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Abstract: Objective: The shallow underwater environment is complex, with problems of color
shift, uneven illumination, blurring, and distortion in the imaging process. These scenes are very
unfavorable for the reasoning of the detection network. Additionally, typical object identification
algorithms struggle to maintain high resilience in underwater environments due to picture domain
offset, making underwater object detection problematic. Methods: This paper proposes a single-
stage detection method with the double enhancement of anchor boxes and features. The feature
context relevance is improved by proposing a composite-connected backbone network. The receptive
field enhancement module is introduced to enhance the multi-scale detection capability. Finally, a
prediction refinement strategy is proposed, which refines the anchor frame and features through two
regressions, solves the problem of feature anchor frame misalignment, and improves the detection
performance of the single-stage underwater algorithm. Results: We achieved an effect of 80.2 mAP
on the Labeled Fish in the Wild dataset, which saves some computational resources and time while
still improving accuracy. On the original basis, UWNet can achieve 2.1 AP accuracy improvement
due to the powerful feature extraction function and the critical role of multi-scale functional modules.
At an input resolution of 300 × 300, UWNet can provide an accuracy of 32.4 AP. When choosing the
number of prediction layers, the accuracy of the four and six prediction layer structures is compared.
The experiments show that on the Labeled Fish in the Wild dataset, the six prediction layers are better
than the four. Conclusion: The single-stage underwater detection model UWNet proposed in this
research has a double anchor frame and feature optimization. By adding three functional modules,
the underwater detection of the single-stage detector is enhanced to address the issue that it is simple
to miss detection while detecting small underwater targets.

Keywords: underwater object detection multi-scale; dynamic convolution; UWNet; compound
connection network

1. Introduction

Due to the complex underwater environment, the turbidity of the water body, the
absorption of light by the water body, and the high cost of underwater video acquisition,
machine vision still has much room for development in the field of aquatic biological
monitoring. Underwater robots can realize the function of allowing robots to complete
specific underwater tasks instead of manual diving. Underwater robots are widely used in
safety search and rescue, pipeline inspection, oil exploration, and fishing.

The movement and operation of underwater robots are usually remotely controlled by
operators on water ships and interact through vision and control systems [1]. Equipped
with sonar, laser systems, cameras, and other equipment, real-time video and sonar images
are provided by underwater robots for water operators. To grasp the target in the dark un-
derwater environment, the underwater robot will also be equipped with a mechanical arm
and a searchlight. However, it is not enough for underwater robots to achieve autonomous
target grasping with the above equipment and sensors alone, and a set of underwater target
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detection algorithms are demanded. The current mainstream underwater robots are shown
in Figure 1.
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To accurately identify the target, the key is to determine the category and location of
the underwater target. The most direct method is to collect images through underwater
cameras and implement detection through the deployed underwater target detection
algorithm [2]. However, the shallow aquatic environment is complex. Problems such
as color shift, uneven illumination, blurring, and distortion would occur in the imaging
process. These scenes are very unfavorable for the detection network. In addition, due to
the existence of image domain offset, it is difficult for general object detection algorithms to
maintain high robustness in underwater environments [3].

Today, underwater object detection still faces many challenges. For example, there
are many small targets in the underwater scene due to suspended objects and uneven
illumination in the underwater environment. Secondly, deploying underwater target
detection algorithms on the mobile terminal requires high precision and lightweight. It
is difficult to quantify the detection model, and it is difficult to reduce the weight of the
detection model while maintaining high accuracy. In addition, the current stage of shallow
sea underwater detection datasets has few types and minor scales, and it is urgent to
expand the scale of existing underwater datasets.

In summary, the current underwater target detection is limited by the complex under-
water environment, and the general detection algorithm has little effect, making underwater
target detection still challenging. To promote the development of underwater robot tech-
nology and realize the “transparent ocean” as soon as possible, the research on underwater
target detection is of great significance and value.

1.1. Related Work

In terms of deep learning algorithms, the AlexNet model of Deep Convolutional
Neural Network (DCNN) proposed by Krizhevsky [4] et al. in 2012 achieved record image
classification accuracy at the IMAGENET Visual Recognition Challenge (ILSRVC) to obtain
a classification model. Since then, deep learning has been widely used in recognition and
detection with good results. In 2013, Ross Girshick [5] and others first applied the CNN
method to the target detection task. They used the traditional image algorithm Selective
Search to generate candidate regions and succeeded wildly. This region has a far-reaching
influence on the target detection field—Convolutional Neural Network (R-CNN) model.
In 2015, Ross Girshick improved this method and proposed the Fast R-CNN model. By
sharing the calculation of the convolution layer for objects in different regions, the amount
of analysis is significantly reduced, the processing speed is improved, and a regression
method for adjusting the position of the target object is introduced, which further enhances
the accuracy of position prediction. In 2015, Shaoqing Ren [6] et al. proposed the Faster R-
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CNN model and the RPN method to generate candidate regions of objects. This method no
longer needs to create many candidate regions and further improves the processing speed.
In the same year, J. Redmon [7] proposed a new object detection method, YOLO, which no
longer uses the separation module of R-CNN. YOLO does not require the process of two
detections and uses image detection as a regression problem to describe the space. Separate
bounding boxes and associated class probabilities surpassed the then-hot R-CNN in speed
and performance. After that, the author continued to improve, and Yolov2 [8] appeared in
2016. As of 2018, the author launched Yolov3 [9], which had better performance and was
applied in more fields, especially in the military. The author of the YOLO series was afraid
that the YOLO model would be improperly used. The YOLO series models are no longer
updated. In 2017, Kaiming He [10] et al. proposed the Mask R-CNN model, which can
simultaneously achieve the tasks of target detection and object instance segmentation by
adding a relatively small amount of computation to the FasterR-CNN model. The network
structure of Yolov3 is shown in Figure 2.
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In terms of target detection applications based on deep learning, in 2019, Li Qingzhong [11]
and others proposed a real-time detection algorithm for underwater fish targets based on
improved YOLO and transferred learning. Furthermore, an underwater-YOLO network
structure was constructed to rebuild the complexity of the deep learning network structure.
The number of convolution layers and convolution kernels enables the model to realize real-
time detection of underwater fish targets applied in the embedded system of underwater
robots, and the fish detection accuracy rate reaches more than 93%. This method profoundly
learns large scale. The network model can be used in embedded systems, which is in line
with the development direction of the current technology transition from PC to mobile. By
adding the train professionals generation network to the YOLOv3 detection network as its
enhancement network, Liu Ping [12] and others proposed a marine biometric recognition
algorithm in 2020. Compared with the traditional method of separating image processing
and detection model, this method is more targeted for underwater detection and recognition.
The application of the network model is more systematic and concise.

1.2. Our Contributions

This paper proposes a single-stage detector-based composite connection structure
to aggregate the advantages of different backbone networks to enhance feature discrim-
ination. To strengthen the ability of multi-scale detection, an improved ASPP+ module
based on ASPP is introduced for multi-backbone intermediate connections. A receptive
field enhancement module is further proposed to expand the feature sensory field area
through deconvolution. Finally, since the positive and negative samples are imbalanced in
single-stage detectors and the scarcity of underwater datasets exacerbates the imbalance,
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inequality draws on the design ideas of two-stage detectors. It proposes a refinement
module, which simply implements a single-stage detector. In the pre-screening process
of positive and negative samples of the stage detector, the anchor frame and features are
corrected in the final stage to align the features and anchor frames, thereby significantly
improving the accuracy of the single-stage detector based on introducing a small overhead.

The rest of the paper is organized as follows: Section 2 describes our methods and
materials in detail. Section 3 presents the experimental results. Section 4 discusses them.
Section 5 concludes.

2. Methods and Materials
2.1. Underwater Object Detection Dataset

The data used in this experiment are collected from a data source and manually
labeled, including fish pictures in different backgrounds, covering dark light, noise, small
targets and other situations, which is challenging for underwater fish target detection
tasks. The raw data come from Labeled Fishes in the Wild [13] provided by the National
Oceanic and Atmospheric Administration. This paper filters this dataset and extends
annotations for small and ambiguous objects. The experiments in this paper are mainly
completed on this dataset. It was converted to the PASCAL VOC dataset format as needed
for the investigation. The dataset is described as follows, and some examples are shown in
Figure 3.
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2.2. Single-Stage Underwater Target Detection Algorithm Based on Double Optimization of the
Feature Anchor Frame

The accuracy of traditional one-stage detectors is usually inferior to two-stage detec-
tors. The main reason is that the two-stage detector optimizes the initial anchor boxes
through the process of the region recommendation network and generates more refined
candidate boxes. However, in single-stage detectors, this process is omitted in pursuit of
speed. The single-stage detector presets many a priori boxes on the image at one time
to match the target. Therefore, a large number of anchors cause the problem of sample
imbalance. To address this issue, RefineDet [14] uses two-stage regression to obtain more
accurate results. It filters out a large number of negative anchors through the first classifica-
tion to balance the positive and negative samples. It then performs anchor box optimization
based on the first regression to obtain more accurate results. Although RefineDet performs
multiple stages of classification and regression, it is unreasonable to use the same features
in two different stages. After the first regression, subsequent operations should focus more
on updated anchors and new features. Therefore, AlignDet [15] learns the offset before
and after regression through deformable convolution, which solves the problem of feature
misalignment to a certain extent. Reappoints [16] uses a weakly supervised method to
locate key points and to predict their key-point offsets, which are used as raw feature map
offsets for deformable convolutions to align feature maps with object regions.

2.2.1. Composite Connection Backbone Network

Underwater datasets face severe blurring and texture distortion. These problems often
affect the quality of features extracted by many relatively shallow backbone networks, thus
limiting the discriminative power of classifiers. To this end, there is an urgent need to



Sensors 2022, 22, 7875 5 of 14

find backbone networks with more powerful representation capabilities. An important
criterion for network design is to enhance the functionality of the basic modules to improve
the overall performance of the network. Deeper backbone networks are beneficial for
feature extraction, but single-stage detectors focus more on speed advantages. To this end,
this chapter first excludes the use of deeper feature extraction backbone networks, as this
would slow down single-stage detectors, but redesigning new efficient structures is difficult
and labor-intensive. Therefore, according to the existing mainstream feature extraction
networks, this chapter explores the relationship between feature extraction of different
backbones. Inspired by CBNet [17], this section achieves higher performance than a single
backbone by combining existing backbones in the form of compound connections.

The proposed composite connection backbone network is shown in Figure 4, which
consists of two parts: composite connection structure and ASPP+.
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Composite Connection Structure

The left part of Figure 4 shows the composite connection backbone structure. The new
backbone network consists of two parts: the main backbone network and the coordinating
backbone network. The leading backbone network retains the VGG16 structure in the
standard SSD, and the ResNet50 structure is used as a co-backbone network to obtain
feature contextual semantic information.

The composite connection backbone network replaces the original network by a
combination of basic networks to tap the maximum potential of the existing backbone
network. In Figure 4, Fk

l is defined as the kth main backbone layer, where ∀k∈1,....,n−1.
Fk

a represents the kth co-backbone layer. The results of each stage in the co-backbone
network can be viewed as higher-level semantic features. In the composite connection
backbone network, the output of each stage in the co-backbone network is part of the main
backbone network and flows into the next stage after being combined. This way, the fusion
of high-level semantic information and low-level visual information can be achieved to
generate richer feature representations. The specific process is expressed as the following
Formulas (1) and (2):

Fk
out = Fk

l ⊕ Fk
a (1)

Fk
OUT = ε

(
Fk

out

)
(2)

Among them, ⊕ represents the process of feature fusion, which defuses features ac-
cording to the channel axis. Fk

l and Fk
a denote the features of the kth stage of the main

backbone and the co-backbone, respectively. Fk
out represents the input value of the subse-

quent backbone. In the process from Fk
out to Fk

OUT , ε is defined as the channel compression
process of the 1 × 1 convolutional layer.
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According to the connection method shown in the Figure 4, the feature maps of the
main backbone and the auxiliary backbone, in which layers of the same sequence participate
in the fusion, have the same size. Specifically, the 150 × 150, 75 × 75 and 38 × 38 feature
maps selected by the backbone network correspond to the output stage feature sizes of
ResNet-50. In theory, the connection can be designed to be more complex. It is even possible
to choose to fuse feature layers in different orders on the main backbone and co-backbone,
and then interpolate linearly to the same size for composite connections.

ASPP+

The Atrous Spatial Pyramid Pooling module consists of convolution kernels of differ-
ent sizes represented by a multi-path feature. The right half of Figure 4 shows the enhanced
Atrous Spatial Pyramid Pooling (ASPP+) module of this chapter. This module is eventually
inserted into the last two layers of the backbone connection. Unlike the original Atrous
Spatial Pyramid Pooling, the ASPP+ module takes Fk

a as input and processes it through
four parallel branches. In the first three branches, the multi-scale feature fusion is achieved
by combining the atrous convolutional layer and the ReLU layer. The three branches use
1 × 1 convolution, 3 × 3 convolution with a hole rate of 3, and a hole rate of 6. Considering
the operation of feature fusion, in order to control the amount of computation, this chapter
reasonably allocates the number of channels for each branch. The output channel size of
these three branches is set to 1/4 of the number of input channels, and the fourth branch
uses a global average pooling layer to compress the features and uses a 1 × 1 kernel to
resize the channels to 1/4 of the input. Finally, the features of the four branches will be
merged to obtain the output result. Details about the insertion location of this module will
be elaborated in subsequent ablation trials. The schematic diagram of ASPP is shown in
Figure 5.
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2.2.2. Receptive Field Enhancement Module

Figure 6 shows the receptive field enhancement module introduced in this section.
The upper and lower parts of Figure 6 are the RFA module and the RFA+ module,
respectively. The design of the receptive field enhancement module imitates the de-
sign idea of ResNet [18] and Inception structure [19], and RFA adopts a multi-path
representation structure.
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First, multiple branches of the structure process input data in parallel. Each branch
consists of a 1 × 1 convolution and several other simple convolutions with kernels of
different sizes [20]. Finally, each branch forms a bottleneck-like structure. The kernel
size of each branch varies slightly, which is beneficial for capturing multi-scale contextual
information. To enlarge the receptive field, atrous convolutions with different dilation rates
are used in the final convolutional functional layer to improve the multi-scale detection
performance. In this way, more information can be captured on a larger scale while main-
taining the same number of parameters [21]. After that, RFA fuses the features of multiple
branches and uses 1 × 1 convolution to adjust the channel size. Finally, the receptive field
enhancement module also simulates the residual structure using a shortcut connection
method, weights the input and summarizes the features of multiple branches to obtain the
result [22]. To accommodate various situations, this section proposes two similar structures
RFA and RFA+. RFA+ has more branches than RFA and uses many small convolution
kernels, which reduces the number of parameters, and is mainly used for shallow layers to
enhance small object detection capabilities. RFA+ replaces the 5 × 5 convolution with two
stacked 3 × 3 convolutions. This operation not only reduces the computational complexity
but also increases the nonlinear capabilities of the model. Furthermore, RFA replaces the
original 3 × 3 convolution with 3 × 1 convolution and 1 × 3 convolution. Taking RFA as
an example, the whole process can be described by Equation (3):

Xout = τ(Xin ⊗ ε(Br1 ⊕ Br2 ⊕ Br3)× scale ) (3)

Here, Xin represents input features. Brk represents different branches, k ∈ 1, 2, 3. ⊕
represent feature fusion. ε represents the process of channel adjustment. The parameter
scale represents the linear weight value in the shortcut connection, and the default setting
is 0.1. ⊗ represents the feature matrix for element-wise addition. τ represents the final
activation function ReLU [23,24].

2.2.3. Predictive Optimization Strategies

The prediction refinement scheme mainly includes two steps: the preprocessing stage
and the optimization stage. This process uses a two-step process to refine the prediction of
object location and size, which is beneficial for detecting challenging underwater scenes,
especially for target groups with large scale variations. The main steps of the prediction
optimization scheme are to perform the initial binary classification (front-background
classification) and regression in the preprocessing stage and then perform the second
classification and regression in the optimization stage to obtain the final prediction result.
Unlike RefineDet, the prediction optimization scheme uses six feature prediction layers
for refinement (there are only four in RefineDet). In addition, the prediction optimization
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strategy can make the model more focused on the target through the channel attention
mechanism and correct the anchors by learning the offset.

Preprocessing Stage

In the preprocessing stage, the prediction results obtained by the receptive field
augmentation module (RFA) and additional layers are first processed. Starting from the last
layer Conv4_3 of the composite connection backbone, downsampling through additional
layers of standard SSD and RFA to achieve the required feature map size for the prediction
layer occurs. Conv4_3 is followed by an RFA+ module as the first prediction branch to
improve the detection ability of shallow small objects. This paper believes that adding RFA+
to the high-resolution feature map can fully extract the semantic information of the high-
resolution feature map; thus, the operation of the high-resolution feature map is beneficial
to the detection of small underwater targets. Finally, binary classification and anchor box
regression are performed on the information of the six enhanced feature layers [25]. The
obvious background boxes are first filtered to provide more high-quality anchor boxes
for the refinement stage. The output C1x is used to distinguish between foreground and
background. A vector of four-element values R1x is a vector of four-element values used to
locate the anchor point [26].

Optimization Phase

In the optimization stage, the preprocessing result C1X is first processed by performing
a max-pooling operation along the channel axis, and then, it goes through a sigmoid
activation function to obtain more salient features. The result of this process is recorded as
S1x. S1x obtained by max pooling, and the sigmoid function can highlight the location of
objects, which is used to enhance the result Xout of the six prediction layers. S1x and Xout
are multiplied element by element and then added element by element with the value of
Xout and recorded as Xend. The prediction optimization module proposed in this section
is significantly different from RefineDet, mainly in the double optimization. In theory,
the features used in the preprocessing stage should not be the same as the features in the
optimization stage [27]. Following this idea, this section also optimizes the front and rear
features. Specifically, the TCB connection of RefineDet is replaced by the channel attention
mechanism to make the network more focused on the object itself. This process can be
represented by the following Formula (4):

Xend = (Xout · S1x)⊗ Xout (4)

Among them, · represents element-by-element multiplication, ⊗ represents element-
by-element addition, and Xend is the result of the enhancement of the existing position
information. The first regression result R1x contains four output vector values: (∆x, ∆y, ∆h,
∆w). (∆x, ∆y) represents the spatial offset of the anchor box center point. (∆w, ∆h) represents
the offset of the anchor box width and height. After that, the additional convolution layer
uses (∆x, ∆y) to calculate the offset of the convolution kernel to correct the sampling center
point, correct the anchor frame, and align the anchor frame and the feature. In addition,
the optimization stage further enhances the contextual semantic relevance by introducing
atrous convolutions in the offset layer. Regarding the classification and regression in
the optimization stage, C2x no longer simply performs binary classification, but multi-
classification tasks. The output of the deformable convolutional layer is the final result R2x.
In general, the prediction optimization scheme is similar to RefineDet, but the essence is
different. The optimization strategy described in this section not only corrects the anchor
box, but also the features.
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2.2.4. Loss Function Design and Training

With the proposal of the prediction optimization strategy, the design of the loss
function is also fundamentally different from the original SSD loss function. The detection
model is optimized by the loss function defined by Equations (5)–(9):

L =
1

NPre
pos

(
LPre

cls + LPre
reg

)
+

1

NRe f
pos

(
LRe f

cls + LRe f
reg

)
(5)
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n
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cls (Pi, P∗i ) (6)

LPre
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(
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)
(8)

LRe f
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N

∑
i∈pos

LRe f
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(
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)
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In the above formula, L is the loss of the final network, LPre
cls and LPre

reg represent the

classification and regression losses in the preprocessing stage, and LRe f
cls and LRe f

reg represent
the classification and regression losses in the optimization stage. The classification loss
uses the cross-entropy loss function while the regression loss uses the Smooth-L1 loss.
Npos represents the number of positive anchor boxes in each link. i is the index of anchor
boxes in a mini-batch. P∗i and p∗i∈pos represent the coordinates of the ground-truth label
and ground-truth anchor box i. Pi represents the predicted signature of the anchor box.
ti∈pos and bi∈pos are the regression results of the preprocessing stage and the optimization
stage, respectively.

3. Experiments and Results

The model training in this chapter is all based on the PyTorch deep learning framework,
version 1.2.0. The hardware platform is NVIDIA RTX2080Ti, and the neural network model
training is accelerated by installing Cuda10.0. During the training phase, the model
is trained by default for 160 epochs. A warm-up strategy was used on the initial five
epochs, and the learning rate was dynamically selected between −34 × 10 and −610
to slowly approach the initial learning rate of 0.002, and the learning rate changed to a
minimum at the 150th epoch [28]. The SGD optimizer was chosen when backpropagating
gradient updates. In this section, the detection model backbone extraction network uses
a composite connection backbone. The ResNet and VGG networks in the composite
connection backbone are loaded with ImageNet pre-training weights, and the input image
size is fixed at 300 × 300. The training process uses multi-card training, and the batch-size
is set to 32. In addition, the method in this section presets anchor boxes in six prediction
layers, and each anchor point presets [4,4,6,6,6,6] anchor boxes. The ratio of anchor boxes is
2:2 and 2:3. In the post-processing stage, non-maximum suppression was used, and the
threshold was set to 0.5.

Figure 7 shows the detection effect of this algorithm in underwater scenes. The anchor
box of each color represents a category, which is marked in the figure. Among them, the
black anchor box marks the shell, the red anchor box marks the sea urchin, the blue anchor
box marks the sea cucumber, and the yellow anchor box marks the starfish.
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First, this section compares the described method (hereafter abbreviated as UWNet)
with current mainstream algorithms on the Labeled Fishes in the Wild dataset. Experiments
with two input resolutions with input size of 300 × 300 and 512 × 512 were conducted.
Table 1 shows the test results of Labeled Fishes in the Wild. It can be seen that UWNet
achieves a result of 80.2 mAP on Labeled Fishes in the Wild, which is ahead of most single-
stage detectors and even surpasses some two-stage detection algorithms [29]. However,
from the data in Table 1, the accuracy of the algorithm still has room for improvement. The
main reasons may be as follows: First, the Labeled Fishes in the Wild dataset rarely suffer
from blur, occlusion, and scale changes; thus, the algorithm in this paper does not improve
much. Second, the detection accuracy will fluctuate according to the version differences of
hardware devices and third-party-dependent libraries. UWNet can still improve accuracy
while saving some computing resources and time. In conclusion, Table 1 demonstrates that
although UWNet does not achieve the current state-of-the-art accuracy, it can still maintain
a high detection level in conventional object detection.

Table 2 shows the comparison of the detection accuracy of UWNet on the classic
object recognition dataset MS COCO 2015. It can be seen that UWNet achieves the best
performance of single-stage detectors. UWNet can achieve an accuracy improvement of
2.1 AP. Careful observation will reveal that the performance of small objects has improved
significantly, from 10.9 to 15.1 APs. This benefits from the powerful feature extraction
function and the important role of multi-scale functional modules. At an input resolution
of 300 × 300, UWNet can provide an accuracy of 32.4 AP.

The predictive optimization schemes are inspired by RefineDet; they are similar but
different in nature. The selection and design details of the prediction layer have been
explained earlier. This section mainly analyzes the rationality of the number of prediction
layers. In RefineDet, four feature layers are selected by the author for prediction, and four
prediction layers are selected by experimental analysis to achieve the best accuracy. For
underwater datasets, high-level semantic information can help the model to obtain more
detailed information about the target, which is helpful for in detecting blurred and distorted
images. Therefore, we believe that small feature maps are also necessary for prediction in
this experiment. In addition, this experiment performed another small ablation experiment
when choosing the number of prediction layers. The accuracies of the four prediction layer
structures and the six prediction layer structures are compared [30]. Table 3 shows that
each of the six prediction layers outperforms the four prediction layers on the Labeled
Fishes in the Wild dataset.
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Table 1. Detection results of Labeled Fishes in the Wild dataset.

Method Backbone Input Size mAP

Two-stage Detectors

Faster RCNN VGG16 1000*600 73.2
Faster RCNN ResNet101 1000*600 76.4

MR-CNN VGG16 1000*600 78.2
R-FCN ResNet101 1000*600 80.5

CoupleNet ResNet101 1000*600 817

One-stage Detectors

SSD300 VGG16 300*300 77.2
YOLO GoogleNet 448*448 63.4

YOLOv2 DarkNet19 544*544 78.6
RON++ VGG16 320*320 76.6
DSSD ResNet101 321*321 78.6

RcfineDet VGG16 320*320 80.0
DES VGGI6 300*300 79.7

DFPR VGG16 300*300 79.6
FERNet300 VGG16 300*300 80.2

SSD512 VGG16 512*512 79.5
DSSD512 ResNet101 513*513 81.5
DES512 VGGI6 512*512 81.7

RefineDet512 VGG16 512*512 81.8
DFPR512 VGG16 512*512 81.1

FERNet512 VGGI6 512*512 81.0

Table 2. Detection results of MS COCO 2015 dataset.

Method Backbone Input Size Time AP AP50 AP75 APS APm APl

Two Stage Detectors

FasterRCNN Vgg16 1000*600 147 ms 21.9 42.7 - - . .
CoupleNet ResNet101 1000*600 121 ms 34.4 54.8 37.2 13.4 38.1 50.8

MaskRCNN ResNet101 1280*800 210 ms 39.8 62.3 43.4 22.1 43.2 51.2

Single Stage Detectors

SSD Vggl6 300*300 20 ms 25.1 43.1 25.8 6.6 25.9 41.4
DSSD ResNet101 321*321 - 28.0 46.1 29.2 7.4 28.1 47.6

RefineDet Vggl6 320*320 20 ms 29.4 49.2 31.3 10.0 32.0 44.4
DES Vggl6 300*300 - 28.3 47.3 29.4 80.5 29.9 45.2

FERNet Vggl6 300*300 30 ms 32.4 52.6 34.2 15.1 36.3 48.2

Table 3. Detection results of different number of prediction layers.

Dataset Labeled Fishes in the Wild

Num 4 6

mAP 79.8 80.2

In order to better validate the effectiveness of the proposed method compared with
the improved CNN and traditional machine learning methods for four types of underwater
target recognition, several typical traditional machine learning methods are designed for
underwater target recognition in this paper. The traditional feature extraction methods
include Meier frequency cepstrum coefficient (MFCC), Hill (HHT) transform and wavelet
transform, etc. The commonly used algorithms include support vector machine (SVM),
k-nearest neighbor, BP algorithm and SoftMax regression, etc. A comparison of the experi-
mental results is shown in Table 4.
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Table 4. Recognition rate of underwater targets by different methods.

Identification Method
Recognition Rate (%)

Feature Extraction Method Classification Method

MFCC

SVM 83.45
KNN 76.31

BP 81.28
Softmax 85.09

HHT

SVM 83.54
KNN 82.43

BP 84.52
Softmax 83.29

Wavelet transform

SVM 86.95
KNN 84.36

BP 86.19
Softmax 86.75

CNN 89.39
The method proposed in this paper 91.47

4. Discussion

Due to the existence of a large number of suspended solids in the underwater en-
vironment, coupled with the refraction of light and other reasons, underwater imaging
generally suffers from color casts, blurring, and uneven illumination. These problems make
underwater object detection more challenging. Due to its special application scenarios,
underwater target detection not only requires stronger multi-scale and small-target de-
tection capabilities, but also puts forward more stringent requirements for the real-time
performance of the model. This paper proposes a single-stage detection method UWNet
with double enhancement of anchor boxes and features.

UWNet achieves a result of 80.2 mAP on Labeled Fishes in the Wild dataset, which
is ahead of most single-stage detectors and even surpasses some two-stage detection
algorithms. However, from the data in Table 1, the accuracy of the algorithm has not yet
reached state of the art. The main reasons may be as follows: First, the Labeled Fishes in the
Wild dataset rarely suffers from blur, occlusion, and scale changes; thus, the algorithm in
this paper does not improve much. Second, the detection accuracy will fluctuate according
to the version differences of hardware devices and third-party-dependent libraries. For
example, this paper uses RFBNet source code for training, and the detection accuracy
can only reach 80.0 mAP. At this time, UWNet is stable at 0.2 mAP higher than RFBNet.
Compared with RefineDet, the improvement is 0.2 mAP. However, the input size of this
method is 300 × 300, which is smaller than the 320 × 320 input size of RefineDet. UWNet
can still improve accuracy while saving some computing resources and time.

UWNet achieves the best performance of single-stage detectors. UWNet can achieve
an accuracy improvement of 2.1 AP. Careful observation will reveal that the performance
of small objects has improved significantly, from 10.9 to 15.1 APs. This benefits from
the powerful feature extraction function and the important role of multi-scale functional
modules. At an input resolution of 300 × 300, UWNet can provide an accuracy of 32.4 AP.

Another small ablation experiment was performed while choosing the number of pre-
diction layers. The accuracies of the four prediction layer structures and the six prediction
layer structures are compared. Table 3 shows that six prediction layers outperform four
prediction layers on both UWD and Labeled Fishes in the Wild datasets.

The double refinement method is obvious for the improvement of the single-stage
detection algorithm, but there are some limitations. The improved algorithm based on SSD
in this paper is limited by the size of the input image, that is, the current framework in this
paper is difficult to use large-resolution images for training. Therefore, its performance is
limited, and there are still many deficiencies, which need further in-depth research.
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A three-dimensional (3D) surface visualization of the underwater structures, which
may be based on a multi-output Gaussian process, can provide a better analysis of the
underwater environment. In addition to the UWNet, one may also consider using extreme
learning techniques for target detection.

5. Conclusions

Aiming at the real-time target detection requirements of underwater scenes, this paper
proposes a single-stage detection method with double enhancement of anchor boxes and
features. The detection efficiency of this method is high, but the performance is lower
than that of the two-stage algorithm due to the redundancy of anchor boxes. Therefore,
the feature context relevance is improved by proposing a composite-connected backbone
network. The receptive field enhancement module is introduced to improve the multi-scale
detection capability. Finally, a prediction refinement strategy is proposed, which refines
the anchor frame and features through two regressions, solves the problem of feature
anchor frame misalignment, and improves the detection performance of the single-stage
underwater algorithm.
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