developed
as a gas sensor aimed at detecting nitrogen gas. The fabricated CsPbBr3 NFs exhibited
green fluorescence after attachment of NCs on the surface of CNFs, in which the structure of
the NCs did not collapse during ultrasonication process. Further, the crystalline structure of
the CsPbBr3 NCs stuck on the surface of CNFs was not disrupted and maintained as cubic
structure, which was confirmed through XRD analysis. In addition, C-Br bonding clearly
occurred, indicating that the Br atom on CsPbBr3 NCs bonded to the C atom on CNFs.
The proposed CsPbBr3 NFs also demonstrated high sensitivity of 1 ppm to nitrogen under
gaseous state as the PL intensity was strongly decreased. This was comparable with other
detecting sensors as shown in Table S2, in which most previous research focused on various
nitrogen-included gases such as ammonia, nitrogen dioxide and nitrogen oxide, while our
research focused on pure nitrogen gas. Consequently, we believe that the developed sensor
will be useful to detect nitrogen gas in industrial field compared to the conventional sensor.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22207737/s1, Figure S1: Morphological characterization of
CsPbBr3 NCs (a) under visible light and UV field, (b) SEM image of CNFs, TEM image of NCs
under (c) low and (d) high magnification, Figure S2: Size distribution graph of (a) CsPbBr3 NFs and
(b) NCs, Figure S3: X-ray diffraction (XRD) pattern of fabricated CsPbBr3 NCs through hot injection
method, Figure S4: Narrow X-ray photoelectron spectroscopic (XPS) scan of (a) C 1s, (b) O 1s, (c) N
1s, (d) Cs 3d, (e) Pb 4f and (f) Br 3d for CsPbBr3 NFs, Figure S5: (a) Selectivity and (b) reusability of
the fabricated gas sensor. Table S1. Deconvolution of the XPS spectra. Table S2. Comparison of gas
sensors for detection of various types of nitrogen gas [37–39].
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