
Citation: Patel, A.M.; Lee, W.S.; Peres,

N.A. Imaging and Deep Learning

Based Approach to Leaf Wetness

Detection in Strawberry. Sensors 2022,

22, 8558. https://doi.org/10.3390/

s22218558

Academic Editor: Yongwha Chung

Received: 13 October 2022

Accepted: 4 November 2022

Published: 7 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Imaging and Deep Learning Based Approach to Leaf Wetness
Detection in Strawberry
Arth M. Patel 1, Won Suk Lee 2,* and Natalia A. Peres 3

1 Department of Electrical & Computer Engineering, University of Florida, Gainesville, FL 32611, USA
2 Department of Agricultural and Biological Engineering, University of Florida, Rogers Hall,

1741 Museum Road, Gainesville, FL 32611, USA
3 Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida,

Wimauma, FL 33598, USA
* Correspondence: wslee@ufl.edu

Abstract: The Strawberry Advisory System (SAS) is a tool developed to help Florida strawberry
growers determine the risk of common fungal diseases and the need for fungicide applications.
Leaf wetness duration (LWD) is one of the important parameters in SAS disease risk modeling.
By accurately measuring the LWD, disease risk can be better assessed, leading to less fungicide
use and more economic benefits to the farmers. This research aimed to develop and test a more
accurate leaf wetness detection system than traditional leaf wetness sensors. In this research, a leaf
wetness detection system was developed and tested using color imaging of a reference surface and
a convolutional neural network (CNN), which is one of the artificial-intelligence-based learning
methods. The system was placed at two separate field locations during the 2021–2022 strawberry-
growing season. The results from the developed system were compared against manual observation
to determine the accuracy of the system. It was found that the AI- and imaging-based system had
high accuracy in detecting wetness on a reference surface. The developed system can be used in SAS
for determining accurate disease risks and fungicide recommendations for strawberry production
and allows the expansion of the system to multiple locations.

Keywords: artificial intelligence; color imaging; leaf wetness; Strawberry Advisory System; straw-
berry diseases

1. Introduction

Fungal diseases, such as botrytis fruit rot and anthracnose, are major contributors to
the yield loss in strawberry crop [1,2]. Every season, farmers spray fungicides regularly to
prevent the proliferation of these diseases. These fungicides increase production costs and
contribute to a decrease in profit. The proliferation of these fungal diseases is directly linked
to the presence of free water on the plant canopy, called leaf wetness [3]. By measuring the
duration for which the water is present, i.e., leaf wetness duration (LWD), along with the
temperature, the risk factors of those diseases can be derived and farmers can be informed
to spray fungicides exactly when they are needed. This avoids spraying fungicides when
they are not needed, leading to savings in production costs and a reduction in the selection
pressure for resistance.

The Strawberry Advisory System (SAS) is one such tool developed to help Florida
strawberry growers with knowledge of disease risk factors in their location and fungicide
application recommendations [4]. SAS uses data from traditional flat-plate leaf wetness
sensors to measure the LWD. In places where conventional leaf wetness sensors are not
installed, it uses weather data, such as temperature, humidity, and dew point. These
meteorological data are used in various mathematical models to predict water presence
and estimate the LWD [5]. There are a few limitations of these methods, which prevent
their wider use. For example, leaf wetness sensors need to be painted and calibrated
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from time to time [6], and the mathematical models have different accuracies and are
not highly reliable [3]. In addition to these two methods, there have been several other
attempts made to detect leaf wetness, such as paper-based chip RFID sensors [7], cylindrical
sensors [8], cloth-based electrical resistance sensors [9], and beta ray gauge sensors [9].
Each of these sensors has some limitations, making it less adaptable to the varying nature
of field conditions. Thus, there is a need for a better tool to detect leaf wetness [10].

A feasibility study was carried out to detect leaf wetness using an imaging-based
device [11]. This study concluded that a device could be made that takes images of a
reference surface, and using a pre-trained convolutional neural network model, the images
can be classified into wet/dry categories. Thus, the LWD can be measured without using
traditional leaf wetness sensors. The objective of this study was to develop in-field imaging-
based leaf wetness detection systems and evaluate their performance. Two such systems
were developed and placed at two field locations for strawberry production. The results
were evaluated using manual observations and SAS data (SAS, http://cloud.agroclimate.
org/tools/sas/dashboard/disease, accessed on 30 May 2022).

2. Materials and Methods

A leaf wetness detection system was developed and placed at the Plant Science
Research and Education Unit (PSREU) of the University of Florida (UF) in Citra, Florida,
USA, from October 2021 to March 2022. A similar system was set up at the Gulf Coast
Research and Education Center (GCREC) of the University of Florida, Wimauma, Florida,
USA, during the strawberry-growing season from February to March 2022. Both systems
were placed approximately 5 m away from the strawberry-growing field.

Figure 1 shows the system setup at UF PSREU, and Figure 2 shows the system setup
at UF GCREC. Both systems contained a color camera, a painted reference surface, LED
light for artificial illumination during the night, a single-board computer, solar panels,
and a battery for power supply. Details of these hardware components are described
later. Figure 3 shows a block diagram of the system. Though conceptually the same,
there was only one difference between the two systems, the orientation of the artificial
illumination. As shown in Figure 1, when the artificial illumination was from behind, extra
components and space were needed, making the system larger. So, it was better to add
artificial illumination on the front side to save some space. The orientation of the artificial
illumination, whether front or back, did not make a difference in the image outcomes as
long as the artificial illumination was aligned with the installation angle of the reference
surface.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 13 
 

 

estimate the LWD [5]. There are a few limitations of these methods, which prevent their 

wider use. For example, leaf wetness sensors need to be painted and calibrated from time 

to time [6], and the mathematical models have different accuracies and are not highly re-

liable [3]. In addition to these two methods, there have been several other attempts made 

to detect leaf wetness, such as paper-based chip RFID sensors [7], cylindrical sensors [8], 

cloth-based electrical resistance sensors [9], and beta ray gauge sensors [9]. Each of these 

sensors has some limitations, making it less adaptable to the varying nature of field con-

ditions. Thus, there is a need for a better tool to detect leaf wetness [10]. 

A feasibility study was carried out to detect leaf wetness using an imaging-based 

device [11]. This study concluded that a device could be made that takes images of a ref-

erence surface, and using a pre-trained convolutional neural network model, the images 

can be classified into wet/dry categories. Thus, the LWD can be measured without using 

traditional leaf wetness sensors. The objective of this study was to develop in-field imag-

ing-based leaf wetness detection systems and evaluate their performance. Two such sys-

tems were developed and placed at two field locations for strawberry production. The 

results were evaluated using manual observations and SAS data (SAS, http://cloud.agro-

climate.org/tools/sas/dashboard/disease, accessed on 30 May 2022). 

2. Materials and Methods 

A leaf wetness detection system was developed and placed at the Plant Science Re-

search and Education Unit (PSREU) of the University of Florida (UF) in Citra, Florida, 

USA, from October 2021 to March 2022. A similar system was set up at the Gulf Coast 

Research and Education Center (GCREC) of the University of Florida, Wimauma, Florida, 

USA, during the strawberry-growing season from February to March 2022. Both systems 

were placed approximately 5 m away from the strawberry-growing field. 

Figure 1 shows the system setup at UF PSREU, and Figure 2 shows the system setup 

at UF GCREC. Both systems contained a color camera, a painted reference surface, LED 

light for artificial illumination during the night, a single-board computer, solar panels, 

and a battery for power supply. Details of these hardware components are described later. 

Figure 3 shows a block diagram of the system. Though conceptually the same, there was 

only one difference between the two systems, the orientation of the artificial illumination. 

As shown in Figure 1, when the artificial illumination was from behind, extra components 

and space were needed, making the system larger. So, it was better to add artificial illu-

mination on the front side to save some space. The orientation of the artificial illumination, 

whether front or back, did not make a difference in the image outcomes as long as the 

artificial illumination was aligned with the installation angle of the reference surface. 

 

Figure 1. System to monitor a reference surface using an RGB camera at UF PSREU, Citra. Figure 1. System to monitor a reference surface using an RGB camera at UF PSREU, Citra.

http://cloud.agroclimate.org/tools/sas/dashboard/disease
http://cloud.agroclimate.org/tools/sas/dashboard/disease


Sensors 2022, 22, 8558 3 of 12Sensors 2022, 22, x FOR PEER REVIEW 3 of 13 
 

 

 

Figure 2. System to monitor a reference surface using an RGB camera at UF GCREC, Wimauma. 

 

Figure 3. Block diagram of the system to monitor a reference surface and to detect wetness from 

images of the reference surface. 

2.1. Reference Surface 

The reference surface represents a leaf on the field. A 25.4 × 20.3 cm acrylic sheet 

painted with flat white paint (Rust-Oleum American Accents 2X Ultra Cover Flat Spray 

Paint, Rust-Oleum, Evanston, IL, USA) was used as a reference surface. The reference sur-

face was placed 45 cm above ground level, facing north, at an angle of 45° from the 

ground, following recommendations for the placement of leaf wetness sensors. [12] 

Before setting up the system on the field, flat surfaces with various materials and 

colors were used to experiment with the best color image outcome in the presence of water 

on the surface. The materials tried were polypropylene sheets with matt and gloss finish 

of various colors, wooden and metal surfaces painted with flat white paint, and acrylic 

sheets painted with flat white paint. Of these, the acrylic sheets yielded the best detection 

results for water droplets. 

Since water droplets slip easily on surfaces with glossy textures, this might cause a 

reduction in the overall LWD; hence, surfaces with glossy textures were eliminated. Col-

ored surfaces with dark colors absorb more sunlight and can become warm quickly, which 

might also reduce the overall LWD, so they were also eliminated. Finally, a surface 

painted with flat white paint, which does not create a glossy surface, was used as a refer-

ence surface. The acrylic sheet was a better choice because, compared to wood, it had a 

uniform texture and better endurance in outdoor conditions. In addition, unlike metal, it 

does not become warm. 

Figure 2. System to monitor a reference surface using an RGB camera at UF GCREC, Wimauma.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 13 
 

 

 

Figure 2. System to monitor a reference surface using an RGB camera at UF GCREC, Wimauma. 

 

Figure 3. Block diagram of the system to monitor a reference surface and to detect wetness from 

images of the reference surface. 

2.1. Reference Surface 

The reference surface represents a leaf on the field. A 25.4 × 20.3 cm acrylic sheet 

painted with flat white paint (Rust-Oleum American Accents 2X Ultra Cover Flat Spray 

Paint, Rust-Oleum, Evanston, IL, USA) was used as a reference surface. The reference sur-

face was placed 45 cm above ground level, facing north, at an angle of 45° from the 

ground, following recommendations for the placement of leaf wetness sensors. [12] 

Before setting up the system on the field, flat surfaces with various materials and 

colors were used to experiment with the best color image outcome in the presence of water 

on the surface. The materials tried were polypropylene sheets with matt and gloss finish 

of various colors, wooden and metal surfaces painted with flat white paint, and acrylic 

sheets painted with flat white paint. Of these, the acrylic sheets yielded the best detection 

results for water droplets. 

Since water droplets slip easily on surfaces with glossy textures, this might cause a 

reduction in the overall LWD; hence, surfaces with glossy textures were eliminated. Col-

ored surfaces with dark colors absorb more sunlight and can become warm quickly, which 

might also reduce the overall LWD, so they were also eliminated. Finally, a surface 

painted with flat white paint, which does not create a glossy surface, was used as a refer-

ence surface. The acrylic sheet was a better choice because, compared to wood, it had a 

uniform texture and better endurance in outdoor conditions. In addition, unlike metal, it 

does not become warm. 

Figure 3. Block diagram of the system to monitor a reference surface and to detect wetness from
images of the reference surface.

2.1. Reference Surface

The reference surface represents a leaf on the field. A 25.4 × 20.3 cm acrylic sheet
painted with flat white paint (Rust-Oleum American Accents 2X Ultra Cover Flat Spray
Paint, Rust-Oleum, Evanston, IL, USA) was used as a reference surface. The reference
surface was placed 45 cm above ground level, facing north, at an angle of 45◦ from the
ground, following recommendations for the placement of leaf wetness sensors [12].

Before setting up the system on the field, flat surfaces with various materials and
colors were used to experiment with the best color image outcome in the presence of water
on the surface. The materials tried were polypropylene sheets with matt and gloss finish of
various colors, wooden and metal surfaces painted with flat white paint, and acrylic sheets
painted with flat white paint. Of these, the acrylic sheets yielded the best detection results
for water droplets.

Since water droplets slip easily on surfaces with glossy textures, this might cause
a reduction in the overall LWD; hence, surfaces with glossy textures were eliminated.
Colored surfaces with dark colors absorb more sunlight and can become warm quickly,
which might also reduce the overall LWD, so they were also eliminated. Finally, a surface
painted with flat white paint, which does not create a glossy surface, was used as a reference
surface. The acrylic sheet was a better choice because, compared to wood, it had a uniform
texture and better endurance in outdoor conditions. In addition, unlike metal, it does not
become warm.
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2.2. Color Imaging of the Reference Surface

An RGB camera (WYZE Cam v2, WYZE Labs, Seattle, WA, USA) with a resolution
of 1920 × 1080 pixels was used to take images of the reference surface. The images were
taken every 15 min. The camera was placed inside a weatherproof enclosure 50 cm above
ground, facing the reference surface and in a north-south direction. The distance between
the reference surface and the camera enclosure was 20 cm. Figure 4 shows the camera setup
at UF PSREU.
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Figure 4. Reference surface and camera enclosure with the RGB camera at UF PSREU, Citra.

The camera was connected to a single-board computer (Raspberry Pi 4, Raspberry Pi
Foundation, Cambridge, UK) using a USB cable. The captured images were sent to Google
Drive (Google LLC, Mountain View, CA, USA) for data analysis and storage. A wireless
cellular modem (Verizon Jetpack MiFi 8800L, Verizon Communications Inc., New York
City, NY, USA) was used to transfer field images to Google Drive. Figure 5 shows example
images taken by the camera under rainy conditions during the day and at nighttime.
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Figure 5. Example images of the reference surface: (a) color image acquired during normal daylight
conditions and (b) color image acquired during the nighttime with the help of artificial illumination.

2.3. Artificial Illumination

To take images during the night, a 12V LED light (AJ-Ultra thin Eagle Eye, AU-
TOMONARCH, Shenzhen, China) was used for artificial illumination.
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The light was placed at a 45◦ angle in alignment with the reference surface. The
placement of the light was this way to create a shadow of the water droplets present on the
reference surface. Figure 6 shows images taken during the night using this arrangement of
artificial illumination.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 13 
 

 

2.3. Artificial Illumination 

To take images during the night, a 12V LED light (AJ-Ultra thin Eagle Eye, AUTO-

MONARCH, Shenzhen, China) was used for artificial illumination. 

The light was placed at a 45° angle in alignment with the reference surface. The 

placement of the light was this way to create a shadow of the water droplets present on 

the reference surface. Figure 6 shows images taken during the night using this arrange-

ment of artificial illumination. 

      
(a) (b) 

Figure 6. Example nighttime images of the reference surface using artificial illumination: (a) with 

large water droplets formed due to rain and (b) with tiny water droplets formed due to dew. 

2.4. Image Processing 

The original images of the reference surface had a resolution of 1920 × 1080 pixels 

and contained the entire reference surface, which had a size of 25.4 × 20.3 cm. As shown 

in the original image in Figure 7a, the camera lens had barrel distortion present. The barrel 

distortion was corrected programmatically. Figure 7a shows the original image with bar-

rel distortion, and Figure 7b shows the corrected image. 

After correcting distortion, the images were cropped to 300 × 200 pixels from the cen-

ter of the reference surface, representing a 7.6 × 5 cm surface. This size was chosen because 

the currently available wetness sensors in the market have approximately the same size. 

The cropped images were used to train and test the convolutional neural network model. 

   
(a) (b) (c) 

Figure 7. Example images of the reference surface: (a) the original image of the reference surface, 

(b) image with corrected barrel distortion, and (c) cropped image, which represents a 7.6 × 5 cm 

surface. 

2.5. Training and Test Datasets 

2.5.1. Training Dataset 

The color image training datasets contained 25,000 unique color images of the refer-

ence surface. These images were taken at UF PSREU, Citra. The images were selected ran-

domly from the images taken from September through November 2021. The images were 

from the day and nighttime. Each image was manually observed and assigned either a 

“wet” or a “dry” label. Figure 8 shows example images. There were 13,663 images under 

the “wet” class and 11,337 images under the “dry” class. The dataset was biased toward 

the “wet” class. To avoid bias in the final model, class weights were adjusted while train-

ing the convolutional neural network. The “dry” class was assigned 1.20 times the 

Figure 6. Example nighttime images of the reference surface using artificial illumination: (a) with
large water droplets formed due to rain and (b) with tiny water droplets formed due to dew.

2.4. Image Processing

The original images of the reference surface had a resolution of 1920 × 1080 pixels
and contained the entire reference surface, which had a size of 25.4 × 20.3 cm. As shown in
the original image in Figure 7a, the camera lens had barrel distortion present. The barrel
distortion was corrected programmatically. Figure 7a shows the original image with barrel
distortion, and Figure 7b shows the corrected image.
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Figure 7. Example images of the reference surface: (a) the original image of the reference surface,
(b) image with corrected barrel distortion, and (c) cropped image, which represents a 7.6 × 5 cm
surface.

After correcting distortion, the images were cropped to 300 × 200 pixels from the
center of the reference surface, representing a 7.6 × 5 cm surface. This size was chosen
because the currently available wetness sensors in the market have approximately the same
size. The cropped images were used to train and test the convolutional neural network
model.

2.5. Training and Test Datasets
2.5.1. Training Dataset

The color image training datasets contained 25,000 unique color images of the reference
surface. These images were taken at UF PSREU, Citra. The images were selected randomly
from the images taken from September through November 2021. The images were from
the day and nighttime. Each image was manually observed and assigned either a “wet”
or a “dry” label. Figure 8 shows example images. There were 13,663 images under the
“wet” class and 11,337 images under the “dry” class. The dataset was biased toward the
“wet” class. To avoid bias in the final model, class weights were adjusted while training the
convolutional neural network. The “dry” class was assigned 1.20 times the weightage of
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the “wet” class images. The dataset was divided into training and validation sets in an 8:2
ratio. The training set contained 20,000 images; the validation set contained 5000 images.
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2.5.2. Test Dataset

There were two test datasets. Test set 1 contained images taken at UF PSREU, Citra,
from December 2021 to March 2022. This dataset contained 19,000 unique color images of
the reference surface. Test set 2 contained images taken at UF GCREC, Wimauma, from
February to March 2022. This dataset contained 1100 images. All the images were labeled
manually using visual observation and assigned a “wet” or a “dry” label based on the
presence of water on the surface. The test sets were used to check the accuracy of the deep
learning model.

2.6. Deep Learning Algorithm

A convolutional neural network (CNN) was used to automatically classify images of
the reference surface into two classes. A CNN usually performs better in image classification
problems when a large amount of data are available. In addition, previous studies [11,13]
have tried image processing and other approaches using color and thermal images, but
those techniques had limitations and did not yield promising results. Hence, a CNN was a
preferred choice for our task.

In this study, a sequential CNN model was used, which had one input layer, hidden
layers, and one output layer. In this case, the input layer was a vector with a size of (200,
300, 3), which is the size of the input image. The hidden layers had a series of convolution
and max pool layers, followed by a series of activation layers. The output layer was a vector
of size (10), using the ReLU activation function, and the image class was determined from
the output layer. Figure 9 shows the details of the CNN layers used to classify the reference
surface images into two classes. The conceptual understanding of the CNN architecture is
provided in [14].

The model was compiled using an optimizer. In this case, the binary cross-entropy
function was used. The class weights were adjusted before training the CNN to avoid
bias in the trained model. Additionally, dropout layers, early stopping, and data hold-out
methods were used to avoid the overfitting problem. Dropout is a regularization method
that randomly drops several output layers, hence reducing the complexity of the neural
network and avoiding overfitting. Early stopping was used to stop further training of the
neural network once the maximum accuracy was reached. In addition, 20% of the data in
the training dataset were used for validation, which was to ensure that the model did not
overfit while training the neural network. The model was trained using a training set. The
validation set was used to check the accuracy during the training. The training and testing
of the CNN were conducted using Google Colab Notebook (Google Colaboratory, Google
LLC, Mountain View, CA, USA). The model was trained for 50 epochs. Figure 10 shows the
training and validation accuracy trend as the model was being trained.
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2.7. Evaluation Methods

Several evaluation matrices were used to evaluate the performance of the trained
neural network. For the trained model, accuracy, precision, and recall were determined.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)
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Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Here, TP denotes true positives (i.e., “wet” class image predicted as “wet”), TN denotes
true negatives (i.e., “dry” class image predicted as “dry”), FP denotes false positives (i.e.,
“dry” class image predicted as “wet”), and FN denotes false negatives (i.e., “wet” class
image predicted as “dry”).

3. Results

The trained CNN model was used to predict labels for the images in test set 1 and
test set 2. The predicted labels were compared with the manually assigned labels. Table 1
shows the accuracy, precision, and recall for both test sets when the results were compared
with the visual observation of the images of the reference surface. Tables 2 and 3 show the
confusion matrix for test set 1 and test set 2, respectively.

Table 1. Results of the CNN model’s prediction when compared with visual observation of the
reference surface images.

Test Set 1 Test Set 2

Accuracy 0.962 0.954
Precision 0.946 0.932

Recall 0.962 0.944

Table 2. Confusion matrix for test set 1 when results were compared with manually assigned labels.

True Labels
“Wet” “Dry”

Predicted
Labels

“Wet”
1

0.80.962 0.038
0.6

“Dry”
0.4
0.20.038 0.962
0

Table 3. Confusion matrix for test set 2 when results were compared with manually assigned labels.

True Labels
“Wet” “Dry”

Predicted
Labels

“Wet”
1

0.80.944 0.041
0.6

“Dry”
0.4
0.20.056 0.959
0

To get a better perspective on the model’s accuracy, the predicted labels were also com-
pared with SAS data. Test set 1 results were compared with SAS’s UF PSREU, Citra, data,
and test set 2 results were compared with SAS’s UF GCREC, Wimauma, data. SAS’s PSREU,
Citra, station uses weather data and mathematical models, and the GCREC, Wimauma,
station uses two flat-plate electronic leaf wetness sensors (L-237, Campbell Scientific, Inc.,
Logan, UT, USA) to detect wetness.

SAS collects data every 15 min, and the new proposed system in this study also col-
lected data every 15 min. However, there were occasions when SAS data were unavailable.
It was due to the SAS wetness detection system not being active during those periods.
So, there were 5458 instances where the data captured by the new system at PSREU were
matched with the data captured by the existing SAS. For GCREC, there were 1051 such
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instances. As the data capture timings were the same, these results could be compared.
Table 4 shows the accuracy, precision, and recall for both test sets. Tables 5 and 6 show a
confusion matrix for test set 1 and test set 2, respectively.

Table 4. Results of the CNN model’s prediction when compared with SAS data.

Test Set 1 Test Set 2

Accuracy 0.793 0.922
Precision 0.838 0.876

Recall 0.705 0.913

Table 5. Confusion matrix for test set 1 when results were compared with SAS PSREU data.

True Labels
“Wet” “Dry”

Predicted
Labels

“Wet”
1

0.80.706 0.128
0.6

“Dry”
0.4
0.20.294 0.872
0

Table 6. Confusion matrix for test set 2 when results were compared with SAS GCREC data.

True Labels
“Wet” “Dry”

Predicted
Labels

“Wet”
1

0.80.913 0.073
0.6

“Dry”
0.4
0.20.087 0.927
0

4. Discussion

It is clear from the results in Section 3 that the deep learning method yielded high
accuracy when the model’s results were compared with the manual observation-labels.
The results in Table 1 are high, but there is still room for improvement. There are a few
factors that affect the gap in the model’s accuracy when predictions are compared with
visual observations.

During the dew onset period, the water droplets were tiny (<0.01 mm) and were
spread across the surface as a thin layer of water. This made it difficult to visually observe
those water droplets and categorize and label these images correctly, as shown in the
example image in Figure 11. Another factor that affected the mislabeling was when only
one or two small droplets (~1–3 mm) were present on the reference surface. This situation
usually occurred during the dew offset period. It was difficult to categorize these images
into “wet” or “dry” categories, as shown in Figure 12. These errors in the labeling of the
images were carried forward into the trained model and eventually contributed to the gap
in the accuracy of the test datasets.

These inaccuracies do not contribute to a significant drop in the overall LWD. They
contribute to less than ±1.5 h in the overall LWD for a given day. The current SAS
continues accumulating the LWD until there is a gap of at least 4 h after the end of a
wetness period [15]. The inaccuracy in the new system can be tolerated, given the varying
nature of infield conditions, since currently used sensors are also problematic during
the onset and offset of wetness periods and thresholds need to be determined during
calibration.
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The results of the CNN model’s prediction in Table 4 are significantly lower compared
to the results in Table 1. SAS’s Citra weather station uses various meteorological data, such
as temperature, humidity, and solar radiation, in mathematical models, such as the Dew
Point Depression (DPD), the Classification and Regression Tree (CART), the Number of
Hours with Relative Humidity equal or greater than 90% (NHRH ≥ 90%), and the Penman-
Monteith (PM) model, to predict the wetness period. These models have limitations [2], so
their results can differ from the results produced by the visual observation-based model. In
addition, SAS’s Citra weather station is located approximately 3 km away from where the
wetness detection system used in this study was set up. Thus, this distance could also have
contributed to the differences in the results.

SAS’s GCREC weather station uses calibrated leaf wetness sensors to detect leaf
wetness, and this station was located approximately 5 m away from the system used in
this study. A comparison between the leaf wetness sensor method and the imaging-based
method was made in [11], which explains the differences in the results.

There are several things to consider regarding the reference surface. The size of the
reference surface (25.4 × 20.3 cm) was chosen arbitrarily, but the images used in the training
and testing of the model had a size of 7.6 × 5 cm. This is approximately the same size
as the currently available electronic leaf wetness sensors in the market. The variance in
the size of the reference surface can have an effect on the LWD period. If the size of the
reference surface is too large, then it can collect more water, eventually increasing the LWD.
With a larger size reference surface, it can also collect dust, bird droppings, and some
other materials that might be detected as water droplets, creating false positives. A larger
reference surface size can also interfere with other farm equipment and damage it. If the
size of the reference surface is too small, then it might miss periods of actual wetness and
might create false negatives. Thus, we believe that the proper size of the reference surface
should be approximately 5–10 cm × 5–10 cm.

In this study, the reference surface was painted with flat white paint. As the paint
withers over time, there was a need to paint the reference surface periodically, e.g., every
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8 weeks. In the future, a white surface with a non-glossy and non-reflective texture can be
used to avoid the need of painting the reference surface. An automatic reference surface-
cleaning mechanism, such as a wiper, can also be attached to avoid any need to clean
reference surfaces manually, avoiding any need for maintenance.

In the future, the above-mentioned improvements can be made to the existing system.
Since this system is highly accurate, it can be placed at multiple locations and data from
these systems can be directly used in SAS in real time to help strawberry growers in
Florida with an accurate estimation of LWD periods, disease risk factors, and fungicide
recommendations.

5. Conclusions

This study developed a new leaf wetness detection system and tested an approach
for leaf wetness detection using color imaging of a reference surface and deep learning.
This approach yielded high accuracy when compared to visual observation labels of the
corresponding images. For the GCREC system, the results were compared with wetness
sensor data, which also had high accuracy. This model had low accuracy when results
were compared with a weather-data-based approach to detect leaf wetness. Overall, this
system has good potential and can be used in place of an electronic leaf wetness sensor.
With few adjustments to the current system, it can be made maintenance free, and data can
be used in SAS for strawberry disease risk factor calculations and fungicide spray schedule
recommendations.
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