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Abstract: The crop water stress index (CWSI) is a widely used analytical tool based on portable
thermography. This method can be useful in replacing the traditional stem water potential method
obtained with a Scholander chamber (PMS Model 600) because the latter is not feasible for large-scale
studies due to the time involved and the fact that it is invasive and can cause damage to the plant.
The present work had three objectives: (i) to understand if CWSI estimated using an aerial sensor
can estimate the water status of the plant; (ii) to compare CWSI from aerial-thermographic and
portable thermal cameras with stem water potential; (iii) to estimate the capacity of an unmanned
aerial vehicle (UAV) to calculate and spatialize CWSI. Monitoring of CWSI (CWSIP) using a portable
device was performed directly in the canopy, by measuring reference temperatures (Tdry, Twet, and
canopy temperature (Tc)). Aerial CWSI calculation was performed using two models: (i) a simplified
CWSI model (CWSIS), where the Tdry and Twet were estimated as the average of 1% of the extreme
temperature, and (ii) an air temperature model (CWSITair) where air temperatures (Tair + 7 ◦C)
were recorded as Tdry and in the Twet, considering the average of the lowest 33% of histogram
values. In these two models, the Tc value corresponded to the temperature value in each pixel of the
aerial thermal image. The results show that it was possible to estimate CWSI by calculating canopy
temperatures and spatializing CWSI using aerial thermography. Of the two models, it was found that
for CWSITair, CWSIS (R2 = 0.55) evaluated crop water stress better than stem water potential. The
CWSIS had good correlation compared with the portable sensor (R2 = 0.58), and its application in
field measurements is possible.

Keywords: precision viticulture; unmanned aerial vehicle; thermal image; crop water stress index

1. Introduction

In recent years, increased frequency of extremely high temperatures and low rain-
fall [1], together with the intensification of agricultural practices, has required that more
attention be paid to the use of natural resources [2]. According to the most unfavorable
scenario forecast by the Intergovernmental Panel Climate Change (IPCC) related to the rep-
resentative concentration pathway (RCP) 8.5, water availability will decrease throughout
the north of Portugal, and approximately 20% of the Vinho Verde Region, accompanied
by a gradual increase in temperature [3]. In this scenario, grape quality and wine produc-
tion [4,5] and the overall cycle of vines [6,7] will be affected by low soil water availabil-
ity [3,5,6]. Strategies to achieve the full potential of a vineyard should include frequent
monitoring of vine water status [7] and estimates of cultural evapotranspiration [8–11] to
adopt the best irrigation practices.

It was shown in previous studies that several crop-based indices such as canopy
temperature [12–19], chlorophyll content [20–22], and vegetation indices [23–28], can be
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used to determine crop water content, and have been employed for managing water in
irrigated agriculture [29–33]. Canopy temperature [34] thermal indices obtained with
ground-based or aerial-based sensors, can indicate crop transpiration and water stress, al-
lowing the development of indices that assess vine water status [13,35] in a non-destructive
and non-invasive way [18,36].

Unmanned aerial vehicles (UAVs), and thermal sensors coupled to UAVs, have been
tested in precision viticulture [37,38] and offer advantages over measurements with ground-
based (portable) sensors [13,35,39,40], due to their performance, flexibility of use, low
operating cost, and very high spatial resolution [41,42]. Characterization of the spatial vari-
ability of crop water requirements is a prerequisite to apply precision scheduling strategies
within orchards, and to enhance efficient water utilization to maintain vineyard yields and
grape quality [36,37,43–45]. The development of models to spatialize data [18,42,46,47],
converting localized information to continuous information, has changed the manner of
observations from horizontal to vertical.

One of the most used thermal indices is the Crop Water Stress Index (CWSI), which
varies between 0 (no stress) and 1 (maximum stress). Initially developed by [12], and
later by [13], CWSI is based on a linear relationship between the difference in canopy
temperature (Tc), air temperature, and baseline parameters such as dry leaf temperature
(Tdry), and wet leaf temperature (Twet) [13,35]. The CWSI method has been widely used in
irrigated crops, and is considered a standard method. Many studies have been carried out
in different crops, including nectarines [17,19], soybean [48], cotton [49], tomato [50], olive
trees [51] and vines [52–54].

Methods have been developed methods to obtain Tdry and Twet from aerial thermal
images for calculating the CWSI. Of these, the methods that extract temperatures from the
image histogram stand out because they simplify and streamline the process of obtaining
data [49,55,56]. Using probability models to calculate the two temperatures (Tdry and
Twet) for nectarines, [17] it was found that the temperature distribution can vary between
different varieties and on the distribution of trees, even under similar irrigation levels. In
cotton, extremes values of the surface temperature histogram were extracted to determine
Twet and Tdry, demonstrating that the method was feasible to estimate the water status [49].
In vineyards, thermal imaging has shown that it can estimate water status accurately, with
continuous representation, by the spatialization of data [18].

These methods have used a statistical approach to simplify the calculation of Tdry and
Twet, taking these values as averages from the extremes values of the histogram [56,57].
The methods generally estimate better Twet and Tdry values from the average temperatures
of the lowest (coldest) and highest (hottest) part of the canopy temperature histogram
than critical temperature values [49]. However, in non-continuous crops, such as vines,
problems with the methods are increased because crop cover is not homogeneous (vineyard
and soil), making it difficult to extract pure pixel values from the canopy, resulting in a
bimodal histogram [58], which makes index spatialization difficult.

The present work aimed to evaluate the feasibility of using aerial thermal images
to assess vine water status from CWSI spatialization in Vitis vinifera cv. Loureiro. Sim-
plified CWSI (CWSIS) and CWSI air temperature (CWSITair), were used to compare data
spatialization and to develop a structural flowchart. Model validation was attempted
and analyses conducted concerning the variability of stem water potential Ψst (MPa) and
CWSIP (CWSI portable).

2. Materials and Methods
2.1. Study Area and Experimental Design

This work was carried out in 2021 in a commercial vineyard of cv. Loureiro of 5.5 ha
in the Vinhos Verdes Region in the northwest of Portugal (41◦40′32.2” N; 8◦32′05.9” W;
175 elevation) (Figure 1a). The climate, characterized as Csb according to the Köppen–
Geiger classification [59], has an Atlantic influence with moderate temperatures and thermal
amplitudes and high rainfall (1200–1500 mm) concentrated in the winter months. The
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soil has a loamy texture (50% sand, 31% silt and 19% clay), an average depth of 1 m,
organic matter content of 2.65% and a pH of 5.4. The soil water characteristics, obtained
by laboratory methods, are a field capacity of 0.231 m3·m−3 (pF 2; 10 kPa) and a wilting
coefficient of 0.121 m3·m−3 (pF 4.2; 1.55 MPa).
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Figure 1. (a) Plot location in the northwest of Portugal. (b) Experimental design with five blocks (B1,
B2, B3, B4 and B5) consisting of four rows with seven vines.

The vineyard was planted in 2001 in a north-south orientation, 1103 p rootstock, with
3.0 m between rows, and 2.0 m between vines (1666 plant/ha) trained to a single upward
cordon. It has a drip irrigation system with one lateral per row (self-compensating drippers
with 4 L h−1 flow rate).

The experimental design consisted of five blocks (B1, B2, B3, B4 and B5) of four rows of
seven vines each measuring 1500 m2 located 50 m from the beginning of a row (Figure 1b).
Only the vines of the two central lines were monitored, and this was conducted on three
days of the year (DOY), i.e., day 182 (1 July), day 190 (9 July) and day 194 (13 July) for
the following parameters: (i) soil water content (mm) using a capacitive probe (diviner);
(ii) midday stem water potential (MPa) in four vines per block using a Scholander pressure
chamber; (iii) the temperature of the canopy, using a portable thermal camera (FLIR e75,
USA) in each of the 20 vines, on the three data recording dates for a total sample of 60 vines;
and (iv) the temperature of the canopy using an aerial thermal camera (Zenmuse XT2, USA)
supported by a UAV, (DJI Matrice 210, Frankfurt, Germany).

2.2. UAV Platform, Thermal Camera and Data Acquisition

The aerial images were collected using a DJI UAV, model Matrice 210, coupled
with an aerial thermal camera [60,61] (Zenmuse XT2), with an 8 mm lens, resolution
640 × 512 pixels, frequency of 30 Hz, spectral range of 7.5–13.5 µm and a temperature
range from −40 to 550 ◦C. The portable thermal camera (FLIR, e75) had a 17 mm lens,
a resolution of 320 × 240 pixels, frequency of 30 Hz, spectral range of 7.5–14 µm and a
temperature range from −20 to 120 ◦C. Sensors were used simultaneously. The images
were taken at noon at the sampling site, and each pixel represented temperature in degrees
Celsius. In the portable thermal camera, images were taken two meters from the canopy
and perpendicular to the direction of the line. Aerial images were taken at a height of 60 m
from groundwater potential, with a longitudinal and lateral overlap of 90% to obtain a
photogrammetric mosaic (Figure 2). All images were acquired on clear days with minimal
wind, and were evaluated on site. In the same location, a PMS Model 600 pressure camera
was used to monitor stem water potential, because this is a sensitive indicator for vine
water status and is frequently monitored to drive irrigation management.
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2.3. Image Processing

Aerial thermal images analysed by Agisoft Metashape professional, Version 1.6.3
software to produce final orthophotos with a spatial resolution of 7 cm. To compare
temperatures, the portable thermal camera was used to take images at the same time.
Temperature calibration parameters such as emissivity, distance to a target, reflectivity
temperature and relative humidity were entered into the Flir Tools, Version 5.13.18031.2002
software [62]. Production of the thermal and RGB orthophotography of the work area was
carried out in eight main phases according to the flow diagram shown in Figure 2. To
support georeferencing and geometric correction of the aerial image, a set of 16 points was
assigned as control with a Root Mean Square Error (RMSE) less than 0.5. It was necessary
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to build a dense cloud of points by which, through photogrammetric restitution, it was
possible to derive an extensive set of points that had information regarding an image’s
latitude, longitude and altitude.

With this base, the texture of the image and the construction of a Digital Elevation
Model (DEM) provided visual improvement and orthophotography production, by or-
thorectification, of the photogrammetric mosaic previously produced (Figure 2).

In the final phase, segmentation of the RGB aerial image was carried out using IDRISI
software. The objective was to differentiate and isolate the areas between the rows, which
were occupied by herbaceous vegetation, from areas occupied by vines so that they could
be processed separately. Soil area extraction was necessary for the CWSI calculation to
be carried out only within the vineyard area. For this procedure, and to delimit the
segmentation polygons, a similarity of about 40% between the pixels was considered for
analysis (Figure 2).

2.4. Calculation of Portable and Aerial CWSI

The calculation of the CWSI was based on the equation proposed by [13] and modified
by [35] (Equation (1):

CWSI =
(Tc − Twet)(
Tdry − Twet

) (1)

where Tc is the canopy temperature obtained from the thermal image, and Tdry and Twet
are the reference temperatures (◦C).

For the portable CWSI (CWSIP) the average Tc and average Twet and Tdry were
calculated using Flir Tools software. The reference temperatures (Twet and Tdry; ◦C) were
obtained by selecting two healthy leaves close to each other in the canopy. Vaseline was
applied to both sides of the Tdry leaf for 30 min before taking the readings to force the
stomata to close, thereby preventing evapotranspiration, leading to a consequent increase
in leaf temperature. For Twet, the leaf was sprayed with water, two minutes before taking
readings to simulate maximum evapotranspiration rate [13,35].

CWSI obtained from the aerial thermal sensor was processed by two methods. The
first was CWSIS based on the equation. The reference temperatures were obtained from
the image histogram (Figure 3b), in which 99% of the values were assumed to correspond
to normal temperatures and the remaining 1% to represent extremes, as discussed by [49],
assuming that the Tdry represented the maximum temperature and Twet the minimum
temperature [49].

The air temperature method (CWSITair) was also based on Equation (1) but differed
in the method for obtaining temperatures. Tc was the value of each pixel of the canopy
temperature, Twet was calculated from the average of 33% of the minimum temperatures
within the histogram (Figure 3b), and Tdry was obtained from the air temperature plus
7 ◦C [55,63–65] (Figure 2).

2.5. Soil Water Content

The water content in the soil (ϕ) was measured at different depths (from 10 to 80 cm)
by a capacitive probe to determine if soil water availability influenced the water status of
the crop.

2.6. CWSI Validation with Stem Water Potential

To analyze the ability of the aerial CWSI to estimate the water status of the vine,
coefficients of determination (R2) were calculated for each DOY and the data from the
different CWSI (portable, simplified and air temperature), stem water potential (MPa)
and CWSIP with CWSI (simplified and air temperature). To validate the CWSI from the
aerial sensor, georeferencing of the vines in each block was carried out. At these sampling
sites, a 50 cm buffer was created to obtain the average value of the interior CWSI for later
correlation with the field sample.
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3. Results
3.1. Temperature Variation in the Sample Blocks

Table 1 shows the temperatures recorded in the five blocks on the three sampling dates
by aerial thermal imaging. The wide canopy temperature range (26–30 ◦C) on all data
collection days, highlighted the variability within each block and the ability of infrared
thermography to support analysis and temperature variation from the vine canopy. All data
followed a normal distribution and had a homogeneous dispersion on the different dates.
In practically all cases, the median and average temperatures overlapped. On different
DOY, the temperatures captured by the aerial thermal camera relative to the canopy and
the ground varied between 19.2 and 51.3 ◦C. DOY 182 and 190 showed an overall variation
of 32 ◦C (19.3–51.3 ◦C) with an average of 31.9 ◦C and a standard deviation of 2.5 and
2.4 ◦C, respectively. DOY 194 showed an overall variation of 26.4 ◦C (19.7–46.1 ◦C) with an
average of 30.3 ◦C and a standard deviation of 2.2 ◦C.

Table 1. Statistics (average, median and standard deviation) of temperature taken with an aerial
camera, relative humidity (HR %) and air temperature (Tair

◦C) on the three data collection days of
the year (DOY).

Statistics (◦C) Tair HR

DOY Average Median St. Dev Min. Max. (◦C) %

182 31.9 31.8 2.5 19.3 51.3 28 60

190 31.9 31.8 2.4 19.2 51.2 28 55

194 30.3 30.2 2.2 19.7 46.1 26 56

From the temperature map (Figure 3a), on DOY 182 and 190 the temperatures inside
each block were very close. Block 4 (B4) had the highest and block 5 (B5) had the lowest
temperature. On DOY 194, block 1 (B1) had the highest and B5 the lowest temperature.

3.2. Calculation and Spatial Representation of Crop Water Stress Index (CWSI)

For this process, image segmentation was used, so that only the temperature affected
by the vine canopy was used. It was based on this new image that the CWSI was processed
(Figure 4).
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To calculate the CWSI (CWSIS and CWSITair), different reference values were needed,
depending on the method, to identify the difference in Twet and Tdry values (Table 2). The
Twet for the CWSIS had values of 25.5, 26.1 and 25.5 ◦C for DOY 182, 190, 194, respectively,
all of which were lower than the air temperature. The CWSITair, presented values of 28.9,
29.0 and 27.8 ◦C, all of which were higher than the air temperature. The CWSIS method
resulted in lower Twet values compared to CWSITair, which may have been due to the lower
percentage of the histogram used in the first method. The Tdry for the CWSIS had values
of 38.2, 38.4 and 36.0 ◦C, and for the CWSITair these were 35, 35 and 33 ◦C. The CWSIS
method resulted in higher Tdry values compared to the CWSITair method, probably because
the air temperature method, by normalizing this indicator, made it more stable than in
the simplified method, which depended on temperature variability existing within and
between the blocks.

Table 2. Different methods of calculating Twet and Tdry by DOY.

CWSI Types Methods DOY Twet (◦C) Tdry (◦C)

CWSITair

Canopy temperature histogram (33% lowest)

182 28.9 -

190 29.0 -

194 27.8 -

TAir + 7 ◦C

182 - 35.0

190 - 35.0

194 - 33.0

CWSIS Canopy temperature histogram (1%) 1

182 25.5 38.2

190 26.1 38.4

194 25.5 36.0
1 Average of the lowest and highest 0.5% of values in the canopy temperature histogram.

After obtaining the reference temperatures necessary to calculate CWSI, a spatial
representation of the index was elaborated along the five blocks, where each pixel of
the new image had its associated CWSI value, to determine if there was variability
within and between blocks (Figure 5). The values for the two methods showed a
range between 0 and 1 over the three DOY: the higher the value, the greater the water
stress. CWSIs visually and numerically smoothed the data, whereas the CWSITair, by
normalizing Tdry, shifted the values close to the extremes. In general, it appears that
the values of the two CWSIS increased over the DOY, with a greater emphasis on the
first block. It was also possible to verify a variation in CWSI within the sample block by
changing the values represented, which may indicate plants with greater water stress
in some areas.

The CWSIP values of the sampling point, calculated for validation, varied in amplitude
over the three dates from 0.36 to 0.70. The averages increased over the reading days,
decreasing the CWSIP amplitude. The same happened with the aerial sensors: the CWSIS
had an overall amplitude between 0.35 and 0.78, and the average values of the CWSI
increased while the amplitude decreased. For the CWSITair, the amplitude increased from
0.45 to 0.88, while the average values of the CWSI increased from 0.57 to 0.72, decreasing
its amplitude (Table 3).

The portable and aerial CWSI values remained close among the three methods. There
was a slight increase from DOY 182 to DOY 194, which was explained by the lower soil
water content in the latter, confirmed by a slight increase in stem water potential (Table 3).
It should be noted that the CWSITair had a very large coefficient of variation (0.42 to 0.44),
whereas that of the CWSIs, on average, was less than half.
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Table 3. Statistics for CWSI portable (CWSIP), CWSI air temperature (CWSITair), CWSI simplified
(CWSIS), and water potential (Ψst) for the three DOY.

DOY Descriptive
Statistics CWSIP CWSITair CWSIS Ψst (MPa)

182

minimum 0.36 0.45 0.35 −0.45

maximum 0.70 0.88 0.78 −0.70

average 0.54 0.60 0.50 −0.53

CV 0.18 0.44 0.20 0.13

190

minimum 0.40 0.46 0.35 −0.40

maximum 0.68 0.82 0.70 −0.60

average 0.57 0.65 0.55 −0.51

CV 0.16 0.43 0.18 0.12

194

minimum 0.42 0.57 0.44 −0.50

maximum 0.68 0.78 0.67 −0.75

average 0.61 0.72 0.59 −0.61

CV 0.11 0.42 0.12 0.11

The soil water content varied between 110 and 199 mm for DOY 194 and DOY 182,
respectively. The averages were 165, 159 and 144 mm for DOY 182, 190 and 194, respectively.
All had low coefficients of variation (0.01–0.10). Thus, the water available in the soil
decreased by about 20 mm overall (Table 4).

Table 4. Statistics for soil water content (θ; mm) for the three dates (DOY).

DOY Descriptive
Statistics B1 B2 B3 B4 B5

182

minimum 153.39 162.71 157.84 149.50 134.77

maximum 186.52 166.38 199.37 177.01 160.20

average 171.45 164.60 171.63 163.28 147.48

CV 0.07 0.01 0.09 0.06 0.07

190

minimum 147.87 154.56 153.78 141.76 126.87

maximum 179.07 164.55 195.76 170.77 153.73

average 161.50 159.63 166.24 156.23 140.30

CV 0.07 0.03 0.10 0.07 0.08

194

minimum 132.54 137.22 143.56 126.53 110.72

maximum 168.60 153.23 182.01 159.45 144.80

average 146.93 147.31 154.64 142.87 127.76

CV 0.09 0.05 0.10 0.08 0.10

3.3. Correlation between Portable CWSI, Aerial CWSI and Stem Water Potential

To evaluate the relation between the proximal and remotely sensed water stress
measurements with the vine water status, we determined the correlation between all the
CWSI values (CWSITair, CWSIS and CWSIP) and the stem water potential (Ψst).

For each studied DOY (182, 190 and 194) the CWSIP had the highest correlation, and
the CWSITair had the lowest correlation, with the Ψst (Table 5). These results are consistent
with the global correlations, R2 = 0.59 for the CWSIP and R2 = 0.49 for the CWSITair.
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Table 5. Determination coefficients (R2) of the different CWSIS and the stem water potential (Ψst).

Correlation
Global
n = 60

(p < 0.05)

DOY 182
n = 20

(p < 0.05)

DOY 190
n = 20

(p < 0.05)

DOY 194
n = 20

(p < 0.05)

CWSIP/(Ψst) 0.59
(y = −0.6734x + 0.2063) 0.69 0.60 0.58

CWSIS/(Ψst) 0.55
(y = −0.7x + 0.165) 0.60 0.59 0.54

CWSITair/Ψst 0.49
(y = −0.6182x + 0.3216) 0.49 0.53 0.52

CWSIS/CWSIP
0.58

(y = 0.6468x + 0.2198) 0.59 0.60 0.57

CWSITair/CWSIP
0.34

(y = 0.3406x + 0.3487) 0.30 0.35 0.34

When we compared the CWSI, the highest correlation was obtained between CWSIS
and CWSIP (R2 = 0.58) (Table 5). The fact that there were no changes in the determination
coefficients when the UAV-supported thermal CWSI was incorporated (CWSITair and
CWSIS) suggested that the spatial structure represented the pattern of the stem water
potential estimated from the simplified CWSI model.

4. Discussion

This study focused on the evaluation of thermal information to estimate the water
status of a vineyard based on aerial and portable thermal images of the vine canopy.
The method was fast and non-invasive compared to traditional methods such as using
a pressure chamber to determine stem water potential. Using aerial thermal images
captured with a UAV it was possible to produce an orthophotograph that comprised the
temperature values of each pixel of the canopy. Segmentation of aerial RGB images isolated
the canopy, discarded the area between the lines, facilitated calculation, and reduced
thermal amplitudes that can influence the CWSI calculation model [16,17,49,55].

From analyzing the thermal images of three flights, it was possible to predict the
water status of the plant (CWSI), taking into account the coefficient of determination when
correlated with the stem water potential. Likewise, a moderate coefficient of determination
was observed with the portable CWSI; however, this model did not allow a continuous
surface of values. The results were in line with previous studies [17,49,55], but adding the
ability to spatialize data, with the advantage of obtaining information from a vertical rather
than a horizontal view.

Analyses of three days of capturing and processing data from portable thermal cameras
and calculating respective CWSIP concerning the stem water potential (R2 = 0.59) showed a
moderate correlation, which agreed with the work developed by Garcia-Tejero et al. [35].
The results for each day, DOY 182 (R2 = 0.69), DOY 190 (R2 = 0.60) and DOY 194 (R2 = 0.58)
had moderate correlations, which enhanced estimates of plant water status from the CWSIP.
According to [41], the variability observed between the stem water potential and the CWSI
for different DOY can be affected by parameters related to the phenological phase of the
crop. The CWSIP method, like use of the Scholander pressure chamber, is very expensive
for determining an overall distribution because each reading only provides values for each
plant in isolation.

Our results showed was possible to obtain crop water stress indices, calculated using
date from two methods of aerial thermography, that made it possible to estimate and
interpret the water status of the plant. Therefore, the method is as accurate as the Scholander
pressure chamber method.

Given that it only needs to monitor air temperature during UAV flight, the calculation
of the CWSITair is a quick method for obtaining thermal data and, consequently, calculation
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of the CWSI. With this method, a moderate coefficient of determination was obtained with
the stem water potential (R2 = 0.49). It was observed that DOY 182 (R2 = 0.49), DOY 190
(R2 = 0.53) and DOY (R2 = 0.52), which had moderate correlations, were in agreement with
the results obtained by [55].

The CWSIS calculation method required the least amount of time because it did not
require field data. The correlation between the CWSIS and stem water potential (R2 = 0.55)
showed a moderate correlation, which was in line with the findings of [16,49]. When the
analysis was aggregated by days, DOY 182 (R2 = 0.60), DOY 190 (R2 = 0.59) and DOY
(R2 = 0.54) had moderate correlations and with approximations superior to that of CWSITair.

5. Conclusions

In this work, the development of two CWSI spatialization methods was explored, and
the results were compared with those obtained by measuring stem water potential. It was
found that CWSIS could potentially estimate the water status of the vine using the reference
temperatures (Twet and Tdry) from a histogram of image temperatures after segmentation.

The ability to obtain and spatialize thermal data has become extremely important,
given that it is possible to image the plot as a whole, not just isolated plants. Furthermore,
it is a non-invasive method, which allows taking a large number of measurements without
weakening the plant in its phenological cycle. It also permits the collection and analysis
of data on a large scale, and in a shorter time, whereas the CWSIS method more closely
estimates water stress of the crop. The CWSIP method produced viable results, which were
very close to those of the CWSIS, but it did not allow spatialization of the data.

Vegetation cover has a great influence on soil water preservation and thermal reg-
ulation. Where there is no turfgrass on the plot, the probability of obtaining a bimodal
histogram can influence the CWSI results when applying the CWSIS or CWSITair methods.

Future research should consider information focused on leaf area, phenological phase,
variety and age.
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