
Citation: Farag, M.M. Matched Filter

Interpretation of CNN Classifiers

with Application to HAR. Sensors

2022, 22, 8060. https://doi.org/

10.3390/s22208060

Academic Editors: Dalin Zhang, Lina

Yao, Kaixuan Chen and Chaoran

Huang

Received: 2 October 2022

Accepted: 18 October 2022

Published: 21 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Matched Filter Interpretation of CNN Classifiers with
Application to HAR
Mohammed M. Farag 1,2

1 Electrical Engineering Department, College of Engineering, King Faisal University,
Al-Ahsa 31982, Saudi Arabia; mfarag@kfu.edu.sa

2 Electrical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 5424041, Egypt;
mmorsy@alexu.edu.eg

Abstract: Time series classification is an active research topic due to its wide range of applications and
the proliferation of sensory data. Convolutional neural networks (CNNs) are ubiquitous in modern
machine learning (ML) models. In this work, we present a matched filter (MF) interpretation of CNN
classifiers accompanied by an experimental proof of concept using a carefully developed synthetic
dataset. We exploit this interpretation to develop an MF CNN model for time series classification
comprising a stack of a Conv1D layer followed by a GlobalMaxPooling layer acting as a typical MF for
automated feature extraction and a fully connected layer with softmax activation for computing class
probabilities. The presented interpretation enables developing superlight highly accurate classifier
models that meet the tight requirements of edge inference. Edge inference is emerging research that
addresses the latency, availability, privacy, and connectivity concerns of the commonly deployed
cloud inference. The MF-based CNN model has been applied to the sensor-based human activity
recognition (HAR) problem due to its significant importance in a broad range of applications. The
UCI-HAR, WISDM-AR, and MotionSense datasets are used for model training and testing. The
proposed classifier is tested and benchmarked on an android smartphone with average accuracy and
F1 scores of 98% and 97%, respectively, which outperforms state-of-the-art HAR methods in terms
of classification accuracy and run-time performance. The proposed model size is less than 150 KB,
and the average inference time is less than 1 ms. The presented interpretation helps develop a better
understanding of CNN operation and decision mechanisms. The proposed model is distinguished
from related work by jointly featuring interpretability, high accuracy, and low computational cost,
enabling its ready deployment on a wide set of mobile devices for a broad range of applications.

Keywords: machine learning; convolutional neural network; interpretable neural network; matched
filter; human activity recognition

1. Introduction

A convolutional neural network (CNN) is a prominent machine learning (ML) archi-
tecture inspired by the natural visual perception mechanism of the human visual cortex.
The foundation of convolutional neurons has been established since the 1950s [1]. In 1989
LeCun et al. [2] established the modern framework of CNN. They developed a multilayer
CNN, namely LeNet-5, for handwritten digit classification that can be trained with the
backpropagation algorithm. Since then, many works investigated CNN architectures, ap-
plications, and training methods, however, due to the lack of large datasets and sufficient
computing power at that time, these works did not achieve the expected results [1].

It was not until 2012 that AlexNet was advanced for computer vision tasks for the first
time [3]. AlexNet is a multilayer CNN that uses GPUs for model training and comprises a
variety of kernels. The performance of AlexNet, the winner of ImageNet Challenge 2012,
superseded all existing non-neural model rivals by a considerable margin. With the success
of AlexNet, many milestones have been advanced to improve CNN performance, such

Sensors 2022, 22, 8060. https://doi.org/10.3390/s22208060 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22208060
https://doi.org/10.3390/s22208060
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0739-3631
https://doi.org/10.3390/s22208060
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22208060?type=check_update&version=1


Sensors 2022, 22, 8060 2 of 25

as VGGNet [4], ZFNet [5], GoogleNet [6], and ResNet [7]. A typical trend of the CNN
architecture evolution is developing deeper networks seeking performance improvements.
By increasing the network depth, model expressiveness increases, leading to achieving
better results. However, the model complexity also increases, which makes CNN more
difficult to optimize and prone to overfitting. During the last decade, various methods
have been proposed to overcome these challenges [1].

In addition to their outstanding performance, another prominent feature of CNNs is
their automatic feature extraction capabilities. While conventional ML methods usually
perform feature engineering and preprocessing procedures to extract handcrafted features,
which are not only suboptimal but also computationally intensive, CNN models can
automatically extract representative features directly from the raw data of the problem at
hand to maximize classification accuracy. Automatic feature extraction is the key enabler
for significantly improving model performance without the need to field expertise, which
makes CNNs very attractive for solving complex problems [1].

Time series are a sequence of 1D data points which are collected by recording a set of
observations of a specific activity chronologically. The ubiquity and impact of time series
data accompanied by the prevalence and continual advancements of modern sensors open
unlimited research frontiers for data scientists. However, time series are characterized by
large data sizes, high dimensionality, and nonstationarity, which makes time series analysis
using ML algorithms a challenging task. Due to their significant leaps in improving ML
models for computer vision and 2D grid data such as images, CNNs have also been
investigated for time series. CNNs have been used in various supervised and unsupervised
time series problems including classification, regression, and forecasting. In a relatively
short time, 1D CNNs have become popular, with state-of-the-art performance in various
time series ML applications such as electrocardiogram (ECG) classification, human activity
recognition (HAR), and industrial fault diagnostics and predictive maintenance [8].

On the other hand, despite their significant achievements in ML, deep learning (DL)
and CNN models are commonly used as black box models because their internal operation
and decision mechanisms are not explicitly understood by humans. The lack of inter-
pretability has become the main barrier to using DL in mission-critical applications [9]. For
mission-critical tasks, it is essential to verify that the model heightened accuracy results
from the use of a proper problem representation, not from the exploitation of artifacts
in data. Furthermore, model robustness and interpretability are closely related because
interpretability enables identifying potential vulnerabilities of complicated ML models [9].

In this work, we present a matched filter (MF) interpretation of CNN classifiers for time
series. An MF is an optimal linear filter for signal detection in the presence of additive white
Gaussian noise (AWGN) by maximizing the signal-to-noise ratio at the receiver side [10].
MFs are widely used in signal processing and wireless digital communications for optimal
signal detection. The block diagram of the MF receiver used in digital communication
systems is illustrated in Figure 1. An MF works by correlating the received noisy signal
with the known signal template, sampling the maximum output of the correlator, and
making the decision if the received noisy signal matches the template or not.

Correlator
Threshold 

Device

Decision
>H0

<H1

Noisy 
Signal Sampling

ThresholdSignal Template

Figure 1. Block diagram of the matched filter receiver.

We develop an MF-based CNN model for time series classification using a stack of
convolutional, pooling, and fully connected (FC) layers and provide an analytical intrinsic
interpretation of the developed model. Raw time series data are fed to the model with no
need to feature engineering. A 1D convolutional (Conv1D) layer is used as an MF correlator,



Sensors 2022, 22, 8060 3 of 25

a GlobalMaxPooling (GMP) layer is used as a maximum sampling block, and an FC layer
with softmax activation is used as the decision block for computing the class probabilities.

Unlike the trend of increasing the model depth to increase its expressiveness [1], the
proposed model is shallow in depth with a wide receptive field (wide kernels), which
preserves the model expressiveness and performance merits without increasing the model
complexity. The presented interpretation is experimentally validated using a carefully
developed synthetic time series dataset. The proposed interpretation helps develop a
better understanding of the CNN learning process. Moreover, the conducted experiments
draw some useful guidelines for developing efficient CNNs. Furthermore, the presented
interpretation enables developing superlight highly accurate classifier models that meet
the tight requirements of edge inference. Edge inference is an emerging research direction
that promotes using embedded devices to perform model computations locally instead of
relying on cloud computing. Edge inference addresses the latency, availability, privacy, and
connectivity concerns of the commonly deployed cloud inference.

Afterward, the model is applied to the HAR problem for further validation of the
model performance on real datasets. Three commonly used datasets, namely UCI-HAR,
MotionSense, and WISDM-AR are used for model training and testing to validate the
model performance and generalization capabilities. The developed HAR models are tested
and benchmarked on a cloud machine and an android edge device. The achieved results
are superior compared with state-of-the-art results, especially in terms of the classifier’s
real-time performance. Moreover, an android HAR application is developed using the
MF CNN classifier and tested on an android smartphone. The proposed model features
three distinguishing characteristics: high accuracy, low computational cost, and inter-
pretability, enabling model deployment on a broad set of edge devices for a wide variety
of applications.

The contributions of this work are:

• Providing a clear interpretation of CNN classifiers as MF and presenting an experi-
mental proof of concept to support this interpretation.

• Presenting a superlight highly accurate CNN classifier model for time series applica-
tions that suits both cloud and edge inference approaches.

• Applying the developed model to the renowned HAR problem and achieving out-
standing results compared with the state-of-the-art models

• Testing and benchmarking the MF CNN classifier on an edge device and developing
an android HAR application.

The remainder of this paper is organized as follows. In Section 2, a brief background
on ML interpretation methods and HAR related work is presented. The MF interpretation
of CNN classifiers and its experimental validation are advanced in Section 3. Application
of the MF CNN classifier to HAR, along with the used tools and methods, is introduced in
Section 4. Performance results of the HAR MF CNN classifier and a comparison between
the proposed model and related HAR methods are advanced in Section 5. Conclusions and
future work are portrayed in Section 6.

2. Literature Review
2.1. CNN Interpretation Background

Methods for interpreting ML models are classified according to different criteria. First,
the intrinsic or post hoc classification is based on whether the interpretation is conducted by
restricting the complexity of the interpreted ML model (intrinsic or ad hoc) or by using post-
training methods to analyze the trained model (post hoc). Intrinsic interpretation is feasible
for ML models that can be considered interpretable by structure such as short decision
trees or sparse linear models. Post hoc interpretation refers to applying interpretation
methods, such as visualizing feature maps and model weights after model training to
understand the model operation and decision mechanism. The second classification norm
is the model-specific or model-agnostic criterion. Model-specific interpretation tools are
limited to specific model classes, such as tools that only work for interpreting a specific



Sensors 2022, 22, 8060 4 of 25

ML model. Model-agnostic tools can be applied to any ML model after the model has been
trained (post hoc). These methods commonly work by analyzing feature input and output
pairs without accessing model internals, such as weights or structural information. Third,
the local or global classification criterion is based on the interpretation method ability to
explain an individual prediction or the entire model behavior [11].

There are several works that present interpretations of CNNs, however, most of them
target 2D CNNs [9,12]. Fortunately, there are some works that investigate the interpretation
of 1D CNNs. Srinivasamurthy [13] carefully crafted time series datasets and observed
the CNN model weights in both time and frequency domains. He proposed a frequency
domain interpretation of CNN filters, studied the effect of dropout regularization, and
provided guidelines for choosing the kernel length based on the input data.

Pan et al. [14] proposed an interpretable 1D CNN for a biomedical time series clas-
sification application. For interpreting the classification results, the FC output layer is
replaced with a global average pooling (GAP) layer that generates one feature map for
each corresponding class in the last convolution layer. In this work, GAP is employed in
the FC output layer of the 1D CNN model for generating a class activation map (CAM).
The GAP layer can highlight distinguishable parts of the input waveform that contributed
to the classification result produced by the CNN classifier. The GAP layer computes the
spatial average of the feature map of each kernel at the last convolutional layer, such that
the importance of the input waveform sections can be differentiated in classification by ap-
plying the weights of the FC output layer to the convolutional feature maps. Unfortunately,
using the GAP layer reduces the number of model parameters greatly, which consequently
compromises the classifier performance.

Similarly, Wang et al. [15] proposed using CNNs with GAP and CAMs to distinguish
class-specific regions in the input waveform. CAMs can disclose contributing subsequences
in raw input data that result in a specific label, which enables visualizing the predicted
class scores on time series data and highlighting the discriminative subsequences that led
to such a classification result. Unfortunately, using GAP instead of the FC layer degrades
the classifier performance, which requires applying some changes to the CNN model to
compensate for the FC layer removal effect. Such alterations in the model would also result
in rendering the interpretation results less useful as the interpreted model has been altered.

Stankovic and Mandic [16] employed the MF paradigm as a mathematical means to
demystify the operation of CNNs. A close inspection of the convolutional layer within
CNNs reveals a direct link with MFs in finding features (patterns) in data. Such a framework
facilitates linking matched filtering to feature identification and establishes a clear approach
for understanding the information flow in CNNs’ learning and their optimal parameter
selection mechanism. This interpretation is accompanied by an evaluated example and
supported by detailed numerical outputs and visualizations. This perspective serves as a
basis for a tutorial on the operation of CNNs. The interpretation provided by this work
matches our interpretation of the CNN classifier. Unfortunately, the CNN MF interpretation
presented in this work was not validated on a real dataset to show the CNN model
performance and limitations in practical applications.

In our previous work [17], we presented a finite impulse filter (FIR) interpretation of
the Conv1D layer and exploited this interpretation to develop a self-contained short-time
Fourier transform (STFT)-based CNN ECG classifier. The Conv1D layer filters are designed
to implement a filter bank that is used to extract the time–frequency spectrogram of the
input ECG signal inside the model. The Conv1D output feature maps are reshaped into a
2D heatmap image and fed to a 2D CNN model for classification. In this work, the Conv1D
layer filter activation and heatmaps are visualized to show the model ability to extract
time–frequency images of the input signals that match STFT spectrograms.

In [18], we presented an MF interpretation of the Conv1D layer and exploited this inter-
pretation to develop a light CNN model for interpatient ECG classification and arrhythmia
detection at the edge using a single-lead (a univariate time series). An average-based MF
template is derived for each ECG class in the training set and preassigned to the Conv1D



Sensors 2022, 22, 8060 5 of 25

layer kernels. A stack of a Conv1D layer followed by a GMP layer acts as a typical MF for
identifying the heartbeat class. A very important conclusion drawn from this work is that
interpretable usage of neural networks leads to develop better models.

In this work, we aim to support our MF interpretation of CNNs with an experimental
proof of concept and use this interpretation to better understand the CNN operation and
optimal parameter selection. The presented interpretation method can be classified as
both ad hoc (intrinsic) and post hoc, global, and model-specific methods. The proposed
interpretation is specific to the CNN model presented in this work (yet it can be later
generalized) and can be globally used to explain the entire model behavior. The model
structure follows MFs (ad hoc), and the model feature maps will be visualized (post hoc) for
interpreting the model operation. The proposed interpretation approach does not require
any alteration to the model structure such as in GAP-based methods.

2.2. Human Activity Recognition Related Work

HAR has become a very active research area due to its wide range of applications
in elderly care, healthcare, smart homes, athletics, and abnormal activity monitoring.
According to the World Health Organization (WHO) fact sheet reported in 2021, more
than 1 billion individuals have some sort of disability [19]. Currently, there are insufficient
facilities to address the needs of persons with disabilities. One of them is the need for
a companion to watch their activities. The activities of people with disabilities can be
automatically watched using HAR to safeguard them from injury, danger, or accidents.

HAR aims to accurately classify human physical activities using raw time series signals
or video records acquired through specialized sensors or video cameras. The ubiquity
of wearable devices and mobile phones which are equipped with a plethora of sensors
has created new research opportunities and applications for HAR. Due to its significant
importance in various applications, and its close relevance to time series classification, we
investigate applying the proposed MF CNN classifier to the sensor-based HAR problem.

In this section, modern, related work of HAR using ML is presented. Most modern
ML methods for HAR are based on CNNs, long short-term memory (LSTM) recurrent
neural networks (RNNs), gated recurrent unit (GRU) RNN, or a hybrid of these methods.
The most widely used datasets for model training are the Wireless sensor data mining
(WISDM) [20] and University of California Irvine (UCI) [21] HAR datasets.

Ignatov [22] proposed a user-independent DL-based approach for online HAR. A
shallow 1D CNN model is used for local feature extraction using raw sensor data. Global
statistical features about the time series are also fed to the model. The impact of time
series length on model performance is investigated in this work. The proposed approach is
evaluated on the WISDM-AR and UCI-HAR datasets The results show that the proposed
model achieves acceptable performance using low computational cost. However, extracting
statistical features from sensor data requires using feature engineering and preprocessing
stages and, consequently, additional computational cost.

Xia et al. [23] proposed a deep neural network (DNN) that combines convolutional
layers with LSTM. In the proposed model, raw sensor data are fed to a two-layer LSTM
followed by convolutional layers. A GAP layer is used to replace the FC layer after
convolution to reduce the number of parameters of the model, and a batch normalization
(BN) layer is added after the GAP layer to speed up model training. The model performance
is evaluated on the UCI, WISDM, and OPPORTUNITY datasets. The proposed model
exhibits acceptable performance using a small number of parameters. However, the model
depth and layer diversity increase the computational cost of the proposed classifier.

Nafea et al. [24] proposed a CNN model with variable kernel dimensions along with a
bidirectional LSTM (BiLSTM) layer to capture time series features at various resolutions.
The model is composed of hybrid Conv1D and BiLSTM stacks, each comprising multiple
cascaded layers, and is fed with raw sensor data. The UCI-HAR and WISDM-AR are used
for model training and testing. Results indicate that the proposed scheme is efficient in
improving HAR. However, using a hybrid DNN model with diverse layers increases the



Sensors 2022, 22, 8060 6 of 25

model complexity of the proposed network. Moreover, LSTM RNNs suffer from increased
computation time, limiting their applicability to edge inference.

Yin et al. [25] proposed a 1D CNN-BiLSTM parallel model with an attention mecha-
nism. Raw sensor data are segmented and fed into a 1D CNN-BiLSTM parallel layer to
accelerate feature extraction. Extracted feature weights are redistributed by the attention
mechanism and integrated into complete features. The classification results are computed
using an FC layer. The performance is evaluated on public UCI-HAR and WISDM-AR
datasets, and the achieved results are promising. However, using a hybrid DNN model with
diverse layers increases the model complexity and computational cost. Furthermore, LSTM
RNNs suffer from increased computation time, limiting their applicability to edge inference.

Tan et al. [26] proposed an ensemble learning algorithm (ELA) to perform HAR using
smartphone sensors. The proposed ELA model combines a GRU layer, a CNN stacked on
the GRU, and a multilayer FC DNN. The DNN input samples compose an extra feature
vector consisting of both time-domain and frequency-domain parameters. The FC DNN
was used to fuse three models and performs the classification task. The proposed approach
is evaluated on the UCI-HAR dataset, and the achieved results are comparable to related
works. However, using a DNN model with diverse layers increases the model complexity
and computational cost of the proposed network. Additionally, GRU RNNs suffer from
increased computation time, limiting their applicability to edge inference.

Pushpalatha and Math [27] proposed a hybrid deep CNN model for HAR. A stack
of 1D CNNs is used for feature extraction, after which a GRU stack is used to capture
the long-term dependency between the different actions. The model is evaluated on the
UCI-HAR dataset, and the achieved results are comparable to the state-of-the-art HAR
results. Unfortunately, the model is only tested on a single dataset, which does not establish
the model generalization capabilities. Moreover, such a deep model with hybrid layers is
not suitable for edge deployment due to the increased computational cost.

Sikder et al. [28] proposed a HAR model using a two-channel CNN which is fed
with frequency and power features of the sensor data. The model is tested on the UCI
HAR dataset, and the achieved results are acceptable. Unfortunately, the model is only
tested on a single dataset, which does not establish the model generalization capabilities.
Furthermore, using such a deep model increases the computational cost of the model.

Luwe et al. [29] proposed a hybrid DNN that comprises a 1D CNN with a 1D BiLSTM
model and is fed with raw sensor data. The 1D CNN extracts high-level representative
features from raw sensor data, which are fed to the BiLSTM layer that encodes the long-
range dependencies between features by gating mechanisms. The model is evaluated on the
UCI-HAR and MotionSense datasets. The performance evaluation reveals that the proposed
model outperforms the compared existing methods. However, using a DNN model with
hybrid layers increases the model complexity and computational cost of the proposed
classifier. More specifically, RNNs such as LSTM suffer from increased computation time,
limiting their applicability to edge inference.

Ronald et al. [30] proposed iSPLInception, a DL model inspired by the Inception-
ResNet architecture from Google [31]. Inception modules are used for building very deep
and wide CNN models. In each Inception module, convolutions are conducted in parallel
with different kernel sizes, and the output from these parallel operations is concatenated.
The proposed model is evaluated on four public HAR datasets from the UCI ML reposi-
tory. The experiments and result analysis indicate that the proposed iSPLInception model
achieves outstanding performance in HAR. However, such a deep model is not the best fit
for edge inference, which requires smaller models with a reduced computational cost.

Sannara EK [32] presented HAR Transformer (HART), a lightweight, sensorwise
transformer architecture that has been specifically adapted to the domain of sensory data.
The model is based on the successful vision transformer model, and it has been extended
to MobileHART. This architecture is also compared against classical lightweight CNN and
CNN-LSTM and outperformed them on several datasets. The performance of various
HART architectures has been evaluated in heterogeneous environments and showed that



Sensors 2022, 22, 8060 7 of 25

proposed models can better generalize to different sensing devices or on-body positions.
However, the model number of parameters is greater than 1 million, which raises serious
concerns about its suitability for edge inference on tightly resource-constrained devices.

On the other hand, there are some works that address self-supervised, semisupervised,
and transfer learning of HAR. Tang et al. [33] presented SelfHAR, a semisupervised model
that leverages unlabeled HAR datasets to complement small labeled datasets. SelfHAR
combines teacher–student self-training to extract the knowledge of unlabeled and labeled
datasets to learn robust time series representations by predicting distorted versions of the
input. SelfHAR is evaluated on various HAR datasets and showed acceptable performance
for both supervised and semisupervised approaches. Unfortunately, results achieved by
this model fall behind their supervised learning counterparts by a considerable margin.

Rahimi Taghanaki et al. [34] proposed self-supervised learning for HAR with smart-
phone accelerometer data. The proposed solution consists of two steps. The representations
of unlabeled input signals are learned by training a deep CNN to predict a segment of
accelerometer values. This model leverages past and present motion in the x and y dimen-
sions, as well as past values of the z-axis to predict values in the z dimension. Next, the
convolution blocks are frozen, and the weights to the downstream network are transferred.
For computing classification results, a number of FC layers are added to the end of the
frozen network, and the added layers are trained with labeled accelerometer signals to learn
to classify human activities. The performance of the proposed method has been evaluated
on three datasets: UCI HAR, MotionSense, and HAPT. The achieved performance of this
model is acceptable compared with related models. Unfortunately, results achieved by this
model fall behind their supervised learning counterparts by a significant margin.

Taghanaki et al. [35] proposed a self-supervised learning method for HAR using
smartphone accelerometer data that reduce reliance on class labels. Cross-dataset transfer
learning is performed such that the model pretrained on a particular dataset can be applied
to other datasets after a small amount of fine-tuning. Two separate pipelines are developed:
a time–frequency domain pipeline using STFT scalograms, and a time-domain pipeline.
The two streams are then fused to provide the final classification results. Self-supervised
contrastive learning is used to train each of these streams. The performance of the proposed
solution is evaluated on three publicly available datasets. The achieved results demonstrate
that this solution outperforms the compared related works. Unfortunately, results achieved
by this model fall behind their supervised learning counterparts by a considerable margin.

Table 1 summarizes methods and limitations of HAR-related work presented in this
section. The main purpose of this work is to advance a clear interpretation of CNN clas-
sifiers and develop a highly accurate computationally inexpensive model for time series
classification on edge devices. The main challenge is meeting the classification accuracy re-
quirements using a resource-constrained edge device. Most related time series classification
works follow the trend of increasing the model depth and using hybrid layers to increase
the model accuracy at the expense of increasing the model complexity and computational
load, rendering them less suitable for edge inference. Furthermore, most related works
neither present real-time benchmarking results nor performance analysis of the developed
models. Many important results, such as the model size, number of parameters, memory
usage, and computation time, are neither presented nor optimized in the literature either.
On the other hand, most related works do not present a clear interpretation of the proposed
models, which limits their usage in mission-critical applications such as healthcare. In this
work, we aim to address the above challenges and provide an interpretable, superlight,
and highly accurate ML classifier for time series applications ready for edge deployment.



Sensors 2022, 22, 8060 8 of 25

Table 1. Summary of HAR-related work presented in this section.

Work Used Methods Limitations

Ignatov [22], 2018 CNN + Statistical Features Statistical feature extraction requires additional computational cost
Xia et al. [23], 2020 CNN + LSTM The model depth and layer diversity increases the model complexity

Nafea et al. [24], 2021 CNN + BiLSTM
Yin et al. [25], 2022 CNN + BiLSTM + Attention LSTM and GRU RNNs suffer from increased computation time,

limiting their applicability to edge inferenceTan et al. [26], 2022 Conv1D + GRU + Ensemble
learning

Pushpalatha and Math
[27], 2022

CNN + GRU+ FC Models tested on a single dataset do not establish the model gener-
alization capabilities

Sikder et al. [28], 2019 CNN Using such a DNN increases the computational cost of the model
Luwe et al. [29], 2022 CNN + BiLSTM Using a DNN model with hybrid layers increases the model com-

plexity and computational cost of the proposed classifier
Ronald et al. [30], 2021 CNN + BiLSTM + Inception +

ResNet
Such a deep model is not the best fit for edge inference, which
requires smaller models with a reduced computational cost.

Sannara EK [32], 2022 CNN + Transformer The number of parameters is greater than 1 million

Tang et al. [33], 2021 Teacher-Student CNN
Rahimi Taghanaki et al.
[34], 2021

CNN + FC + Transfer Learning Results achieved by self-supervised and semisupervised models
fall behind their supervised learning counterparts by a considerable
marginTaghanaki et al. [35], 2022 CNN + STFT + Transfer Learn-

ing

3. Matched Filter Interpretation of Convolutional Neural Network

A 1D CNN is a DL model for processing time series data that is inspired by the
architecture of the human visual cortex and designed to learn spatial hierarchies of features
automatically and adaptively, from low- to high-level sequences. A CNN classifier is a
mathematical construct composed of three types of layers: convolutional, pooling, and FC
layers. The first two layers, convolution and pooling, extract features, while the third, an
FC layer, uses the extracted features for classification. A deep CNN classifier is built up
using multiple cascaded stacks of convolutional and pooling layers to increase the model
expressiveness power and feature extraction capabilities. Each 1D convolutional (Conv1D)
layer contains a number of 1D filters, also called kernels, to extract several feature maps
from the input signal. A Conv1D layer slides several kernels across a time series sequence
to produce a 1D feature map per kernel. The shift amount is determined by the number
of strides parameter. A bias parameter can be also used to fine-tune the kernel for better
results. Activation functions are inserted to add nonlinearity to the CNN model. Each
kernel will learn to detect a single sequential pattern of the kernel length.

Despite its name, the Conv1D layer does correlate the input to the layer with the layer
kernel weights. The Conv1D layer output is expressed as follows [8]:

yl
k = f (bl

k +
Nl−1

∑
i=1

wl−1
ik xl−1

i ) (1)

where yk
l is the layer output, f () is the activation function, bk

l is the bias of the kth neuron at
layer l, xl−1

i is the output of the ith neuron at layer l − 1, wl−1
ik is the kernel weight from

the ith neuron at layer l − 1 to the kth neuron at layer l, and Nl−1 is the size of the Conv1D
kernel at layer l − 1.

While the use of CNNs for feature extraction has become a de facto standard, interpre-
tation of CNN operation is still an open question [16]. To this end, the MF theory is used to
draw an interpretation of CNN operation. In signal processing, an MF is obtained by corre-
lating a known signal, or template, with an unknown noisy signal to detect the presence
of the template in the unknown signal. MFs are widely used in digital communications
for optimal signal detection. The output of an MF is calculated by correlating the template
of the signal to be detected with the unknown noisy signal and comparing the maximum



Sensors 2022, 22, 8060 9 of 25

correlation output to a precalculated threshold to make the signal detection decision as
shown in Figure 1. The output of the MF correlator is defined as follows:

y[n] = x[n] ? h[n] =
N

∑
i=1

x[i]h[n− i] =
N

∑
i=1

x[n− i]h[i] (2)

where y[n] is the MF output, x[n] is the input signal, h[n] is the template signal of the MF
(also called filter taps), i is the time shift, and ? is the 1D correlation operator.

Comparing Equations (1) and (2) shows that the Conv1D operation is equivalent to
the MF correlation operation, where the Conv1D filter kernel k[n] = wl−1

k is equivalent to
the MF template signal h[n]. The shifting operation is performed by sliding the kernel and
correlating it with the input signal samples for all values of n (for the number of Conv1D
strides is set to 1). To complete the MF operation, a GMP layer can be used to select the
maximum output of the Conv1D layer and perform the operation of the sampling device of
Figure 1. Finally, an FC layer is used to perform the thresholding and decision operation of
Figure 1 and maps the GMP layer outputs to the corresponding class probability outputs.
The Conv1D layer comprises multiple filters with different learnable kernel weights. This
stack of Conv1D, GMP layers, and FC layers works together as a typical MF with a template
hi[n] = ki[n], where i represent the ith kernel of the Conv1D layer.

Figure 2 shows the proposed model inspired by the MF interpretation of CNN classi-
fiers. The model is composed of a stack of a Conv1D layer followed by BatchNormalization
(BN), Tanh activation, GMP, and FC layers. BN is a regularization technique that normalizes
a layer input by subtracting the minibatch mean and dividing it by the minibatch standard
deviation, reducing the internal covariate shift and instability in distributions of layer
activations. BN does not affect the MF operation, since all batch examples are uniformly
normalized using the same values. Tanh activation is inserted in this model to add non-
linearity to the proposed model and increase the model expressiveness. The GMP layer
outputs the maximum correlation of each feature map. It should be indicated that for a
typical MF operation, the used pooling layer should be GMP, not GAP, because the learning
process is directly influenced by the model topology, such that insignificant changes in the
model topology would result in significant changes in the learned parameters and model
operation. Outputs of the GMP layer are then fed to an FC layer with softmax activation to
compute class probabilities. The model loss function is set to the categorical cross-entropy
loss, which is typically used for multiclass classification problems.

The operation of the MF CNN classifier is explained as follows: Raw time series signals
are fed to the model. The Conv1D MF kernels correlate the input signal with the layer
kernels. The kernel weights will be automatically tuned up using the backpropagation
algorithm to match the template signal representing a specific class and maximize the
correlation output. Each kernel will learn a specific class template that is matched to
the filter path to the class probability output via the GMP and FC layers. For a matched
input signal, a single kernel will compute the autocorrelation between the signal and the
corresponding MF kernel, while the remaining kernels will compute the cross-correlation
between the signal and the unmatched kernel templates. If the autocorrelation maximum
is much greater than the cross-correlation maximum (highly uncorrelated signals), the
signal can be easily identified, whereas highly correlated signals can result in high cross-
correlation values and, consequently, wrong predictions. The shift-invariant GMP layer
will select the maximum output of all Conv1D filters, which are then fed to the FC output
layer. The weights of the FC layer will be automatically tuned up during model training
to minimize divergence between the predicted and ground-truth labels. The output layer
weights will be tuned up such that signals belonging to a specific class are mapped to the
corresponding class probability output to minimize the loss function.



Sensors 2022, 22, 8060 10 of 25

Tanh

Activation

MaxPooling1D

Dense Layer

Softmax Activation

   
 N

s 
W

id
th

Conv1D Input Layer

BatchNormalization

Time Series

Input

Class Probabilities

Fi
lt

e
r 

O
u

tp
u

t

NF 

Outputs

NF × Ns

NF × Ns

Nc 

Outputs

    Stride Shift

Conv1D Kernel (Size = NK)

NF 

Filters

Segment Duration = 

Ns Samples

Figure 2. The MF CNN classifier model.

The MF interpretation of CNN classifiers can be extended to deeper CNNs composed
of cascaded Conv1D and MaxPooling layers. In a typical deep CNN, multiple convolu-
tional layers, each comprising multiple filters followed by pooling layers, are hierarchically
stacked to extract features and patterns of the training set with the aid of the backpropaga-
tion algorithm. A stack of FC layers is then used to produce the model output according
to the model function of either classification or regression. For classification problems,
convolutional kernels act as MFs with learnable weights that are automatically tuned up
during model training to minimize the model loss function by maximizing correlation
with specific discriminative features learned from the training set examples. Therefore,
visualizing convolutional layer feature maps in 2D CNNs for computer vision demonstrates
similarities with the dataset features; for example, visualizing feature maps of CNNs used
for face recognition shows parts of the face such as the eyes and nose.

3.1. Experimental Proof of Concept

The presented interpretation of the CNN classifier is intrinsic or ad hoc, since the
topology of the proposed model is based on the MF architecture. However, in this section,
we provide a post hoc experimental proof of concept of the MF interpretation of CNN
classifiers by training and testing the proposed model on a carefully selected synthetic
dataset under several conditions and visualizing the model learned weights to support our
MF interpretation of CNN.

3.1.1. Synthetic Dataset

The approach used to generate the synthetic time series dataset is using a number of
template signals with specific patterns to randomly generate a set of examples following
the same pattern under the effect of random amplitude and time shift variations. A set
of N time-limited template signal segments with various waveforms are generated using



Sensors 2022, 22, 8060 11 of 25

different mathematical functions. The number of samples (duration) of each signal is
arbitrarily set to 64. Figure 3a shows the generated signals for N = 4.

(a) (b)

Figure 3. Template signals and random examples of the synthetic dataset. (a) Template signals used
in generating the synthetic dataset (N = 4). (b) Random signals of the synthetic dataset examples
with %50 noise-to-signal percentage.

Each signal represents a template for randomly generating hundreds or thousands
of signals, according to the dataset size, by the means of randomly shifting the signal
segment along the time access and adding random noise to the signal. The number of
examples generated from each template signal NT [i], where i represents the template signal
index, is set to be a controlled variable to change the distribution of dataset examples from
balanced to unbalanced. The duration (number of samples) of the dataset examples is set
to 128 samples, which is double the template signal duration. For each template signal,
NT [i] examples are generated by shifting the 64-sample template segment randomly using
a random integer varying between 0 and 64 and adding AWGN to the shifted segment to
form the 128-sample example. The AWGN power is assigned as a controlled percentage
P of the template signal power, varying from 0 to 100%. Figure 3b illustrates random
examples generated from each template signal.

Afterward, examples generated from each template are concatenated under various
labels to form the synthetic dataset. Several synthetic datasets are created by changing
the labeling technique and the number of examples generated from each template signal
NT [i]. Various labeling strategies are employed to label examples generated from each
template. First, examples generated from each template are uniquely labeled as different
classes, such that Nc = N. Second, several combinations of examples generated from
different templates are grouped and labeled as a unique mixed class, such that Nc < N.
In this set of experiments, Nc is changed from 2 to N. The dataset size NDS is calculated
as NDS = ΣN

i=0NT [i]. The number of examples in each class (dataset balance) is controlled
by the labeling strategy and the number of examples generated per template NT [i]. The
class distribution is varied from balanced, with an equal number of examples per class,
to unbalanced, with a minority to majority class ratio of 10%. For example, a 4-class
unbalanced dataset is created with the number of examples per class set to 10000, 5000,
2500, and 1250. The dataset is then randomly stratified and divided into training, validation,
and testing sets distributed as 64%, 16%, and 20%, respectively. For some experiments,
additional AWGN is added to the testing dataset only to investigate the model capability of
handling noisy data. Table 2 depicts the synthetic dataset parameters used in this section.



Sensors 2022, 22, 8060 12 of 25

Table 2. The dataset and model parameters used in this set of experiments.

Symbol Definition Range of Values

D
at

as
et

N Number of template signals 2–5
NT [i] Number of examples per ith temp 100, 1000, 10000
P Noise-to-signal % 0, 50%, 100%
Nc Number of classes 2–5
NDS Dataset size ΣN

i=0NT [i]
Balanced Is the dataset balanced Yes, No

M
od

el

NF Number of Conv1D layer filters 64, 128
NK Conv1D kernel size 64, 128
NS Model input size 128
Learnable Learn layer weights True, False

3.1.2. Experimental Setup and Tools

Thereafter, the proposed MF CNN classifier illustrated in Figure 2 is trained, validated,
and tested using the synthetic dataset. Keras, with the Tensorflow backend, is used to
build and train the MF CNN classifier on the synthetic dataset with various parameters.
TensorFlow is an open-source framework for ML created by Google with a variety of tools
and libraries that helps developers to build ML models. Keras is an open-source software
library with a Python interface for the TensorFlow library [36].

Raw dataset examples are fed to the MF CNN model that produces the class proba-
bilities as the model output. The Adam optimizer with adaptive rate scheduling is used
for model training with an initial learning rate of 0.001 and a decay rate of 0.9. The loss
function is set to the categorical cross-entropy loss, and the optimization objective is set to
maximize the model classification accuracy of the multiclass problem at hand. The model is
trained and validated using a minibatch size of 512, and the number of epochs is set to 200,
with an early stopping callback tied to the validation loss. The training process is carried
out on a cloud machine featuring 8 CPU cores, 30 GB of RAM, and an NVIDIA QUADRO
RTX 5000 GPU with 16 GB of VRAM.

The number of Conv1D filters NF and the kernel size Nk model parameters are set as
controlled variables. Several model variants are built by modifying NF, NK, and controlling
the model learnable layers and initialization methods. The Conv1D and FC output layers
are set to either trainable or nontrainable, with different initialization methods and kernel
weight constraints. For all model variants, the bias term of the Conv1D and FC output
layers is set to zero to follow the MF operation. Table 2 depicts the model parameters
used in these experiments. In the following, we focus, for brevity, on model variants with
NF = NC = N, which results in an FC kernel with a square weight matrix of N × N size.
However, interpretations provided in this section can be generalized to all model variants.

In the first model variant, both Conv1D and FC layers are set to nontrainable, the
template signals are assigned to the Conv1D kernel weights such that each filter is assigned
a unique template signal, while the kernel weights of the FC output layer are assigned a
sparse identity square matrix with all weights set to zero, excluding the diagonal weights
which are set to 1. The number of learned parameters of this model is minimized; only BN
layer parameters are learned. For this model variant, the input signal is correlated with the
MF templates embedded in the Conv1D layer filters, and the maximum activated output of
each filter produced by the GPM layer is fed to the FC layer. The identity matrix assignment
of the FC layer kernel is used to force the layer to apply a 1-to-1 input-to-output mapping
in which each maximum correlation signal is mapped directly to the output probability
of the corresponding class. The weighted sum of the FC layer inputs is not computed in
this variant due to disabling layer training and the identity matrix assignment of the kernel
weights. In this model variant, the MF operation is typically performed, and the classifier
is expected to minimize loss, maximize accuracy, and minimize the training time.

In the second model variant, both Conv1D and FC layers are set to trainable, and the
weights of both layers are initialized using the default Glorot uniform initializer. However,



Sensors 2022, 22, 8060 13 of 25

kernel weights of the FC layer are constrained to a sparse diagonal matrix with all elements
set to zero, excluding the N diagonal weights which can be learned during model training.
This constraint forces the FC kernel to map each layer input to only one output but allows
the layer to learn mapping scales. For this model variant, the Conv1D layer kernel weights
are learned to minimize the loss under the constraint of FC layer diagonal weights, which
maps and scales the maximum output of each Conv1D filter to the corresponding input
of the softmax activation function without computing the weighted sum of the FC layer
inputs due to the 1-to-1 mapping imposed by the diagonal weight constraint. In this model
variant, the Conv1D layer kernels are expected to learn the MF templates, while the FC
layer is expected to learn optimal values of the kernel diagonal weights to minimize loss.

In the third model variant, both Conv1D and FC layers are set to trainable, and the
weights of both layers are initialized using the default Glorot uniform initializer without
applying weight constraints to any layer. For this experiment, the Conv1D layer kernel
weights are trained under no constraints, and the N × N weights of the FC layer are
learned. In this model variant, the Conv1D layer kernels are expected to learn the MF
signal templates, while the FC layer kernel is expected to learn the optimal weighted sum
of the layer inputs to compute class probabilities that minimize loss and maximize model
accuracy. This model variant represents the most common way of training ML models in
the literature, in which the model architecture is established by the designer, leaving the
process of finding and optimizing model weights to the optimizer.

3.1.3. Results and Visualizations

More than 100 experiments were conducted using various dataset and model parame-
ters, which are carefully selected to validate our MF interpretation of the proposed classifier
and to study the effect of noise, dataset size, dataset balance, labeling technique, and
model parameters on the learning experience and performance of the proposed MF CNN
classifier. In each experiment, the model is trained, validated, and tested using a variant
of the synthetic dataset with specific parameters; the model learning curves and accuracy
scores including classification accuracy, recall, precision, and F1 score are collected; and the
kernel weights of the Conv1D and FC output layers are extracted from the trained model,
visualized, and compared with the template signals. Unfortunately, the testing results of all
experiments cannot be detailed in this space, yet we attempt to provide a concise summary
and conclusions on the results.

At the performance level, the proposed MF CNN classifier achieves a 100% accuracy
score on the training and validation sets for all conducted experiments with no exclusions.
In all experiments, the optimizer can reach 100% validation accuracy in a few epochs (fewer
than 20), where the epoch time depends on the dataset size; for example, the epoch training
time is less than 1 s for NDS = 40,000. The total number of model parameters is in the range
of hundreds depending on NF, NK, and NC. The model testing accuracy score ranges from
90% to 100%, where the upper bound is achieved for most synthetic datasets with a typical
common set of parameters, such as a balanced dataset with moderate size, whereas the
lower bound is achieved for the following extreme dataset parameters: the dataset size is
limited to 1875 examples, the synthetic dataset is unbalanced with a minority to majority
class ratio of 1:10, 100% AWGN is added to generate the dataset examples from the template
signals, and an additional 100% AWGN is added to the testing dataset only. Degradation
in the classifier performance in this experiment is attributed to the covariate dataset shift
between the training and testing sets induced by the extra noise added to the testing set.
Eventually, the achieved results of these experiments depict the classification capabilities of
the proposed model and establish model robustness under different conditions including
noise, small dataset size, dataset imbalance, and mixed classes.

At the MF validation level, for all experiments with trainable model layers and no
weight constraints, the Conv1D filter kernels learn the template signals to a great extent,
while the FC layer learns the optimal kernel weights to minimize loss. In the following, we
advance and analyze the Conv1D and the FC output kernel visualizations for a synthetic



Sensors 2022, 22, 8060 14 of 25

dataset with common typical parameters such as a balanced dataset, moderate dataset size
of 40,000 examples, identical distributions of the training and testing sets (no extra noise is
added to the test set), and model parameters of NC = NF = N = 4 and NK = 64. Figure 4a
illustrates the learned kernel weights versus the corresponding template signals. Figure 4b
depicts a heatmap image of the learned FC output layer weights.

(a) (b)

Figure 4. Learned Conv1D and FC output layer kernel weights for the synthetic dataset with N = 4,
NT [i] = 10000 for i ∈ {0, 1, 2, 3}, P = 50%, Nc = 4, NDS = 40, 000, balanced dataset, and the third
model variant with NF = Nc = N = 4, Nk = 64 , NS = 128. (a) Learned Conv1D filters versus
template signals. (b) Learned kernel weights of the FC output layer.

As depicted by Figure 4a, the learned kernels mostly match the corresponding tem-
plate signals with slight variations in the scale and waveform. On the other hand, all
kernel weights of the FC output layer are learned during the training process, as shown by
Figure 4b. Analyzing the diagonal weights, which represent the 1-to-1 mapping between a
specific output of the GMP layer (maximum of the MF kernel outputs) and the correspond-
ing class probability output, is of special importance because it precisely characterizes the
learning process. For example, diagonal weights (1, 1) and (3, 3) have higher amplitudes,
and their corresponding filter kernel waveforms 1 and 3 better match the corresponding
template signals, as shown by Figure 4a. We call this behavior strong and weak kernel
learning of the template. All diagonal weights are positive, except weight (2, 2), which
indicates that the model learns an amplitude-revered version of the corresponding template
signal. This behavior is noticed in all experiments with a trainable Conv1D layer for one or
more diagonal weights and can be attributed to the Tanh activation function, which has
an output range from −1 to 1. The nondiagonal weights of the FC output layer exhibit
the contribution of GMP layer outputs in computing the inactivated class probabilities.
Eventually, the class probability is computed as a softmax-activated weighted sum of the
GMP layer outputs.

3.1.4. Analysis and Discussion

Finally, some observations drawn from the conducted experiments, which are not
presented herein, are reported in the following. Models with nontrainable Conv1D and
FC output layers with preassigned weights achieved the best scores and training time but
required prior knowledge of the class templates, which is not common in ML problems.
Models trained on datasets generated with small or zero noise-to-signal percentages P
tended to learn weak kernels that do not precisely match the template signals. This is
attributed to the model not being forced to learn strong kernel templates to minimize



Sensors 2022, 22, 8060 15 of 25

loss due to the easiness of classifying time-shifted versions of the template signals. This
phenomenon is reversed for models trained using datasets generated with higher P.

On the other hand, models trained on unbalanced datasets tend to produce weak
kernels for the majority classes and strong kernel templates for the minority class. This is
attributed to classifying the minority classes being more difficult than the minority classes
which requires the model to learn better representation (templates) of the class examples.
The Conv1D kernels of models trained on mixed-class datasets (each class contains a mix
of examples generated by different templates) learn the template signals of individual
subclasses, and the FC output layer maps the GMP layer outputs to the corresponding
superclass. Models trained on small datasets learn weak kernel templates for all classes
due to the insufficiency of the training examples to learn strong kernels.

At the model level, increasing the number of filters NF beyond the number of template
signals N, and increasing the Conv1D kernel size NK beyond the template signal size, does
not enhance the model learning process, but it results in learning repeated or redundant
versions of the template signals and unnecessarily increasing the number of model pa-
rameters. However, in most ML problems, the number of template signals (features) and
their actual size (duration) are unknown beforehand; consequently, it is recommended to
gradually tune-up these parameters to efficiently optimize the model performance without
unnecessarily increasing the model size. The Conv1D Tanh activation layer is essential in
the proposed MF model because it tends to smooth the learned Conv1D kernels to match
the template signal. Other activation functions such as ReLU, Sigmoid, and linear activation
have been investigated but none of them can replace the Tanh activation function; in most
cases, the classifier ability to learn the template signal and classification performance is
significantly affected by using other activation functions.

The visualizations and analysis provided in this section provide an experimental proof
of concept of the MF interpretation of the proposed CNN classifier and help develop a
better understanding of the CNN learning process. Moreover, this set of experiments draws
some guidelines for developing highly accurate, computationally efficient CNN classifiers.
The developed experiments can be extended to develop a clear interpretation of deeper
CNN models and conducted for other time series datasets with different characteristics.

4. Human Activity Recognition Using the Matched Filter CNN Classifier

In our previous work [18], we advanced the MF-based CNN for ECG classification at
the edge. ECG signals are time series signals with specific morphologies that are correlated
with different classes of cardiac arrhythmias. The proposed classifier was developed for
a univariate single-lead ECG signal. The achieved results encourage us to extend this
work to multivariate time series classification problems in other domains. In this work,
we investigate applying the proposed MF CNN classifier to the sensor-based HAR. HAR
uses sensor readings that form a multivariate time series to classify human activity. The
HAR problem is approached as a multiclass time series classification problem. HAR at
the edge is an active research area due to the abundance of sensory data and the need for
accurate cost-effective solutions to analyze these data while addressing the concerns of
cloud inference, including privacy, availability, and latency. The work presented in this
section is an extension of the work presented in the last section, for which the proposed
classifier is validated on a practical multivariate time series classification problem.

4.1. Datasets

In this work, the CNN MF classifier is applied to three widely used HAR datasets:
UCI-HAR, MotionSense, and WISDM-AR databases. Data in the selected datasets were
collected using various sensor types and devices and feature different characteristics such as
the dataset size, balance, and the number of sensors to exhaustively validate the proposed
CNN classifier and investigate its generalization capabilities.



Sensors 2022, 22, 8060 16 of 25

The UCI-HAR dataset [21] is a public database collected from recordings of 30 vol-
unteers performing 6 daily activities while carrying a Samsung Galaxy S II smartphone
with embedded inertial sensors. For this dataset, 3-axial linear acceleration and 3-axial
angular velocity were captured at a rate of 50 Hz using the embedded accelerometer and
gyroscope sensors of the smartphone. The experiments were video-recorded and manually
labeled. The UCI-HAR dataset was randomly partitioned into training and testing sets of
70% and 30%, respectively. A noise removal filter was applied to the sensor data, which
was segmented using a fixed-width sliding window of 2.56 s and 50% overlap (128 read-
ings/segment). The sensor acceleration signal comprising gravitational and body motion
components was separated using a low-pass filter with a 0.3 Hz cutoff frequency into body
acceleration and gravity. Therefore, the total number of sensor signals (channels) in this
dataset is 9.

The MotionSense dataset comprises time series data collected from a set of 24 par-
ticipants performing 6 activities in 15 trials of the same environment and conditions [37].
Accelerometer and gyroscope sensor data were collected using an iPhone 6s smartphone
and sampled at a 50 Hz rate. The data were segmented using a fixed-width sliding window
of 2.56 s (128 readings/segment). The MotionSense Dataset is prepartitioned by trials into
training and testing sets of 75% and 25% distribution, respectively. The total number of
sensor channels in this dataset is 6.

In the WISDM-AR dataset [20], accelerometer data were collected and labeled from
29 subjects wearing a smartwatch and performing 6 daily activities at a rate of 20 Hz. The
sensor signals were segmented using a fixed-width sliding window of 2.6 s and 25% overlap
(52 samples/window). The overlap interval is deliberately limited to 25% (0.6 s) to yield
mostly different examples instead of repeating shifted versions of the dataset examples as
in some approaches which use highly overlapped segments. The total number of sensor
channels in this dataset is 3.

The training and testing set class distribution is illustrated in Figure 5. Both UCI-
HAR and MotionSense datasets have a preassigned division of the training and testing
sets, whereas the WISDM-AR dataset is randomly stratified and partitioned into training,
validation, and testing sets of 64%, 16%, and 24%, respectively. The UCI-HAR and WISDM-
AR are small datasets with around 10 K examples, while the MotionSense dataset contains
around 35 K examples. The UCI-HAR and MotionSense are balanced datasets, whereas the
WISDM-AR is an unbalanced dataset with a 2.54% minority-to-majority ratio. The numbers
of time series channels used in the WISDM-AR, MotionSense, and UCI-HAR datasets are 3,
6, and 9, respectively. The selected datasets feature various characteristics and can be used
to exhaustively test and validate the proposed MF CNN classifier.

Figure 5. Training and testing set distribution of the selected datasets.



Sensors 2022, 22, 8060 17 of 25

4.2. Multivariate MF CNN Classifier

The model shown in Figure 6 is the multivariate version of the MF CNN classifier
proposed in Section 3. The sensor input segments Nsen are fed to a linear Conv1D layer with
kernel size = 1 to extend the number of channels as needed by applying a weighted sum on
the sensor signals that produces Nch channels. A BN layer is employed to normalize the
input data as a preparation for adding AWGN to sensor data. The GaussianNoise layer is
instantiated at the training time only for two purposes: first, to enable learning strong MF
kernel templates as instructed by Section 3; second, to work as a regularizer to avoid model
overfitting and reduce the variance between training and testing results. The remaining
layers are similar to the proposed univariate MF CNN classifier.

Nsen × NS

Conv1D

G
au

ss
ia

n

N
o

is
e

BatchNormalization Dense
 Kernel

〈Nch .NF × Nc〉

Softmax

Output 
Layer

Active at 
Training Time 

Only 

Sensor 

Inputs

Linear Conv1D Layer
Kernel Size = 1

Matched Filter 
Correlation Layer

Nc

Nch .NF Nch × NS Nch× NF × NSModel Parameters:

B
at

ch
 

N
o

rm
al

iz
at

io
n

B
at

ch
 

N
o

rm
al

iz
at

io
n

B
at

ch
 

N
o

rm
al

iz
at

io
n

B
at

ch
 

N
o

rm
al

iz
at

io
n

  Kernel

1×Nsen×Nch 

 

G
lo

b
al

 

M
ax

P
o

o
lin

g1
D

G
lo

b
al

 

M
ax

P
o

o
lin

g1
D

A
ct

iv
at

io
n

Ta
n

H
A

ct
iv

at
io

n

Ta
n

H

Depthwise 

Conv1D

  Kernel

NK × Nch  ×  NF 

Depthwise 

Conv1D

  Kernel

NK × Nch  ×  NF 

 
Input Layer  Linear Layer  GaussianNoise  DepthwiseConv1D  FC Layer   

 Dataset  NS  Layer  Nsen  Nch  stddev  NK  NF   NC  
UCI-HAR  128  Not used  9  9  0.2  128  30  6  37566  
mSense  128  Not used  6  6  0.5  128  30  6  25044  

 52  Conv1D  3  9  0.5  52  40  6  22383  
 

 
Input Layer  Linear Layer  GaussianNoise  DepthwiseConv1D  FC Layer   

 Dataset  NS  Layer  Nsen  Nch  stddev  NK  NF   NC  
UCI-HAR  128  Not used  9  9  0.2  128  30  6  37566  
mSense  128  Not used  6  6  0.5  128  30  6  25044  

 52  Conv1D  3  9  0.5  52  40  6  22383  
 

Total number 
of parameters

 
Input Layer  Linear Layer  GaussianNoise  DepthwiseConv1D  FC Layer   

 Dataset  NS  Layer  Nsen  Nch  stddev  NK  NF   NC  
UCI-HAR  128  Not used  9  9  0.2  128  30  6  37566  
mSense  128  Not used  6  6  0.5  128  30  6  25044  

 52  Conv1D  3  9  0.5  52  40  6  22383  
 

Total number 
of parameters

WISDM-AR

 
Input Layer  Linear Layer  GaussianNoise  DepthwiseConv1D  FC Layer   

 Dataset  NS  Layer  Nsen  Nch  stddev  NK  NF   NC  
UCI-HAR  128  Not used  9  9  0.2  128  30  6  37566  
mSense  128  Not used  6  6  0.5  128  30  6  25044  

 52  Conv1D  3  9  0.5  52  40  6  22383  
 

Total number 
of parameters

WISDM-AR

Figure 6. Multivariate MF CNN classifier.

The main variation between the univariate and multivariate model versions is using
the DepthwiseConv1D layer for the MF operation, in which each input channel is convolved
with a different kernel (called a depthwise kernel) independent of other channels. Depth-
wise convolution splits the input into individual channels, convolves each channel with an
individual depthwise kernel with depth_multiplier output channels, and concatenates the
convolved outputs along the channels axis. Unlike regular 1D convolution implemented
by the multichannel Conv1D layer, depthwise convolution does not mix information across
different input channels; in other words, it does not conduct cross-channel operations.

The main parameters of the DepthwiseConv1D layer are the kernel size NK and
depth_multiplier, which controls the number of output channels generated per input chan-
nel in the depthwise convolution operation. The depth_multiplier argument determines
how many filters are applied to one input channel, which is equivalent to the number
of filters parameter NF of the Conv1D layer. Using the DepthwiseConv1D layer has two
advantages over using the regular Conv1D layer. First, this approach enables training the
Conv1D kernel filters separately to extract MF templates of a channel signal independent of
other channels and apply the matched filtering operation proposed in this work. Eventually,
the FC layer will map the maximum correlation outputs of each filter to the probability
output of the corresponding class and find their optimal weighted sum to minimize loss.
Second, the computation load of the DepthwiseConv1D layer is significantly reduced
compared with the corresponding load of the equivalent Conv1D layer with the same
parameters due to reducing the number of multiplications required to perform convolu-
tion [38]. Reducing the computation load of the CNN classifier is of special importance for
edge inference. It should be indicated that we investigated replacing the DepthwiseConv1D
layer with the Conv1D or SeparableConv1D layers, yet the achieved results using these lay-
ers fall behind the results achieved by the Depthwise Conv1D layer by a significant margin
at the levels of model complexity, classification accuracy, and real-time performance.

Model parameters include the number of samples per segment NS, number of sensor
signals Nsen, number of model channels Nch, depth_multiplier NF, kernel size NK, and
number of output classes NC. The model parameters are systematically tuned to maximize
the model classification accuracy for the given dataset, and the optimal model parameters
are depicted in Figure 6. The input linear layer is only instantiated for the WISDM-AR



Sensors 2022, 22, 8060 18 of 25

dataset to extend the number of channels to 9 instead of the 3 sensor signals; this layer
results in around 6% improvement in accuracy for the WISDM-AR dataset. The kernel size
NK is set to the input segment size NS for all datasets, which maximizes the convolutional
layer receptive field and produces the best classification results. This can be linked to
the MF kernel being able to extract nonredundant templates for the whole input segment
interval. The number of kernel filters per channel NF is gradually increased for each dataset
to find its optimal value that maximizes the model accuracy. In the proposed MF CNN
model, NF represents the number of template signals, commonly called features, which
are extracted for each input channel independently of other channels due to using the
DepthwiseConv1D layer. The NF values depicted in Figure 6 are the optimal values that
maximize the accuracy for which any increase or decrease in these values would result in a
degradation of the model performance.

4.3. Methods and Tools

Keras with the Tensorflow backend is used to train and test the MF CNN classifier on
the selected datasets. All model parameters are set to trainable without imposing any con-
straints on the layer kernel weights to ensure that the proposed model can achieve optimal
results without requiring field expertise concerning the dataset or model architecture. The
categorical cross-entropy loss function and Adam optimizer with an initial learning rate of
0.001 and adaptive learning rate scheduling are used for model training. The epochs and
batch size parameters are set to 500 and 512, respectively, with a callback to save the model
with the best validation accuracy score to avoid overfitting. The model is trained on the
cloud machine described in Section 3.

Thereafter, models with the best scores are then optimized for edge computation using
the TensorFlow and TensorFlow lite (TFLite) optimization tools [39,40]. The optimized
Tensorflow models are converted to TFLite models for deployment on the edge device.
TFLite is a package of tools that enables on-device inference of ML models. This package is
composed of a runtime engine for ML model inference computation on edge devices and a
set of tools for transforming and optimizing Tensorflow models post-training for usage on
mobile and embedded devices. The model can be converted directly without quantization
from the base model to a 32-bit floating-point (Float32) TFLite edge model. TFLite supports
other quantization techniques such as Float16, dynamic range quantization, and full-integer
quantization that reduces the model size and enables its usage on various platforms with
distinct architectures. Quantization refers to techniques for performing computations and
storing weights at bit widths lower than the floating-point precision. Quantization allows
for a more compact model representation, smaller memory footprint, faster inference, and
less-demanding computation requirements, yet it comes at the expense of accuracy loss. In
this work, only Float32 TFLite models are developed, which are inherently supported by
most modern smartphones and do not degrade the model performance.

Finally, the optimized TFLite classifier models are exported to the edge device for
testing and benchmarking. For this purpose, a Samsung Galaxy Note 10 Lite with an octa-
core ARM Cortex-A55 processor and 8 GB of RAM was used. The ARM Cortex processor
architecture inherently supports 32-bit integer and floating-point operations. The TFLite
models are benchmarked using the TFLite android benchmark tools, which measure and
calculate statistics for the model average inference time and overall memory usage. The
number of threads used for running the TFLite interpreter on the edge device is set to
4. The model performance metrics, including accuracy and F1 score, were measured for
all TFLite models as well as the model benchmarking metrics, including the model size,
memory usage, and average inference time.

5. Results and Discussion

The developed models are tested and benchmarked on the cloud machine described in
Section 3 and the android phone edge device. On the cloud, classification performance met-
rics, including accuracy and F1 score, are measured for the training, validation, and testing



Sensors 2022, 22, 8060 19 of 25

sets. On the edge device, in addition to the classification metrics, model benchmarking met-
rics including the average inference time, model size, and memory footprint, are measured.
The model accuracy is defined as the percentage of true predictions to the total number of
dataset examples. In terms of true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN), accuracy is defined as Acc = (TP + TN)/(TP + TN + FP + FN).
The F1 score is defined for individual classes as F1 = 2TP/(2TP + FP + FN), and the
average F1 score is computed for all classes in the dataset.

Table 3 shows the training and testing results of the MF CNN model classifier on the
cloud machine and edge device for the selected datasets. The training time of the proposed
model was proportional to the dataset size and ranges from 150 s for the WISDM-AR dataset
to 20 min for the MotionSense dataset. Such a short training time of the proposed model is
expected due to reducing the model complexity and number of learned parameters. The
difference between training and testing accuracy did not exceed 2% for all datasets, as
illustrated by Table 3 and the training curves depicted in Figure 7d , which indicates that
the model generalizes well for all HAR datasets.

Table 3. Training, validation, and testing results of the MF CNN classifier on the UCI-HAR, Motion-
Sense, and WISDM-AR datasets.

Dataset
Training Results Validation % Testing % Number of

Params

Android Benchmarking Results (Float32)

Acc % F1 % Time (s) Acc % F1 % Acc % F1 % Average Infer
Time (µs)

Memory
Footprint (MB)

File Size
(KB)

UCI-HAR 98.98 97.32 523.63 97.82 97.69 97.32 97.35 37,566 672.60 2.98 149.75
mSense 99.88 99.88 1199.88 98.73 98.51 98.03 97.88 25,044 517.28 2.92 101.65
WISDM-AR 99.95 99.53 151.62 97.60 96.86 97.67 96.34 22,383 294.63 2.96 89.46

Figure 7 shows the confusion matrices of the proposed MF CNN classifier for the
testing sets of the selected datasets. For all datasets, the main source of model confusion is
the similarity or correlation between sensor readings or waveforms of different activities.
Such a correlation would result from the similarity between some human activities or
interindividual variations between the dataset subjects. For example, in the UCI-HAR
dataset, the model confuses Sitting and Standing activities, which have highly correlated
sensor readings. Such a behavior is not only challenging for our model but also for other
HAR models presented in the literature, and it can be treated as an irreducible error.

The proposed MF CNN classifier achieves superior testing accuracy and F1 score for all
selected datasets regardless of the dataset conditions, which supports the MF interpretation
of CNNs and establishes the model generalization capability. High testing accuracy scores
indicate that the model performs well regardless of the dataset size, the number of input
channels, and the input segment size, whereas high F1 scores indicate that the model
performs well regardless of the dataset imbalance problem manifested in the WISDM-AR
dataset. The achieved performance does not come at the expense of overcomplicating the
model; the number of model parameters ranges from 22,383 to 37,566, which is significantly
small compared with the existing HAR classification models presented in the literature.
The number of parameters varies among different datasets due to various values of NS,
NF, and NK, which are imposed by the dataset features such as NS and the optimal model
parameters found during the model parameter tuning process such as NF.



Sensors 2022, 22, 8060 20 of 25

(a) (b)

(c)

UCI-HARUCI-HAR
1.0

0.9

0.8

0.7

0.6

A
cc

u
ra

cy

UCI-HAR
1.0

0.9

0.8

0.7

0.6

A
cc

u
ra

cy
MotionSenseMotionSense

1.0

0.95

0.90

0.85

0.80

A
cc

u
ra

cy

MotionSense
1.0

0.95

0.90

0.85

0.80

A
cc

u
ra

cy
WISDM-ARWISDM-AR

1.0

0.9

0.8

0.7

0.6

A
cc

u
ra

cy

WISDM-AR
1.0

0.9

0.8

0.7

0.6

A
cc

u
ra

cy

_____  Training
_____  Validation

0 50 100  150   200   250    300     350

Epoch

(d)

Figure 7. Confusion matrices of the CNN MF classifier for the test set of the selected datasets and the
training curves of the proposed MF CNN classifier for the selected datasets. (a) UCI-HAR Confusion
matrix. (b) MotionSense Confusion matrix. (c) WISDM Confusion matrix. (d) Training curves of the
MF CNN classifier for all datasets.

In our experiments, we developed and tested deeper MF CNN models by hierar-
chically stacking multiple Conv1D and MaxPooling layers and carefully adjusting the
pooling parameters and hierarchical kernel sizes to perform the matched filtering operation
presented in this work. Some deeper CNN models can achieve better classification results
at the expense of increasing the model size and computational complexity, which affects
their suitability for edge inference. Therefore, deeper MF CNN models are not presented
herein, and their results are not reported in this article.

Finally, we developed an android application for HAR using the TFLite models
developed in this work and tested the app on a Samsung Galaxy Note 10 Lite smartphone.
Figure 8 shows a screenshot of the developed app. The developed app is granted access to
the accelerometer and gyroscope sensors, and it performs the following functions: reads the
needed sensor data, samples sensor readings using the dataset sampling frequency, creates
a tensor buffer that aggregates NS sensor readings to form the model input segments,
invokes the TFLite interpreter to perform the inference procedure, and displays the output
class probabilities. The app has been personally tested by performing different activities
and checking the displayed recognized activity.



Sensors 2022, 22, 8060 21 of 25

Figure 8. Screenshot of the developed HAR android application.

Comparison with Related Work

In the following, the proposed CNN MF model is compared with the state-of-the-art
HAR classification methods. Table 4 lists related works presented in Section 2, methods
used in those models, and their achieved classification and benchmarking results. Specifi-
cally, we compare the models in terms of classification accuracy, average F1 score, number
of parameters, and average inference time on the edge device. Unfortunately, model
complexity and run-time benchmarking results are not reported in many related works,
however, they can be inferred from the model topology and used methods.

The first conclusion drawn from Table 4 is that our model outperforms by a significant
margin all HAR models in terms of the model complexity and inference time at the edge
without affecting the model performance. This is attributed to the shallow depth of the MF
CNN HAR model; it uses a single Conv1D layer with a large receptive field followed by BN,
GMP, and FC layers, whereas other models have deeper structures and use hybrid layers
such as Conv1D, LSTM, and GRU. Another consequence of using deeper NN topologies is
exposing the model to overfitting, which affects the model performance. Unfortunately, the
model size and real-time performance results are not commonly reported for many models
to compare them with our results and show the superiority of our model.

At the classification performance level, our model outperforms most models listed in
Table 4 and achieves comparable results to the state-of-the-art results. Figure 9 illustrates
the classification accuracy and F1 score of all models listed in Table 4 for the UCI-HAR,
MotionSense, and WISDM datasets. These results show that the expressiveness power of
the proposed model is not affected by reducing the model depth, due to increasing the
receptive field of the convolutional layer and following the matched filtering technique.

However, there are some models, such as those presented in [22,24,27,32], that achieve
better accuracy or F1 scores for some datasets. The variance in accuracy and F1 score
between our model and these models does not exceed 1%, which can be compensated
by fine-tuning the model parameters or using deeper versions of the proposed CNN
classifier as discussed in Section 4. Moreover, such a small variance can result from the
training/testing set distributions and overlapping periods between sensor segments during
the creation of the dataset examples from the sensor readings. Creating highly overlapped
segments yields repeated examples with minor variations that can be distributed to both
the training and testing sets and, consequently, result in illusory superiority.



Sensors 2022, 22, 8060 22 of 25

Table 4. Comparing the proposed model performance and benchmarking results with related works.
Bold text indicates the best metric results per dataset.

ID Work Used Methods ACC % F1 % Number of
Parameters

Inference
Time (ms)

U
C

I-
H

A
R

1 Proposed MF CNN CNN 97.32 97.35 37,566 0.67
2 Nafea et al. [24], 2021 CNN + BiLSTM 97.04 97.00 – –
3 Yin et al. [25], 2022 CNN + BiLSTM + Attention 96.71 – – 14.71
4 Ignatov [22], 2018 CNN + Statistical Features 97.62 97.63 – –
5 Tan et al. [26], 2022 Conv1D + GRU + Ensemble

learning
96.70 96.80 – 1.68

6 Pushpalatha and Math [27], 2022 CNN + GRU+ FC 96.79 97.82 – –
7 Sikder et al. [28], 2019 CNN 95.25 95.24 – –
8 Xia et al. [23], 2020 CNN + LSTM 95.80 95.78 49,606 –
9 Tang et al. [33], 2021 Teacher-Student CNN – 91.35 – –
10 Ronald et al. [30], 2021 CNN + BiLSTM + Inception +

ResNet
95.09 95.00 1,327,754 –

11 Sannara EK [32], 2022 CNN + Transformer – 97.67 1,275,702 6.40
12 Rahimi Taghanaki et al. [34],

2021
CNN + FC + Transfer Learning 90.80 91.00 – –

13 Luwe et al. [29], 2022 CNN + BiLSTM 95.48 95.45 – –

M
ot

io
nS

en
se

1 Proposed MF CNN CNN 98.03 97.88 25,044 0.52
2 Tang et al. [33], 2021 Teacher-Student CNN – 96.31 – –
3 Sannara EK [32], 2022 CNN + Transformer – 98.32 1,275,702 6.40
4 Rahimi Taghanaki et al. [34],

2021
CNN + FC + Transfer Learning 93.30 91.8 – –

5 Taghanaki et al. [35], 2022 CNN + STFT + Transfer Learning – 94.30 – –
6 Luwe et al. [29], 2022 CNN + BiLSTM 94.17 91.89 – –

W
IS

D
M

-A
R

1 Proposed MF CNN CNN 97.67 96.34 22,383 0.29
2 Nafea et al. [24], 2021 CNN + BiLSTM 98.53 97.16 – –
3 Yin et al. [25], 2022 CNN + BiLSTM + Attention 95.86 – – 12.11
4 Ignatov [22], 2018 CNN + Statistical Features 90.42 – – –
5 Xia et al. [23], 2020 CNN + LSTM 95.75 95.85 49,606 –
6 Tang et al. [33], 2021 Teacher-Student CNN – 90.81 – –

Figure 9. Comparing the proposed model accuracy and F1 score with related models.



Sensors 2022, 22, 8060 23 of 25

The computational complexity of the models with better classification results is sig-
nificantly higher than our model, which is evidenced by either comparing the number of
the reported model parameters or by inspecting the model topology and used layers. The
number of parameters of the model presented in [32] is 50 times larger than our model,
while the models presented in [24,27] are DNNs with hybrid Conv1D, GRU, BiLSTM, and
transformer layers, which increases the model complexity and computational cost.

On the other hand, there are some models, such as the model presented in [24], which
outperform our model for only a specific dataset (WISDM-AR) but not the other (UCI-HAR).
This observation demonstrates that the generalization capability of the proposed MF CNN
classifier is better than most related models presented in the literature. This conclusion
is also supported by the proposed MF CNN classifier achieving convergent classification
performance for all selected HAR datasets regardless of the dataset characteristics.

Limitations of the proposed classifier can be divided into algorithmic and computa-
tional limitations. At the algorithmic level, the proposed classifier is based on the MF theory
and, consequently, it suffers from MF difficulties in distinguishing highly correlated exam-
ples belonging to different classes. Such a limitation can be overcome by implementing
deeper versions of the CNN model to increase model expressiveness and feature extraction
capabilities. At the level of computation complexity, the proposed model is limited in
terms of the number of layers (model depth) and input segment size to minimize the model
complexity and computational cost. The proposed model is well-suited for short-term HAR
applications, which are commonly available in the HAR literature, rather than long-term
HAR problems. Both algorithmic and computational limitations can be overcome using
deeper versions of the model, which can be developed and optimized for cloud inference.

Eventually, the proposed model outperforms all related models in terms of model
complexity (number of parameters) and computational cost (inference time), while achiev-
ing comparable accuracy results. The achieved results of the proposed MF CNN classifier
enable its deployment on a wide range of edge devices for real-time HAR.

6. Conclusions and Future Work

In conclusion, we presented a clear interpretation supported by an experimental
proof of concept of the Conv1D CNN classifier operation as an MF. The visualizations
and analyses provided in this work can help develop a better understanding of the CNN
learning process. Moreover, the set of experiments carried out in this work draws some
guidelines for developing highly accurate computationally efficient CNN classifiers.

Based on this interpretation, we proposed a novel HAR model optimized for edge
deployment that can be embedded in a wearable device or mobile phone for activity recog-
nition. The generalization capability of the proposed model was established by testing the
model on three recognized HAR databases. The proposed model was thoroughly evaluated
and benchmarked on an android device, and the results are reported and discussed. The
proposed edge model is superlight in terms of real-time execution performance and model
size, and it offers superior classification results compared with the state-of-the-art HAR
models. A distinct feature of the proposed model is its readiness for deployment on tightly
resource-constrained edge devices for real-time HAR. A very important conclusion drawn
from this work is that interpretable development of neural networks leads to building more
efficient and accurate models.

Limitations of the proposed MF CNN classifier include algorithmic limitations, due to
the MF correlation operation and shallow depth of the CNN model, and computational
constraints imposed by the edge inference approach. In our future work, we will attempt to
overcome such limitations by using deeper versions of the MF CNN classifier and opting
for the cloud inference approach if needed. Furthermore, we will attempt to extend the
provided interpretation and investigate enhancing the classifier performance using deeper
versions of the model. The MF CNN classifier model will be investigated for other relevant
time series classification problems. Another promising research direction inspired by this
work is investigating different signal-processing-based interpretations of the convolutional



Sensors 2022, 22, 8060 24 of 25

layer—convolution is a fundamental operation in signal processing and it constitutes the
basis of many principles and applications in this domain—and using these interpretations
to build better and more efficient models that push ML research boundaries.

Funding: This work was supported by the Deanship of Scientific Research, King Faisal University,
Saudi Arabia [grant number: GRANT1610].

Data Availability Statement: The experiments have been carried out using public sensor-based HAR
datasets including UCI-HAR [21], MotionSense [37], and WISDM-AR [20] which are open for use in
the research work.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BN BatchNormalization
CAM Class Activation Map
CNN Convolutonal Neural Network
DNN Deep Neural Network
DL Deep Learning
FC Fully Connected
GAP GlobalAveragePooling
GMP GlobalMaxPooling
GRU Gated Recurrent Unit
HAR Human Activity Recognition
LSTM Long Short-Term Memory
MF Matched Filter
ML Machine Learning
RNN Recurrent Neural Network

References
1. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in

convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]
2. LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Handwritten digit recognition with a

back-propagation network. Adv. Neural Inf. Process. Syst. 1989, 2, 396–404.
3. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of

the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25.
4. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
5. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the European Conference on

Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 818–833.
6. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

7. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

8. Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A
survey. Mech. Syst. Signal Process. 2021, 151, 107398. [CrossRef]

9. Fan, F.L.; Xiong, J.; Li, M.; Wang, G. On interpretability of artificial neural networks: A survey. IEEE Trans. Radiat. Plasma Med Sci.
2021, 5, 741–760. [CrossRef] [PubMed]

10. Ziemer, R.E.; Tranter, W.H. Principles of Communications; John Wiley & Sons: Hoboken, NJ, USA, 2014.
11. Molnar, C. Interpretable Machine Learning. 2020. Available online: https://bookdown.org/home/about/ (accessed on 1 October 2022).
12. Montavon, G.; Samek, W.; Müller, K.R. Methods for interpreting and understanding deep neural networks. Digit. Signal Process.

2018, 73, 1–15. [CrossRef]
13. Srinivasamurthy, R.S. Understanding 1D Convolutional Neural Networks Using Multiclass Time-Varying Signals. Ph.D. Thesis,

Clemson University, Clemson, SC, USA, 2018.
14. Pan, Q.; Zhang, L.; Jia, M.; Pan, J.; Gong, Q.; Lu, Y.; Zhang, Z.; Ge, H.; Fang, L. An interpretable 1D convolutional neural network

for detecting patient-ventilator asynchrony in mechanical ventilation. Comput. Methods Programs Biomed. 2021, 204, 106057.
[CrossRef] [PubMed]

http://doi.org/10.1016/j.patcog.2017.10.013
http://dx.doi.org/10.1016/j.ymssp.2020.107398
http://dx.doi.org/10.1109/TRPMS.2021.3066428
http://www.ncbi.nlm.nih.gov/pubmed/35573928
https://bookdown.org/home/about/
http://dx.doi.org/10.1016/j.dsp.2017.10.011
http://dx.doi.org/10.1016/j.cmpb.2021.106057
http://www.ncbi.nlm.nih.gov/pubmed/33836375


Sensors 2022, 22, 8060 25 of 25

15. Wang, Z.; Yan, W.; Oates, T. Time series classification from scratch with deep neural networks: A strong baseline. In Proceedings
of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 1578–1585.

16. Stankovic, L.; Mandic, D. Convolutional Neural Networks Demystified: A Matched Filtering Perspective Based Tutorial. arXiv
2021, arXiv:2108.11663.

17. Farag, M.M. A Self-Contained STFT CNN for ECG Classification and Arrhythmia Detection at the Edge. IEEE Access 2022, 10,
94469–94486. [CrossRef]

18. Farag, M.M. A Matched Filter-Based Convolutional Neural Network (CNN) for Inter-Patient ECG Classification and Arrhythmia
Detection at the Edge. 2022. Available online: https://ssrn.com/abstract=4070665 (accessed on 1 October 2022).

19. WHO. Disability and Health. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/disability-and-heal
th (accessed on 13 October 2022).

20. Kwapisz, J.R.; Weiss, G.M.; Moore, S.A. Activity recognition using cell phone accelerometers. ACM SigKDD Explor. Newsl. 2011,
12, 74–82. [CrossRef]

21. Anguita, D.; Ghio, A.; Oneto, L.; Parra Perez, X.; Reyes Ortiz, J.L. A public domain dataset for human activity recognition using
smartphones. In Proceedings of the 21th International European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, Bruges, Belgium, 24–26 April 2013; pp. 437–442.

22. Ignatov, A. Real-time human activity recognition from accelerometer data using Convolutional Neural Networks. Appl. Soft
Comput. 2018, 62, 915–922. [CrossRef]

23. Xia, K.; Huang, J.; Wang, H. LSTM-CNN architecture for human activity recognition. IEEE Access 2020, 8, 56855–56866. [CrossRef]
24. Nafea, O.; Abdul, W.; Muhammad, G.; Alsulaiman, M. Sensor-based human activity recognition with spatio-temporal deep

learning. Sensors 2021, 21, 2141. [CrossRef] [PubMed]
25. Yin, X.; Liu, Z.; Liu, D.; Ren, X. A Novel CNN-based Bi-LSTM parallel model with attention mechanism for human activity

recognition with noisy data. Sci. Rep. 2022, 12, 7878. [CrossRef]
26. Tan, T.H.; Wu, J.Y.; Liu, S.H.; Gochoo, M. Human activity recognition using an ensemble learning algorithm with smartphone

sensor data. Electronics 2022, 11, 322. [CrossRef]
27. Pushpalatha, S.; Math, S. Hybrid deep learning framework for human activity recognition. Int. J. Nonlinear Anal. Appl. 2022,

13, 1225–1237.
28. Sikder, N.; Chowdhury, M.S.; Arif, A.S.M.; Nahid, A.A. Human activity recognition using multichannel convolutional neural

network. In Proceedings of the 2019 5th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka,
Bangladesh, 26 September 2019; pp. 560–565.

29. Luwe, Y.J.; Lee, C.P.; Lim, K.M. Wearable Sensor-Based Human Activity Recognition with Hybrid Deep Learning Model.
Informatics 2022, 9, 56. [CrossRef]

30. Ronald, M.; Poulose, A.; Han, D.S. iSPLInception: An inception-ResNet deep learning architecture for human activity recognition.
IEEE Access 2021, 9, 68985–69001. [CrossRef]

31. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections on learning.
In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.

32. Sannara, E.K.; François Portet, P.L. Lightweight Transformers for Human Activity Recognition on Mobile Devices. arXiv 2022,
arXiv:2209.11750.

33. Tang, C.I.; Perez-Pozuelo, I.; Spathis, D.; Brage, S.; Wareham, N.; Mascolo, C. SelfHAR: Improving human activity recognition
through self-training with unlabeled data. arXiv 2021, arXiv:2102.06073.

34. Rahimi Taghanaki, S.; Rainbow, M.J.; Etemad, A. Self-supervised Human Activity Recognition by Learning to Predict Cross-
Dimensional Motion. In Proceedings of the 2021 International Symposium on Wearable Computers, Virtual, 21–26 September
2021; pp. 23–27.

35. Taghanaki, S.R.; Rainbow, M.; Etemad, A. Self-Supervised Human Activity Recognition with Localized Time-Frequency
Contrastive Representation Learning. arXiv 2022, arXiv:2209.00990.

36. Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems; O’Reilly Media: Sebastopol, CA, USA, 2019.

37. Malekzadeh, M.; Clegg, R.G.; Cavallaro, A.; Haddadi, H. Mobile Sensor Data Anonymization. In Proceedings of the International
Conference on Internet of Things Design and Implementation, Montreal, QC, Canada, 15–18 April 2019; ACM: New York, NY,
USA, 2019; pp. 49–58. [CrossRef]

38. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

39. Tensorflow. Quantization Aware Training with TensorFlow Model Optimization Toolkit—Performance with Accuracy. 2020.
Available online: https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-t
oolkit.html (accessed on 20 June 2022).

40. Tensorflow. TensorFlow Lite: ML for Mobile and Edge Devices. 2022. Available online: https://www.tensorflow.org/lite/
(accessed on 20 June 2022).

http://dx.doi.org/10.1109/ACCESS.2022.3204703
https://ssrn.com/abstract=4070665
https://www.who.int/news-room/fact-sheets/detail/disability-and-health
https://www.who.int/news-room/fact-sheets/detail/disability-and-health
http://dx.doi.org/10.1145/1964897.1964918
http://dx.doi.org/10.1016/j.asoc.2017.09.027
http://dx.doi.org/10.1109/ACCESS.2020.2982225
http://dx.doi.org/10.3390/s21062141
http://www.ncbi.nlm.nih.gov/pubmed/33803891
http://dx.doi.org/10.1038/s41598-022-11880-8
http://dx.doi.org/10.3390/electronics11030322
http://dx.doi.org/10.3390/informatics9030056
http://dx.doi.org/10.1109/ACCESS.2021.3078184
http://dx.doi.org/10.1145/3302505.3310068
https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html
https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html
https://www.tensorflow.org/lite/

	Introduction
	Literature Review
	CNN Interpretation Background 
	Human Activity Recognition Related Work

	Matched Filter Interpretation of Convolutional Neural Network
	Experimental Proof of Concept
	Synthetic Dataset
	Experimental Setup and Tools
	Results and Visualizations
	Analysis and Discussion


	Human Activity Recognition Using the Matched Filter CNN Classifier
	Datasets
	Multivariate MF CNN Classifier
	Methods and Tools

	Results and Discussion
	Conclusions and Future Work
	References

