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Abstract: This study uses various body values (length, circumference, and volume) that can be
derived from 3D data to determine variables and areas that substantially affect obesity and suggests
guidelines for diagnosing obesity that are more elaborate than existing obesity indices. Body data for
170 participants (87 men and 73 women aged 20–30 years) are collected for the chest, abdomen, hips,
and arms/legs. A 3D scanner, which can produce accurate body point results, and dual-energy X-ray
(DEXA), which can accurately determine the fat percentage, are used to derive fat rates for each body
part. The fat percentage and total fat percentage for each body part are used as learning data. For the
derived data, the eigenvalue for each body part is derived using a principal component analysis, and
the following four clusters are created for each part: underweight, normal, overweight, and obese. A
comparison with the obesity index, which diagnoses obesity based on the cluster model, showed
that the accuracy of the model proposed in this study is higher at 80%. Therefore, this model can
determine the body information necessary for accurate obesity diagnosis and be used to diagnose
obesity with greater accuracy than obesity indices without a body fat measurement machine such
as DEXA.

Keywords: obesity; body mass index; feature extraction; diagnosis; 3D body

1. Introduction

The obese population is rapidly increasing due to dietary changes caused by economic
growth and the increase in single-person households that regularly order food deliveries [1,2].
According to the WHO, obesity is a serious problem worldwide. Its prevalence has in-
creased rapidly since the 1970s, having increased by 100% compared to in the 2000s [3]. In
2003, obesity was selected as one of the major diseases to be managed by the WHO. This
is because obesity causes various chronic diseases. For example, if obesity is not recog-
nized or properly managed, the probability of developing diseases, such as cardiovascular
diseases, increases [4]. Therefore, the prevention and management of obesity worldwide
is an important issue. As a result, policies are being implemented to prevent obesity in
various countries. Overseas, nutrition guides, exercise locations, action plans, and physical
activity programs are provided in each city, and obesity prevention strategies have been
presented by an international anti-obesity organization [5]. In Korea, the National Obesity
Prevention Policy Establishment and Health Promotion Plan 2020 (HP 2020) [6] have been
implemented, and obesity projects and related policies are sporadically applied in various
institutions, but it is difficult to determine the extent of obesity and implement prevention
strategies without an accurate obesity diagnosis.

Methods for diagnosing obesity include the diagnosis of simple body part values, such
as height, weight, waist circumference, and hip circumference, using a specific obesity in-
dex [7,8] and the use of various methods for diagnosing obesity through body fat thickness,
such as bio-electrical impedance analysis (BIA) [9] and dual-energy X-ray (DEXA) [10].
However, obesity diagnosis methods cannot derive accurate obesity information using
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simple body values [11], whereas obesity diagnosis using expensive equipment can derive
accurate obesity information but has limitations in terms of time and cost that require
continuous management [12]. Because of these limitations, the obesity index, which can
derive obesity information through simple body values, is generally used to diagnose
obesity. However, existing obesity indices cannot judge body circumference and volume in-
formation, so body characteristics such as body type and muscle mass cannot be considered.
It is difficult to accurately diagnose obesity through measurement information that does
not consider body type information. In addition, even if body information is known, the
measurers do not know which types of body information have important effects on obesity.
Therefore, in this study, obesity information was derived through the body fat rate obtained
from DEXA, and based on this, we aimed to establish a more accurate obesity standard than
that provided using the existing body index by considering body length, circumference,
and volume information. Through established obesity standards, a model was created that
can derive characteristics for each body part and diagnose obesity through circumference
and volume, which reflect body length and body type information. Obesity standards
for each part of the body are set based on the body parts’ characteristics, and through the
obesity diagnosis model, users can use body information to determine which obesity group
they belong to. By using the obesity diagnosis model provided in this study, it is possible
to diagnose obesity with a similar accuracy level without the need for expensive obesity
diagnosis equipment and using only body length, circumference, and volume information.
Further, the criteria for an accurate obesity diagnosis can be determined by region.

2. Literature Review
2.1. Obesity Diagnosis Method

Obesity is becoming a serious social issue, and research on the relationship between
various diseases and obesity is being actively conducted. Obesity is generally diagnosed
through the Body Mass Index (BMI) [13], which is determined by height and weight, and
the Circumference and Waist–Hip Ratio (WHR) [14], which uses waist circumference [15].
However, obesity diagnosis using these simple body values is inaccurate, because it is
not possible to gain information on the proportions and volume of the body. In addition,
athletes have greater volumes of muscle and fat-free mass and may have larger body sizes
than normal people despite having less body fat [16]. Thus, a body containing a lot of mus-
cle mass can weigh a lot, and even if it is actually normal, it can be judged as overweight
or obese based on the BMI. Therefore, an athlete that is of the same height and weight
as a member of the general public can be judged as overweight or obese based on their
BMI, despite having a lot of muscle mass and being normal [17] Therefore, various studies
have been conducted to accurately diagnose obesity. Hamdy et al. (2006) determined
that a clinical diagnosis of visceral fat may be more important than an obesity diagnosis
when using BMI to assess the risk of hypertension, arteriosclerosis, and coronary artery
disease in both thin and obese people. They analyzed patients using the WHR, focusing
on visceral fat accumulation. Measurements were taken using abdominal computed to-
mography scans, and the total amount of visceral fat and the bottles were determined to
be correlated [18]. Maffeis et al. (2008) used the WHR in children to determine metabolic
risk. They extracted blood samples from body measurements and intravenous fasting,
and the measurements showed that children with large waistlines had higher metabolic
rates and greater cardiovascular risks than normal children [19]. However, these studies
did not consider other body elements as they only judged single measurements such as
waist circumference. However, single-body elements do not provide accurate results for
obesity diagnosis. Therefore, Browning et al. (2011) conducted a study to find body values
that affect obesity through body information and found a correlation between abdominal
fat and magnetic resonance imaging (MRI) and waist circumference (WHtR), and bone
density measurements (DEXA) [20]. A total of three groups were created (underweight,
overweight, and obese; males: 20 females: 20) and analyzed [21].
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In addition, as body volume information is emphasized in the diagnosis of obesity,
the concept of the Body Volume Index (BVI) has emerged, in which mass divided by the
cube of the height tri-ponderal mass index (TMI) is used to estimate body fat levels. This
method is more accurate than the body mass index (BMI) [22]. Peterson et al. (2017) showed
that BVI is superior to BMI based on a 3D mass index (TMI = divided by a key cube) [23].
Studies have also been conducted to find optimal obesity characteristics through various
obesity derivation methods. Woolcott and Bergman (2018) measured the dimensions of
various body parts in 1733 experiments, correlated the results with several variables, such
as BMI, and added a variable called “hip joint”. They then determined the impact of this
new variable on the obesity information derivation [24]. Hart (2019) devised a simple
and accurate measurement of body fat rates for obesity diagnosis. In this study, it can
be seen that the degree of obesity in humans varies depending on the body fat rate and
muscle information, factors that are part of the human physical condition but cannot be
determined by BMI. Therefore, for the determination of accurate obesity information using
body fat rates, a new standard for body fat rates (Criterion values of PBF: PBF.DXA) was
presented [25].

2.2. Importance and Necessity of Accurate Diagnosis of Obesity Information

Various obesity diagnosis methods exist, and equipment such as MRI and DEXA is
required to accurately diagnose obesity. However, these devices have significant time and
space constraints. Therefore, studies have investigated ways to diagnose obesity using
single measurements such as weight, height, and waist circumference. However, these
studies do not provide information on body shape and body muscle distribution. If obesity
is misdiagnosed, body mismanagement can occur, which not only leads to sarcopenic
obesity but can also lead to diseases such as metabolic syndrome. Therefore, researchers
have studied methods for diagnosing obesity conveniently and accurately, and based on
these studies, methods such as BMI and WHtR have emerged.

If obesity is diagnosed using a single measurement, accurate obesity information and
other information cannot be provided. Krakauer and Jesse (2012) showed that BMI has
no correlation with body type. In addition, BMI cannot diagnose people with excessive
body fat as obese because there are difficulties in measuring body fat, and individuals
with high-fat content, i.e., bulky muscle groups, can be misclassified as obese [26]. Wong
et al. (2021) also could not determine the presence of proper obesity due to differences in
abdominal fat and muscle mass, even when the BMI fell into the normal category [27].

2.3. Body Image Distortion

Body image distortion is a problem that many people have, and this distortion is
a phenomenon caused by dissatisfaction with the body [28]. Unlike methods that carry
out measurements based on subjective perception only, body image distortion measures
height and weight objectively and then evaluates a person’s own body by combining the
measurer’s subjective perceptions of the body based on this [29,30]. There are the following
three main types of body image distortion: distortion that appears when viewed through a
2D image, a distortion that appears by simply judging the body’s index by weight or by an
incorrect measurement of the body index, and distortion that appears when comparing the
body to those shown in external mass media [31]. When distortion of the body occurs, a
person can underestimate their own body. Over- or underestimation may lead to problems
such as reckless dieting, eating disorder-induced osteoporosis, anemia, or under-evaluation
of disease occurrence due to poor body recognition [32]. Brooks et al. (2016) conducted
a survey of 1997 Australian residents that assessed physical discontent and mental and
physical health. Related eating disorders and found that 70% of all participants showed
dissatisfaction with the body. Increased body discontent was associated with increased
problems with mental and physical health, affecting the quality of life and psychological
pain [33].
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In addition to psychological problems, many people think that their bodies are skinny
even though they are obese due to distortions caused by simply judging the body index
by weight or by using the wrong measurement methods. Therefore, skinny obesity is a
serious problem and can lead to sarcopenic obesity if not managed. Skinny obesity has
been associated with a prevalence of metabolic syndrome that is four times higher than
that of normal-weight individuals, as well as increases in the prevalence of hyperglycemia
and central obesity [34]. As such, skinny obesity has emerged as an important issue, and
the risk of skinny obesity and its relationship with the disease are being studied. Batsis
et al. (2013) examined the relationships between lean obesity, hypertension, and death,
and they divided a total of 31,320 subjects aged 60 or older into three groups based on
their body fat ratios through a cohort survey, in which a strong association between high
blood pressure and death was found in the high body fat group. In addition, women with
skinny obesity were found to have a higher mortality rate than women without skinny
obesity [35]. Kapoor et al. (2020) examined the relationship between lean obesity and
diabetes and hypertension in 1147 Indians, excluding pregnant women, aged in their 30s to
60s. They found that 31.7% of all survey subjects had lean obesity, and the proportions of
diabetes and high blood pressure were higher in the lean obesity group than in the general
obese group [36]. When the findings of these studies were examined together, the biggest
reason for body image distortion was shown to be problems with the criteria used in the
measurement method and the time, cost, and space limitations associated with accurate
obesity diagnosis.

2.4. Importance of Dimensional Awaresness

Moving from a 2D to a 3D user interface can provide additional information about
spatial memory, which gives us more information about 3D perception. According to an
experiment conducted in InfoVis 2001, the positions of alphabetic characters shown in three
dimensions can be remembered more effectively than those shown in two dimensions.
In addition, 3D visualization techniques provide users with more information than 2D
data due to their use of 3D data [37]. In another study, orthodontists used cephalograms,
which are profile X-rays of lateral skulls and soft tissue, when evaluating skeletal, dental,
and soft tissue relationships. The accuracy of perception was determined by generating
X-rays in two dimensions and three dimensions, with the 3D method deriving an accuracy
that was four to five times higher than that obtained with the 2D method for anatomical
distance [38]. Srivastav et al. (2018) created a 3D human behavior and operating room
space, involving a dataset of complex operating room environments and various human
behaviors, which allows 3D behavior data to be used to recognize more postures than can
be achieved with 2D behavior data and posture recognition rates [39]. As such, 3D data
have more value than 2D information, which not only increases the accuracy of visual
perception but also enables detailed information to be derived. Therefore, more accurate
obesity information can be derived by using 3D body information, including information
on curves and volume.

Therefore, in this study, body fat rate information for each body part that affects
obesity was derived from DEXA body fat rate information for each of the five selected body
parts, and criteria for deriving detailed obesity information through length information
without body fat information were established.

3. Materials and Methods
3.1. Data Selection

This study generated 3D body shapes through a 3D body scanner to derive body
length, circumference, and volume data, and it derived body fat rates for each body part
using DEXA. In obesity diagnosis, DEXA can derive the total body fat percentage by
obtaining body fat information for each part of the body. It is the most frequently used
device and, as such, the obesity diagnosis results obtained with DEXA, which derive
accurate results for obesity diagnosis, were designated as the ground truth values, and the
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accuracy of the obesity diagnosis model was compared using DEXA values. Therefore,
based on the body fat rate derived from DEXA, the following four groups were classified:
low weight, normal, overweight, and obese. Next, the body fat rates for the arms, legs,
chest, stomach, and hips were derived, and we explored which data most affected the
overall obesity information. As shown in Table 1, data were collected from a total of
170 people (73 women and 87 men aged 20–30 years) from April to December 2021. With
the initial data collection standards, BMI values were derived using height and weight,
and groups were recruited as males and females based on BMI. During data collection,
people with a BMI of 40 or higher were excluded from the data collection because they
were determined to be obese by any obesity diagnostic index. For the experimental group,
males (underweight: 20, normal: 24, overweight: 23, obese: 20) and females (underweight:
20, normal: 20, overweight: 18, obese: 15) were collected based on BMI. The accuracy of the
measurements was improved by fasting for 3 h before the DEXA inspection. Data were
obtained with males wearing bottoms such as tights and females wearing tops and bottoms.
The experimenter measured the total body fat rate and the fat rate of each body part through
a DEXA and collected body 3D mesh data using a 3D body scanner. The 3D body scanner
used in this study was designed based on the ISO-7250 landmark and can derive 60 body
index parts. ISO-7250 is a description of the measurement method for creating a body
measurement database. It defines landmarks for each body measurement area and serves
as a guide for how to measure the body as well as anatomical landmarks, and provides
information on an anthropometric basis and on principles of measurement [40] Therefore,
based on ISO-7250, measurement standards for each part were defined and body values
were derived. Therefore, as shown in Figure 1, the landmark for each part was designated
as the ISO-7250 standard, and body values for each part were derived by slicing the 3D
body data from the designated standard.
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Table 1. Variables derived from the 3D scanner and their descriptions (Body Landmarks: ISO-7250,
Date: 5 April 2021–24 December 2021).

Collected Data Explanation

Males (n = 87)
Height (cm) (Mean169.15/Max197/Min161)
Weight (kg) (Mean 68.8/Max 120.6/Min 54.3)
BMI (kg/m2) (Mean 23.35/ Max 16.6/Min 38.1)

Females (n = 73)
Height (cm) (Mean 162.8/Max 151/Min 175.7)
Weight (kg) (Mean 56.6/Max 40.7/Min 89.6)
BMI (kg/m2) (Mean 21/Max 16.2/Min 33.32)

3D Scanner Variable Name Explanation

Height Participant height

Weight Participant weight

Volume Participant body volume

Chest length Shoulder height–chest height

Shoulder height Height from the floor to the shoulders in standing position

Chest height Height from the floor to the top of the nipples and the beginning of the chest in
standing position

Breast height Height from the floor to nipples in the standing position

Waist length Waist height–hip height

Waist height Height from the floor to the point in front of the waist in standing position

Belly button height Height from standing position to the navel

Height below the belly button Height from standing position to the iliac bone below the navel

Hip length Hip height–groin

Hip height Height from the floor to hip protrusion in standing position

Groin height Vertical height from the floor to the groin (actual leg length)

Thigh length Hip height–groin height

Thick thigh height Height from the floor to the thickest part of the thigh

Mid-thigh height Height from the floor to the mid-thigh

Knee height Vertical height from the floor to the top of the shinbone

Calf height Height from the floor to the point of the thickest part of the calf

Neck circumference Circumference passing under the back of the neck and under the shield cartilage

Shoulder circumference Circumference from the end of the shoulder to the end of the shoulder opposite the
back of the neck

Chest circumference Horizontal circumference through the midpoint of the sternum

Breast circumference Horizontal circumference through the nipple point

Waist circumference Horizontal circumference passing through the point in the front of the waist, the
point in the side of the waist, and the point in the back of the waist

Belly waist circumference Horizontal circumference passing through the navel point, the navel level, the waist
point, the waist level, and the back point

Circumference
below the belly button Horizontal circumference through the iliac crest below the navel

Hip circumference Horizontal circumference passing through the buttock protrusion

Groin circumference Groin circumference

Thick thigh circumference The circumference of the thickest part of the innermost thigh

Mid-thigh circumference Circumference of the middle of the thigh

Knee circumference Horizontal circumference through the midpoint of the kneecap
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Table 1. Cont.

3D Scanner Variable Name Explanation

Calf circumference Circumference of the most convex part of the calf

Arm circumference Circumference of the thickest part of the upper arm with the arm raised

Cross-sectional area of the back of the neck Cross-sectional area of the back of the neck

Shoulder cross-section Cross-sectional area of the shoulder end point opposite the back neck point from the
shoulder end point

Chest area Cross-sectional area of the part that passes through the midpoint of the sternum

Breast area Cross-sectional area of the part that passes through the nipple point

Waist area Cross-sectional area of the part that passes through the front of the waist, the side of
the waist, and the back of the waist

Navel waist area Cross-sectional area of the part that passes through the navel point, the navel level,
the waist point, the waist level, and the back point

Below the navel area Cross-sectional area of the part that passes through the iliac crest below the navel

Hip area Cross-sectional area of the part that passes through the buttock protrusion

Groin area Cross-sectional area of the groin

Thick thigh area Cross-sectional area of the thickest part of the innermost thigh

Median thigh area Cross-sectional area of the middle part of the thigh

Knee area Cross-sectional area passing through the midpoint of the kneecap

Calf area Cross-sectional area of the most convex part of the calf

Total volume Total body volume

Shoulder volume Total volume at shoulder height

Chest volume Total volume at chest height

Epigastric volume Total volume corresponding to the upper abdomen

Lower abdominal volume Total volume corresponding to the lower abdomen

Thigh volume Total volume at thigh height

Calf volume Total volume equivalent to calf height

Total abdominal volume Upper abdominal volume + lower abdominal volume

DEXA Variable Data Explanation

Chest Tissue Percentage of fat in tissue (=Fat (g)/Tissue (g))

Android Tissue Percentage of fat in tissue (=Fat (g)/Tissue (g))

Gynoid Tissue Percentage of fat in tissue (=Fat (g)/Tissue (g))

Arm Tissue Percentage of fat in tissue (=Fat (g)/Tissue (g))

Leg Tissue Percentage of fat in tissue (=Fat (g)/Tissue (g))

Total Tissue Percentage of fat in tissue (=Fat (g)/Tissue (g))

Therefore, DEXA and 3D scanner data from a total of 170 subjects were collected, and
variables were derived from each piece of equipment, as shown in Table 1 (DEXA variable
data parts). A total of 43 variables were derived from the DEXA measurements, including
eight variables for the examiner’s personal information, four variables for measurement
time information, 15 variables for the examiner’s total body information, and 16 data
points regarding the body fat rate by body part. Among the 43 derived variables, a total of
9 variables, including 6 variables for gender, height, weight variables, and fat rates for each
body part, were selected for analysis.

The variables derived through the 3D scanner are shown in Table 2 (3D scanner
variable parts). A total of 81 variables, including obesity information and circumference,
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height, volume, and cross-sectional information for each body part, were derived through
each body obesity index derivation method. Among the derived variables, those other than
the arms, legs, chest, abdomen, and hips were excluded from the analysis. In addition,
to obtain length information among variables, including the length, area, circumference,
and volume of the arms, legs, chest, stomach, and hips, five additionally derived length
variables were created for each part. Therefore, length values for each body part were
derived to obtain length information for each body part. Five length variables were
generated, including the chest length = shoulder height-(nostalgia) chest height, waist
height = hip height, hip length = hip height, and thigh length = hip height-bottom height,
and the previously used height variables were removed. Therefore, a total of 54 variables
were finally selected.

Table 2. Classification of obesity according to body fat percentage (total tissue %).

Obesity Class Men Women

Underweight 8% or less 14% or less

Normal More than 8%, less than 18.6% More than 14%, less than 22.7%

Overweight More than 18.6%, less than 23.1% More than 22.7%, less than 27.1%

Obese More than 23.1% More than 27.1%

Definition of landmarks used for deriving body circumference and volume infor-
mation. As shown in Figure 2, seven automatic measurement points were arbitrarily
designated on the back of the object, both armpits, navel, thigh, and both knees on a
three-dimensional scanner. At this time, for the arbitrarily designated points, the average
dimensions and body designation points of the measurement items corresponding to the
body standards were primarily designated. Second, the back of the neck area was desig-
nated as the back of the neck as the values came down from the head endpoint where the
3D data began, and the 3D point values from the shoulder to just before the 3D point values
increased. For both armpit parts, three-dimensional data were designated as the armpit
point by recognizing the part where the values of the points were input in the direction
of the arrow starting with the shoulder tip and then disappearing. The navel part was
designated as the navel part at the point at which the value decreased in a specific part and
returned to the original value, while the point values were input to the waist part. Similar
to the shoulder part, certain points continuously entered from the navel point, and the last
point before the value disappeared was defined as the thigh. As for the knee part, similar
to the navel part, the point value was designated as the knee when there was periodic
variation in a specific section. Therefore, through the first and second processes, the 3D
scanner derived the circumference and volume processes.

It was assumed that the variables for each body part selected were the values collected
for the subjects and that the body type and obesity information for each body part were
linearly proportional to the height [41]. Therefore, all body values were divided by the
subjects’ heights and normalized through conversion into a ratio with the height. Through
this, the body values for each body part were made available in terms of the height
information of the subjects.
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3.2. Data Preprocessing

Based on the total tissue information contained in the DEXA data presented in Table 1
(DEXA variable data parts), the obesity information associated with the body fat percent-
ages of males and females were classified, as shown in Table 2, and participants were
divided into four groups based on body weight. Based on DEXA and X-ray data, the body
is usually divided into five parts (chest, abdomen, hip, arms, and legs). When deriving
body values through these machines, it is possible to classify them in detail, but when
detailed inspections for each part are not required, they are broadly divided into five
categories [42,43]. Therefore, the obese group was defined according to the total tissue
standard, and for a comparison of the relationship between the total body fat percentage
and the fat percentage for each body part, five areas—chest tissue, abdomen tissue, hip
tissue, arm tissue, and leg tissue—were examined. In addition, the fat percentages of
the five body parts (chest, abdomen, hips, arms, and legs) were classified as percentages,
as shown in Table 2, because there is no standard for obesity information. The 3D body
scanner used in this study generates 3D body data by moving 360◦ upper and lower body
RGB cameras when the user stands in an A-shaped posture. For the generated 3D body
data, the 3D scanner automatically designates the landmarks of the body’s curvature and
body endpoints based on ISO-7250 and divides the body into the head, chest, abdomen,
buttocks, and arms. The thighs and calves are divided into eight parts. For these divided
regions, a model was constructed using data from a total of the following five regions:
chest, abdomen, buttocks, arms, and legs.

Based on the fat percentages of each of the five classified body parts, the variables
related to body fat among the body part values derived from the 3D body scanner were
grouped together, Among the 54 variables shown in Table 1 (3D scanner variable parts), a
correlation analysis was performed on the variables affecting the tissue information (arm,
chest, android, gynoid, leg) for each region shown in Table 1 (DEXA variable data parts),
and as a result, as shown in Table 3, five variables affecting the branch tissue information
were derived, as shown in Table 3. Therefore, a total of five variables were selected for each
body part, and variables used for the arms are three-dimensional data The only part that
can be extracted from the three-dimensional data is the circumference information. Due to
this extraction limitation, only the value of the arm circumference can be derived. The arm
circumference value was found to have a strong correlation of 0.9 or more when compared
with the leg variables, so these variables were grouped together, and the parts are combined
as arms/legs in Figure 3. Therefore, a total of four body part data sets were created.
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Table 3. Three-dimensional scanner body values according to the fat percentage for each body part.

Body Part Variables

Chest Height, weight, chest length, shoulder area, chest area, breast area, shoulder volume, and chest volume

Abdomen
Height, weight, waist length, waist circumference, navel waist circumference, lower navel
circumference, waist area, navel waist area, lower navel area, upper abdominal volume, and lower
abdominal volume

Hips Height, weight, hip length, hip circumference, groin circumference, hip area, and groin area

Arms/Legs
Height, weight, groin height, thigh length, knee height, calf height, thick thigh circumference,
mid-thigh circumference, knee circumference, calf circumference, thick thigh area, mid-thigh area, knee
area, calf area, and arm circumference
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As shown in Table 3, four body parts (chest, abdomen, hips, arms/legs) that affect the
diagnosis of obesity were determined, and a PCA was performed on each of the four body
parts for each variable for each part. In this way, factor values for each region were derived
through a PCA for each region.

3.3. Data Analysis

For determination of the relationships between body fat percentage and total fat
percentage for the four body part datasets (chest, abdomen, hips, and arms/legs), the
relationships between the variables for each body part and the body fat percentage were
investigated. To elucidate the relationship between the four body parts and body fat, classes
were created by classifying each male and female by the total body fat percentage. The
fat percentage for each body part was classified into four classes based on the total fat
percentage, which can be used to judge obesity, as shown in Table 4. Table 4 divides the
tissue information by region into four classes for men and women according to the DEXA
standard. The class applied the same tissue value for each of the four areas as the criteria
for dividing the total tissue into underweight, normal, overweight, and obese categories.
As a result of applying the same total tissue value to each of the four regions, categories of
Class1→underweight, Class2→normal, Class3→overweight, and Class4→obesity were
expressed. Since obesity information about the body parts cannot be determined according
to the percentage of body fat like the total fat percentage can, classes were created by
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dividing the range of body fat percentage for the body fat percentage of each of the four
parts. Each class was defined using the criteria of the four classes shown in Table 4,
based on the obesity-related criteria and statistical data obtained from a survey of Korean
adults and the adult obesity criteria obtained using DEXA Scans [44–46]. In addition, data
collection and experiments were conducted using two clinical trials and measurement body
measurement experts.

Table 4. Class values defined for each body part.

Men

Body Part Class 1 Class 2 Class 3 Class 4

Chest
Abdomen

Hips
Arms/Legs

8% or less More than 8%, less than
18.6%

More than 18.6%, less
than 23.1% More than 23.1%

Women

Body Part Class 1 Class 2 Class 3 Class 4

Chest
Abdomen

Hips
Arms/Legs

14% or less More than 14%, less than
22.7%

More than 22.7%, less
than 27.1% More than 27.1%

Therefore, the variables defined in Table 3 were merged into one dataset based on the
four classes classified by fat percentage for each body part, and the principal component
analysis (PCA) was used to identify the characteristics of the variables for each body
part. The PCA involves finding the principal component of data, identifying multiple
characteristics of the distribution of data, reducing features on n vectors to explain the data,
calculating the average value of the data X, and then calculating the covariance matrix Cx
of each data point.

Through this, the eigenvector and vi of Cx and the eigenvalue λi were obtained, and
the eigenvalues were arranged in the order of largest to smallest. Each eigenvalue refers
to the variance value of the data when the axis is transformed in the direction of the
corresponding eigenvector, which means that the total sum of λi is the total variance of the
data. Therefore, among the obtained eigenvectors and eigenvalues, the entire data set is
expressed using the upper t items that satisfy the data expression condition [47].

X =
1
n

n

∑
i=1

Xi

Cx =
1

n− 1

n

∑
i=1

(
Xi − X

)
(Xi − X)

T

VT = ∑t λi (λi ≥ λi+1)

t

∑
i=1

λ ≥ fvVT

( fv = percentage o f explain data)

The PCA is a method of deriving factors through eigenvectors and providing the
meaning of the corresponding class. Unlike a simple classification model, when new
information is input, it is a method of classifying the relevant class by using the factors
and distance information. The PCA methodology may have a lower classification accuracy
than methods using an artificial intelligence model, but it can transparently determine the
interactions of factors and performs well in terms of understanding data [48].
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Therefore, a PCA analysis was performed for each body part dataset based on the body
fat percentage range defined in Table 4. As shown in Figure 4, we established the standard
body fat percentage for each of the four body parts for men and women; derived the length,
circumference, and volume values for each body part assessed by the 3D body scanner;
derived the body fat percentage for each body part through a DEXA scan. Therefore, based
on the derived body fat percentage, a PCA analysis was performed on the corresponding
body value variables for each body part. The obesity classification standard was established
through the relationships identified in the PCA results between each region and the total
fat percentage. Therefore, the PCA was performed on each of the four body parts (chest,
abdomen, hips, and arms/legs), and obesity information for each part was derived through
the eigenvalue percentage of variance determined for each PCA.
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Through the PCA analysis using male/female body datasets for each of the four body
parts, the eigenvalue percentage of variance for each body part was derived, as shown in
Table 5. The male and female eigenvalue percentages of variance from Comp 1 to Comp 5
show that Comp 1 and Comp 2 had more than 80% explanatory power for all regions.

Table 5. PCA results.

Men

Eigenvalue percentage of variance Comp 1 Comp 2 Comp 3 Comp 4 Comp 5
Chest 63.8301 15.631 11.801 6.501 1.408

Abdomen 61.424 18.083 12.752 5.194 1.849
Hips 79.498 12.125 5.63 1.646 0.579

Arms/Legs 60.3 25.5 6.1 3.8 2.8

Women

Eigenvalue percentage of variance Comp 1 Comp 2 Comp 3 Comp 4 Comp 5
Chest 68.951 13.346 11.37 2.5 2.4

Abdomen 61.493 16.343 13.454 1.11 0.63
Hips 77.557 13.416 5.65 1.87 0.887

Arms/Legs 61.6 27.5 4.5 2.8 2.2

Therefore, to reduce the complexity of the model, we created a model using Comp 1 and
Comp 2. The distribution is shown as a 2D graph. Therefore, as shown in Figures 4 and 5, PCA
models of the four regions were created for men and women, and the values corresponding
to each distribution are shown. Figures 5 and 6 and Tables 6 and 7 show the distribution
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by region generated by the PCA model for men and women, respectively. PCA finds the
axis with the largest variance in the training dataset and then finds the axis with the second
largest variance that is orthogonal to the first axis. The third axis, which is orthogonal to
the first and second axes, is also found in this way and can maximize the variance. In these
processes, the unit vector is defined by finding the axes as many times as the number of
dimensions of the dataset [34]. Therefore, one axis is called the principal component, and it
is abbreviated as Comp.

Table 6. Results for men.

Body Fat Percentage
Chest Abdomen Hips Arms/Legs

Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2

Under 8

Mean −1.97 0.25 −2.95 −0.46 −4.56 −0.87 −5.05 −2.08
Median −1.9 −0.01 −3.34 −0.48 −1.81 0.66 −2.25 0.05

Min −3.18 −0.17 −3.86 −1.16 −2.21 −0.16 −5.11 −1.04
Max −0.4 1.13 −1.67 0.27 −0.76 1.39 0.57 0.8

8–18.6

Mean −1.39 0.1 −2.42 −0.14 −3.25 −0.54 −2.69 −0.61
Median −1 0.09 −2.32 −0.12 −1.17 −0.04 −0.89 0.76

Min −4.67 −2.7 −4.41 −2.06 −4.32 −4.34 −6.81 −2.63
Max 0.81 2.76 −0.42 1.61 2.31 1.22 5.42 4.84

18.6–23.1

Mean −0.5 0.15 −2.14 0.42 −2.03 −0.26 −1.79 0.27
Median −0.34 0.63 −2.46 0.86 −0.21 −0.45 −0.39 −0.001

Min −2.42 −2.66 −4.59 −1.74 −3.9 −3.83 −2.32 −3.99
Max 1.52 0.96 0.37 1.76 4.02 1.57 7.02 3.48

Over 23.1

Mean 1.07 −0.11 1.28 0.01 0.14 0.02 0.15 0.04
Median 0.57 −0.23 0.68 0.02 0.8 0.37 1.53 −0.97

Min −2.83 −3.69 −4.03 −2.6 −2.83 −1.96 −2.82 −4.71
Max 6.75 2.16 8.59 2.94 5.1 2.62 6.79 3.9

Table 7. Results for women.

Body Fat Percentage
Chest Abdomen Hips Arms/Legs

Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2

Under 14

Mean −2.29 −1.54 −3.4 −1.22 −4.56 −0.87 −5.05 −2.08
Median −2.71 −1.196 −3.4 −1.22 −3.85 −0.75 −4.79 −1.52

Min −3.01 −2.59 −3.41 −1.3 −4.56 −0.87 −5.05 −2.08
Max −1.35 −0.85 −3.38 −1.15 −3.15 −0.64 −4.53 −0.97

15–22.7

Mean −1.97 0.03 −2.53 −0.7 −3.25 −0.54 −2.69 −0.61
Median −1.96 −0.04 −2.57 −0.88 −2.32 −0.22 −2.71 0.19

Min −3.13 −1.33 −3.3 −2.33 −2.88 −0.8 −3.19 −2.92
Max −0.25 1.29 −1.67 1.39 −0.53 1.48 −2.29 2.91

22.8–27.1

Mean −0.88 0.26 −1.93 −0.34 −2.03 −0.26 −1.79 0.27
Median −1.36 0.165 −2.21 −0.42 −1.45 −0.08 −1.37 −0.21

Min −2.34 −1.14 −3.25 −1.85 −3.4 −1.14 −4.84 −2.61
Max 1.68 1.3 0.14 0.87 2 0.85 3.32 1.95

Over 27.1

Mean 1.6 0.01 0.94 0.22 0.14 0.02 1.15 0.04
Median 1.29 0.082 0.59 0.14 0.72 −0.01 1.1 0.25

Min −3.09 −2.72 −3.37 −4.13 −3.35 −3.69 −4.5 −5.81
Max 7.02 2.43 9.37 3.22 5.53 3.35 7.63 5.48
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4. Results

Four classes based on the body fat percentage range were generated for each of the
four body parts for males and females (men: under 8, 8–18.6, 18.7–23.1, and over 23.1;
women: under 14, 15–22.7, 22.8–27.1, and over 27.1), and Comp 1 to Comp 5 were derived
from the eigenvalue percentage of the variance of the PCA analysis for each of the four
sites. The results showed that both men and women had more than 80% explanatory power
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for the data in Comp 1 and Comp 2 in the four areas. Therefore, a classification model for
each body part was created using Type 1 and Type 2 data, which were derived from Comp
1 and Comp 2. This classification model was as follows: underweight→A, normal→B,
overweight→C, and obese→D. The boxplot for the data group is shown in Figure 7.
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Based on the generative model, when the body values for the four parts belonged to
more than half of the class clusters for each body part because of clustering in the obese
group based on the generative model, the measurer’s obesity information was added to
the corresponding cluster (e.g., chest: A, abdomen: A, hips: A, legs/arms: B, obesity
diagnosis: A) In addition, if the classes of two of the four regions were the same, the values
corresponding to the higher class were used as the obesity information (e.g., chest: C,
abdomen: C, hips: B, legs/arms: B, obesity diagnosis: C). However, this did not apply to
all cases, and there were exceptions, as shown in Table 8.

Table 8. Exceptions by group for males and females.

Obesity
Diagnosis Chest Abdomen Hip Legs/Arms Obesity

Male C D D C Overweight
Male A B B B Normal
Male B C B B Normal
Male D D B~C B~C Overweight
Male A~B C~D A~B A~B Normal

Female B~C D D D Overweight
Female B C~D D C~D Overweight

Apart from the exceptions shown in Table 8, in all cases, it was possible to obtain
obesity information from the cluster results for each of the four regions. Therefore, this
model was validated based on the cluster results and for cases of exception. For verification,
the model with the highest accuracy was selected using BMI, WHtR, and WHR, and the
model proposed in this study was used for 10 random people for whom DEXA information
and 3D body information (circumference, cross-sectional area, and volume) were available,
and the results were compared with the existing obesity diagnosis indices. The body values
of the group used for the verification of the proposed model are shown in Figure 8 as
blue dots at the points where the PCA value for each body part belongs to the nearest
class. Therefore, through a comparison of the distances of the classes corresponding to
the obesity information, the class for each body part was derived as belonging to the class
corresponding to the closest point.

The verification results are shown in Table 9. The proposed model showed high
accuracy when judging the obese as follows: the D group and the underweight: A group
for all obesity diagnosis models. However, in the case of the normal: B and overweight:
C groups or the boundary between the obesity: D and the overweight: C groups, the
obesity index values derived from a single measurement were not accurately judged.
The verification of the model attained accuracy of 50% for BMI, 70% for WHtR, 60% for
WHR, and 80% for the proposed model. Additionally, when comparing the overall obesity
information judgment results, the BMI, which measures obesity by the relative height and
weight, showed a low degree of purification, unlike other obesity diagnosis models, because
information by body part and body type was not considered. Similarly, the WHtR, which
uses waist circumference information, and the WHR, which utilizes hip circumference
information, were found to have relatively low levels of accuracy compared with the
model proposed in this study because they only use the information on specific areas. The
model proposed in this study has a high diagnosis accuracy for identifying overweight and
obesity. Additionally, unlike other diagnostic methods with low accuracy for identifying
overweight and obesity, high accuracy was shown for overweight and obesity diagnoses.
However, it was found to have similar or slightly better performance than the WHtR and
WHR for underweight and normal diagnoses. Therefore, the model proposed in this study
was shown to have high accuracy in terms of obesity diagnosis because its accuracy level
was similar to that of DEXA for the diagnosis of overweight and obesity.
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Table 9. Results obtained with the obesity diagnosis model.

Obesity
Diagnosis DEXA BMI WHtR WHR Proposal

Model

Sample 1 D D D C D
Sample 2 C B C C C
Sample 3 B B B B B
Sample 4 C B C C C
Sample 5 C B C B C
Sample 6 B A A B B
Sample 7 D C C C C
Sample 8 A A B B A
Sample 9 A A A A B

Sample 10 B B B B B

Accuracy Ground Truth 50% 70% 60% 80%

5. Conclusions and Future Research

This study utilized various body values (length, circumference, volume, and cross-
sectional area) that can be derived from 3D data to determine the variables and regions that
affect obesity and to measure obesity more precisely than existing obesity indices. Through
a diagnosable model, guidelines for body information required for obesity diagnosis were
presented. To this end, accurate fat percentage values were derived using a 3D scanner and
a DEXA, which were designed based on ISO-7250 and can derive results for exact body
points. Therefore, 3D body information about the chest, abdomen, buttocks, arms, and legs
and the fat percentage and total fat percentage for each body part were used as learning
data. For learning, data were collected from a total of 170 people (73 females and 87 males
aged 20–30 years) from April to December 2021. For data collection, men wore tights as
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bottoms, and women wore tops and bottoms. The experimenter measured the total body
fat percentage and the fat percentage for each body part through DEXA and derived body
values using a 3D body scanner.

The analysis model created a model for each body part using the PCA model, which
can identify the group characteristics of various variables. The body values of the arms
and legs had strong positive correlations, so they were judged as one part, and the learning
model was designed. Therefore, the following four PCA models were created for males
and females: chest, abdomen, hips, and arms/legs. Based on the eigenvalue percentage of
variance for the generated PCA model, four classes were created (underweight, normal,
overweight, and obese), and the validation data were verified by randomly extracting data
from 10 people who were assessed under the same conditions as used for the training
data. For verification, the ground truth was compared with the three obesity indexes
(BMI, WHtR, and WHR), which were existing obesity diagnosis methods, and the total fat
percentage derived from the actual DEXA was used to determine the accuracy of the model
proposed in this study. The model proposed in this study had an accuracy level of 80%,
which was the highest accuracy level derived. Based on the results, the model proposed in
this study was able to derive a 10–20% higher accuracy than the existing obesity indices
when compared with DEXA, which derives the most accurate obesity information. As
such, the method of deriving obesity information for each part using body values and
diagnosing overall obesity using the obesity information for each part can provide more
information than the existing method of diagnosing obesity simply by using one specific
part. In addition, users can check whether they are at risk of obesity in any part of their
whole body, even if their obesity information is normal. By using this information, users
can manage their level of obesity and body shape and reduce body image distortion by
obtaining accurate obesity information rather than obtaining obesity information using
a specific number. In addition, many studies are being conducted to generate 3D body
data using only images. By using this three-dimensional model of the body, not only can
information about a body’s length, circumference, and volume be more easily obtained,
but also, by using the model presented in this study, it is possible to accurately diagnose
obesity without restrictions on location and equipment.

The method proposed in this study is one of the methodologies that can be used for
accurate obesity diagnosis without DEXA information, and it aims to derive accurate obesity
information using various types of body information. However, there were limitations in
data collection for the group with excessive upper body development and lower body fat,
and for this reason, it was not possible to accurately judge this group. In this study, detailed
criteria for attaining general obesity information were presented, but people with special
physical diseases or structures were not considered. In addition, exceptional treatment as
shown in Table 9 was also performed for groups with special cases, but there is a limited
ability to define all special groups. The reason why this group appeared is that there was a
limited ability to evenly collect actual data for various groups. In future studies, it may be
possible to accurately attain obesity information for groups with exceptional body values
by recruiting more experimental groups and collecting data from groups with exceptional
body values.
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