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Abstract: Aiming at the problem that Simultaneous localization and mapping (SLAM) is greatly
disturbed by many dynamic elements in the actual environment, this paper proposes a real-time
Visual SLAM (VSLAM) algorithm to deal with a dynamic indoor environment. Firstly, a lightweight
YoloFastestV2 deep learning model combined with NCNN and Mobile Neural Network (MNN)
inference frameworks is used to obtain preliminary semantic information of images. The dynamic
feature points are removed according to epipolar constraint and dynamic properties of objects
between consecutive frames. Since reducing the number of feature points after rejection affects the
pose estimation, this paper innovatively combines Cylinder and Plane Extraction (CAPE) planar
detection. We generate planes from depth maps and then introduce planar and in-plane point
constraints into the nonlinear optimization of SLAM. Finally, the algorithm is tested on the publicly
available TUM (RGB-D) dataset, and the average improvement in localization accuracy over ORB-
SLAM2, DS-SLAM, and RDMO-SLAM is about 91.95%, 27.21%, and 30.30% under dynamic sequences,
respectively. The single-frame tracking time of the whole system is only 42.68 ms, which is 44.1%,
being 14.6–34.33% higher than DS-SLAM, RDMO-SLAM, and RDS-SLAM respectively. The system
that we proposed significantly increases processing speed, performs better in real-time, and is easily
deployed on various platforms.

Keywords: dynamic environment; low texture; Yolo-FastestV2; SLAM; positional estimation; target
detection; planar

1. Introduction

Simultaneous localization and mapping (SLAM) systems effectively solve autonomous
exploration tasks in unknown environments as a fundamental strategy for developing
navigation technologies, for example, in mines, roads, farmlands, underwater, aerial envi-
ronments, and, in a broad sense, indoor and outdoor scenarios. In these scenarios, RGB-D
cameras or LiDAR are often used as the primary sensors to capture the scene [1,2]. The Vi-
sual SLAM framework is now relatively mature and consists mainly of front-end feature
extraction, back-end state estimation, loopback detection, and map building [3]. Some
excellent SLAM algorithms, such as ORB-SLAM2 [4], HECTOR-SLAM [5], LSD-SLAM [6],
etc., have been applied in some fields with more excellent results.

However, some problems must be solved; for example, most typical algorithms or
datasets are based on static environment assumptions. Due to the substantial texture
information of dynamic objects in natural scenes, these algorithms use many dynamic
object feature points for pose estimation and 3D mapping, resulting in significant trajectory
errors and even tracking state loss. As a result, the system based on pose estimation is
disturbed by cumulative errors in long-term mapping and localization, which dramatically
limits the application of VSLAM in many practical situations.

For indoor environments with a large number of artificial objects and known structures,
there are a large number of low-texture scenes in addition to more vital dynamic targets.
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Such as floors, walls, table tops, etc. Such scenes are usually not valid when using SLAM
algorithms based on point feature extraction and even fail to match feature points within
low-texture scenes between adjacent frames. In addition, point errors, especially in large
scenes, where measurement noise and data correlation accumulate, are challenging to
solve using only points. Of course, as one of the ordinary working scenes for robots, the
indoor environment has many other high-level features besides feature points. Such as
lines, planes, etc. Using plane-type structural constraints can help achieve planar matching
and thus reduce the cumulative error. In addition, advanced features such as lines and
planes can be easily extracted in RGB-D cameras, and calculating planes from the depth
map can make the results more stable and accurate.

In this paper, improvements are made to address the following issues:

1. Based on the assumption of constant environment, ignoring dynamic features leads
to inaccurate pose estimation;

2. Traditional pixel-level semantic segmentation networks are inefficient and difficult to
meet real-time operation requirements;

3. Removing dynamic feature points from dynamic targets results in a low number of
feature points and inaccurate positional estimation;

4. Low-texture scenes are prone to feature matching failures, but in cases with planar
features that can be utilized.

The proposed lightweight, fast target detection network based on Yolo-FastestV2 [7] is
combined with CAPE [8] (Cylinder and Plane Extraction) based planar detection to extract
planar features. We refer to this system as YPD-SLAM based on the approach adopted
(YoloFastestV2-Plane-Dynamic-SLAM).

The main contributions of this paper are as follows:

• A SLAM system is proposed based on ORB-SLAM2 that can work in dynamic and
low-texture environments;

• Adding the Yolo-FastestV2 target detection network, the threshold of the sum of
distances to the epipolar is determined in combination with epipolar constraint to
remove dynamic feature points;

• Planar features are extracted based on CAPE planar detection, using planar high-level
features of low-textured scenes, and adding planar and in-plane points constraint,
thus reducing mismatching and drift errors in indoor environments;

• Evaluating this system on a publicly available dataset, the speed is greatly improved
while maintaining the same accuracy as the state-of-the-art systems.

2. Related Work
2.1. Plane-Based Approach

Planar SLAM uses planar rather than point features as flags for pose estimation and
SLAM optimization. Concha and Civera [9] propose a new initialization framework for
planar regions by reconstructing high-gradient image regions as 3D points and low-gradient
image regions as planes using Super Pixel segmentation. DPPTAM improves the accuracy
and density of semi-dense monocular SLAM. Ma et al. [10] perform direct alignment of
keyframes and global planar models in the EM framework and optimized constraints
between keyframes and global planar models. Lee et al. [11] iteratively estimate layout
planes and points cloud alignment to reduce RGBD map offsets.

Similarly, planes can provide constraints over long distances compared to points
in indoor architectural environments [12,13]. A keyframe-based framework is proposed
by Hsiao et al. [12] to optimize keyframe poses and landmark planes using incremental
smoothing and mapping (iSAM). Zhang et al. [14] use planar edges, generate supposed
vertical planes, and add planar perpendicular and parallel constraints. More constraints
are added to the nonlinear least squares problem for SLAM to achieve a more stable pose
estimation. These methods have achieved good results in exploiting planar structures, but
the mapping of dynamic indoor environments is less satisfactory.
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2.2. Semantic-Based Approach in Dynamic Scene

As research progresses, deep learning approaches start to be introduced into SLAM
systems, and some deep learning techniques are used to handle these dynamic elements,
such as semantic SLAM. A novel SLAM framework proposed by Brasch et al. [15] with
semantic networks that use the extracted semantic information and probabilistic models
to reject dynamic outliers. In addition, a new visual ranging framework in [16] that
incorporates semantic constraints into the pose and map optimization process to reduce the
drift caused by dynamic elements. While these methods can extract all possible movable
objects from the scene, they do not take into account the temporality of the actual motion,
i.e., the features on the objects still contribute to the accuracy of the pose estimation when
they are static. Therefore, to take full advantage of all possible features of the object,
Bescós et al. [17] propose the DynaSLAM algorithm, which uses Mask R-CNN [18] and
multi-view geometry for dynamic segmentation. Ref. [19] uses SegNet [20] to obtain
semantic segmentation and use movement consistency checking to re-detect dynamics.
Bescós et al. [21] propose a new feature-based dynamic SLAM algorithm for model-free
object perception that is still based on Mask R-CNN to estimate the rigid object motion of
a rigid object. Liu and Miura [22] add semantic tracking and semantic-based optimization
threads based on ORB-SLAM3 in RDS-SLAM. The algorithm also proposes a key frame
selection strategy for semantic segmentation, which significantly improves the tracking
performance of the system. In 2021, RDMO-SLAM proposed by Liu and Miura [23] sped
up Mask R-CNN segmentation using optical flow prediction semantic labels based on RDS-
SLAM while adding constraints on optical flow estimation landmark velocity. Su et al. [24]
propose a new real-time visualization SLAM algorithm in the tracking thread, introducing
a module for optimizing the homography matrix using semantic information. Combining
the semantic information, the optimal single response matrix, and the optical flow mask to
reject the dynamic feature points in the SLAM front end.

Although this two-stage detector model based on pixel segmentation has high classifi-
cation accuracy and a low miss recognition rate, it is slow and cannot meet the requirements
of real-time scene detection. In general, semantic-based and planar-based approaches have
difficulty balancing localization accuracy and real-time performance.

3. Method Overview
3.1. Overview of YPD-SLAM System

The YPD-SLAM system is mainly based on ORB-SLAM2 and SP-SLAM [14] improve-
ments. The system consists of three main modules: semantic target detection and dynamic
point checking, the tracking module, and the map management module.

The block diagram of the proposed system is shown in Figure 1: (1) Semantic target
detection and dynamic point checking as in Sections 3.2 and 3.3 are performed for each
frame of the original RGB image, feature extraction, and matching. Extract planes and
in-plane points from aligned depth maps as in Section 3.4 and propose new methods as in
Section 3.7 for in-plane matching. (2) Section 3.8 estimates the camera’s pose by minimizing
the error function posed by the tracked features. (3) In the map management module,
update the local mapping consisting of point landmarks, planar landmarks, in-plane points,
and keyframes for each newly inserted keyframe. We aim to optimize the poses in low-
texture indoor dynamic environments using target detection to remove dynamic effects
combined with advanced features of indoor planes.
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Figure 1. Framework of the YPD-SLAM system.

3.2. Semantic Target Detection

The core of the YOLO series of target detection algorithms lies in its small model size
and fast computing speed. Unlike the R-CNN series (Fast R-CN [25], Faster R-CNN [26],
etc.) algorithms, YOLO is slightly less accurate, but its detection speed is fast. In this paper,
we use the fastest single-stage network YOLO-Fastest [27]. The network model is tiny,
only 1.3 MB; it reduces power consumption by using one or two processor cores, so it
runs very fast, up to 148 frames per second on a single core. It is incredibly versatile, both
for multi-platform porting and for easy deployment in PyTorch, Tensorflow, Keras, and
Caffe frameworks, i.e., The YOLO-Fastest model size is only 1.3 MB, a 65% reduction in
parameters, and a 45% increase in speed compared to the 3.0 MB MobileNet-YOLOv3 [28].

To further satisfy the real-time requirement, we choose YOLO-FastestV2 (the second
version of the Yolo-Fastest algorithm). Its model architecture consists of Shufflenet V2 [29] as
the backbone and a modified YoloX detection head, where the Anchor matching mechanism
is modified from YOLOv5 [30]. Compared to YOLO-Fastest, the accuracy is reduced by only
0.3%, the inference speed is increased by 25%, and the number of parameters is reduced by 25%.

We select the COCO [31] 2017 dataset and train 20 categories. In practice, people, cats, etc.
belong to high dynamic categories; chairs, mice, etc. belong to low dynamic categories;
tables, sofas, etc. belong to static objects. Therefore, we assume that feature points located
on people are most likely to be dynamic points.

3.3. Dynamic Point Check

Although DS-SLAM performs motion checking of feature points globally, the system’s
real-time operation can be significantly affected by this. In this paper, we use the YOLO
FastestV2 target detection network to assign dynamic labels to highly dynamic objects.
In contrast, only data with dynamic semantic prior information is processed in the dynamic
point rejection algorithm. In our experiments, the small range dynamic feature point
detection dramatically improves the operation speed, with a tracking time of only 42.68 ms
per frame.

We perform ORB feature extraction and matching and optical flow tracking for the
same two frames in the ORB-SLAM2 algorithm; the former takes 135.2 ms, and the latter
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takes only 6.4 ms. Therefore, the selection of matching point pairs is completed by optical
flow tracking for the two adjacent frames of the image after target detection, which takes
less time. After optical flow tracking for the points in the prior semantic frame, a threshold
is selected to determine whether they are static or dynamic points.

As in Figure 2, the geometric relationship between the polar lines of two frames is
used to detect dynamic feature points. O1 and O2 are the camera optical centers of the
previous frame FPre and the current frame FCur, respectively. p1, p2 and p3 denote the
partial feature points of Fpre. l1 , l2, and l3 represent the epipolar of Fpre with respect to the
baseline O1O2. According to the correct epipolar constraints, the correct matching points
p′1, p′2, and p′3 on FCur should fall on the corresponding epipolar l′1, l′2, and l′3, respectively.
By the epipolar constraint we obtain: l′1 = Fp1, l′2 = Fp2, l′3 = Fp3. In order to meet the
real-time requirements as much as possible, we set up only three optical flow pyramids
for optical flow tracking to calculate the base matrix F. However, the actual matching
points of the current frame are often distributed as pc

1, pc
2, and pc

3 due to noise and dynamic
points. If the distance from these points (e.g., pc

2, pc
3 ) to the corresponding poles is less than

a threshold, then they are identified as static points; if they exceed a certain threshold, they
do not satisfy the epipolar constraint such as pc

1 and are recognized as dynamic points. We
define the calculation of the distances as follows:

D
(

p′, l′
)
=

pcT Fp√
(Fp)2

x + (Fp)2
y

(1)

where D(p, l′) denotes the distance from point pc to the epipolar l′ = Fp in the current
frame and (Fp)x, (Fp)y denotes the non-constant coefficients of l′.

1p

2p
3p
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3p '
3
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Figure 2. The schematic diagram of dynamic point checking, the left diagram indicates the previous
frame and the right diagram indicates the current frame.

The specific algorithm flow is shown in Algorithm 1.
Here, Fpre , Fcur, P, and B denote the previous frame, the current frame, the previous

frame feature points, and the frame with semantic prior, respectively; S denotes the point
set after removing dynamic feature points, and Pc denotes the feature points tracked by the
current frame optical flow.
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Algorithm 1 Dynamic Points Detection Algorithm

Input: Fpre; Fcur; P; B;
Output: S;

1: Pc = CalcOpticalFlowPyrLK(Fpre, Fcur, P)
2: F = FindFundamentalMatrix(P, Pc)
3: for each matched pairs p, pc in P, Pc do
4: if p, pc in Bdynamic then
5: L = FindEpipolarLine(p, F)
6: D = CalcDistanceFromEpipolarLine(pc, L)
7: if D > ε then
8: continue;
9: end if

10: continue;
11: end if
12: Append p2 to S
13: end for

3.4. Planar Extraction

In this work, for indoor low-texture environments with a large number of artificial
structures, we carry out plane detection to extract plane features according to [8] and obtain
plane masks, plane cell pixels, and corresponding point cloud planes for feature point
optimization and back-end mapping.

The plane extraction algorithm is divided into five main parts: plane cell fitting, normal
histogram, cell-by-cell area growth, plane fitting, and model area refinement, respectively.
The planar extraction flowchart is shown in Figure 3. First, the planes are decomposed
into pixel blocks and cells at a specified grid resolution for processing. The area growth is
performed on these planar cells to find smooth surfaces by creating a normal histogram of
the cells (color-coded in the figure) based on a priori information to obtain seed information.
In addition, if the planes have similar model parameters and connected cells, they can
be merged later. Finally, the boundaries of the regions are refined pixel by pixel within
the required cells by morphological operations, and finally, the refined segments are
superimposed on the respective RGB images.

Organized Point 

Cloud

Planar Cell 

Fitting

Build 

Histogram

Cell Region 

Growing Plane  Fitting

Plane Region 

Merging

Boundary 

Refinement

Figure 3. Main flow of planar segmentation [8].

The planar segmentation shown in Figure 3 is too coarse and thus requires edge
optimization. Traditional methods such as PEAC [32] use very time-consuming pixel-level
region growth and do not guarantee accurate results, conflicting with real-time purposes.
Therefore, this paper uses 3 × 3 structural elements to perform morphological corrosion
operations on the boundary cells, where the corrosion operations are performed using
the less influential 4 neighboring domains. Then a morphological expansion operation is
performed on the original region using a 3× 3 kernel with 8 neighboring domains to extend
the original region as much as possible. The cells between the expanded and corrupted
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regions are then marked as white. We calculate the distance between the segmented model
and each point within these cells. If the square of this distance is less than k times the
segmented model (9 in this paper) and is the minimum distance between any models
sharing the refinement cells. Then the cell is assigned to the segmented model.

3.5. Point and Plane Representation

The RGB-D camera can capture RGB images as well as aligned depth images. In the
depth image, each pixel is related to the distance between the image plane and the cor-
responding object in the RGB image. Based on the pinhole model in the paper [33], we
used the camera model to recover the structure as in Equation (2). For the optimized
segmentation plane, each cell’s center of mass is taken out for inverse projection to generate
a 3D point cloud.

Pc =

 xc

yc

zc

 = d(uc)

 f−1
x 0 −cx f−1

x
0 f−1

y −cy f−1
y

0 0 1

 uc

vc

1

 ∈ R3 (2)

The flush coordinates of normalized depth information are used under the camera
coordinate system, fx and fy are the focal lengths of the camera x and y axes, and

(
cx, cy

)T

is the camera center coordinate. Here, uc = (uc, vc)> denotes the 2D coordinates of the
optimized center-of-mass pixel point in the depth map, and c represents the current frame.
For aligned color and depth maps, uc also similarly represents the pixel point coordinates of
the color map. d(uc) represents the depth value corresponding to the depth map point uc. The 3D
point corresponding to the pixel point of the current frame is denoted as Pc = (xc, yc, zc)T .

Among the many planar representations, the commonly used planar representation
as π = (π1, π2, π3, π4)

> ∈ P3. Another Hesse form parametric plane representation as

π =
(
n>, d

)>
. Where the normal vector n =

(
nx, ny, nz

)>
= (π1,π2,π3)

>
√

π2
1+π2

2+π2
3
, the plane’s

distance from the origin of the current coordinate system d = −π4√
π2

1+π2
2+π2

3
is represented,

and a point P located in plane π satisfies:

n>P + d = 0 (3)

3.6. Planar Minimum Representation for Optimization

It is known that the three-dimensional plane has only three degrees of freedom, while
the Hesse form of the plane representation has four degrees of freedom. Thus, over-
parameterization can lead to singularities in the Hessian matrix computed during Gauss-
Newton optimization. The quaternion can solve this problem very well. We project the
planar representation onto the tangent space S3 and use the quaternion method to optimize
the plane.

Specifically, the first three elements of the parametrized plane π′ consist of the normal
vector n of the plane, and the fourth element d represents a scalar related to the plane’s
distance to the origin. Thus, we can obtain the normalized plane π′ denoted by

π′ =
π

‖π‖ =

(
n>,−d∥∥n>, d

∥∥
)>

=
1√

n2
x + n2

y + n2
z + d2

[
n
−d

]
∈ S3 (4)

Similarly, a tangent space S3 can also be represented by a quaternion q. According
to the paper [34], here we normalize q to the unit quaternion q′ used to represent and
optimize the rotation, and the first three elements of q′ denote the rotation vector through
the angle θ rotating around the vector qv, and the fourth element is the scalar qw.
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q′ =


q0
q1
q2
q3

 =

 v sin
(

θ
2

)
cos
(

θ
2

)  =

(
qv
qw

)
∈ S3, ‖q‖ = 1 (5)

After normalization, the two are located in the same space. Similar to the rotation
matrix’s parametric update, we need to update the quaternion parametric update corre-
sponding to the Lie algebra. The exponential mapping allows updating the existing rotation
matrix R(q) with an increment ω ∈ R3. Therefore, the quaternion incremental update
is denoted as qs+1 = exp(ω)qs, where one parametric update is denoted by qs → qs+1.
According to the paper [35], using Grassia derives its exponential mapping from R3 to S3

for optimization:

exp(ω) =

 1
2 sinc

(
1
2‖ω‖

)
ω
)

cos
(

1
2‖ω‖

)  (6)

Conversely, the inverse mapping from S3 to R3 can be expressed as a three-dimensional
rotation vector:

ω = log
(
q′
)
=

2 cos−1(qw)

‖qv‖
qv (7)

So under the same tangent space, there are

log
(
π′
)
=

2 cos−1

(
−d√

n2
x+n2

y+n2
z+d2

)
√

n2
x + n2

y + n2
z + d2

n = 2 cos−1

(
−d∥∥n>, d

∥∥
)

n∥∥n>, d
∥∥ (8)

The distance log
(

π−1
1 ⊗ π2

)
between two planes π1 and π2 can be solved by tangent

space, where ⊗ denotes quaternion multiplication.

3.7. Plane and In-Plane Points Match
3.7.1. Plane Match

To get aligned planes from the depth map, we first need to determine whether the
planes create a new map plane in the global map or associate the plane with a plane that
already exists on the global map. For point features, we use the ORB descriptor to do an
initial point match between the current and previous frames. This mapping relationship
is then used to project feature points from the previous image frame to the current frame,
using a minimization reprojection error to remove some matching outliers. Finally, the
optimized matching after error removal.

The set of point pairs is defined as Pc, L, where c denotes the 3D feature point of the
current frame corresponding to the coordinate system, and L denotes the 3D coordinate
corresponding to the feature point as a landmark in the local map.

However, there is no corresponding plane descriptor for plane matching, so a novel
plane matching method needs to be proposed: for indoor structural environments, planes
mostly appear as parallel or perpendicular features, so we look for plane landmarks in
the global map that have an intersection relationship with the current frame plane. For
the global map, there are roughly two reasons for plane intersection, one is that the same
plane produces an intersection with a slight angle due to noise error, and the other is that
two different planes are perpendicular in the actual environment so that the intersection
angle between perpendicular planes is relatively large. Based on the above analysis, the
conditions for the intersection of planes are first defined as follows.

S = |
(

nL
i

)T
Pct + dL

i | (9)
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For planar landmark πL
i =

((
nL

i
)T , dL

i

)>
, in order to meet the real-time operation

requirements, the 3D planar point centroid Pct =
1
n (∑

n
k=0 xk, ∑n

k=0 yk, ∑n
k=0 zk) of the current

frame πc
j is used as the calculation distance condition, and S represents the distance between

the planar centroid of the current frame and the planar landmark in the global map. If S is
smaller than the distance threshold 0.01 (adjusted several times during the experiment),
then the plane of the current frame is considered to intersect with the plane landmark πL

i in
the global map. Next, we only need to exclude the perpendicular cases in the intersecting
planes and first calculate the angle cos

〈
πL

i , πc
j

〉
between the plane landmark πL

i and the

current frame plane πc
j . If | cos

〈
πL

i , πc
j

〉
| is greater than the threshold 0.9986(≈ cos(3◦))

(adjusted several times in the experiment), we judge that the two planes have finished
matching and update the map plane information in the global map.Finally, the set of plane
pairs that complete plane matching is noted as Πc,L.

3.7.2. In-Plane Points Match

If the two planes finish matching, then the points within the planes are matched using
Iterative Closest Point (ICP) [36] method. Two problems were encountered in the process
of using ICP. Problem 1: Although the number of in-plane points is reduced by the a priori
information of plane matching, its overall number is still relatively large. Problem 2: The
traditional ICP algorithm requires an iterative initial value, and if the initial value is not
selected appropriately, it will have an important impact on the alignment results. In serious
cases, it will make the algorithm fall into local optimum, so that the iteration cannot get the
correct alignment result.

Therefore, this paper adopts a uniform sampling-based method to reduce the selection
of point sets and a KD-tree [37] based method to speed up the nearest point search efficiency.
Based on the uniform sampling method, the number of point sets used for ICP is further
reduced by collecting every 5 points at intervals in this paper. The KD-tree method is an
extension of binary tree in multidimensional space, which is a proposed lookup method for
indexing spatial points or multi-attribute data with an average lookup length of 1+ 4log(n).
Point cloud data is a collection of points in space, and each point contains three-dimensional
coordinate information, and since point cloud data is irregularly distributed, the KD-tree
method is a suitable indexing method for managing point cloud data.

Firstly, the two sets of 3D point clouds P′ and P are preprocessed with data to remove
the points with noise. From the above, we calculate the center-of-mass Pct’, and Pct of the
two matched 3D planar point clouds, and then calculate the decentered coordinates of each
point as follows: {

P′ =
{

p′i − pcti
′}

P = {pi − pcti}
(10)

Then the in-plane point Euclidean transformation relation can be described as
∀iPi = RPi

′ + t, where t denotes the translation matrix and R denotes the rotation ma-
trix. Then the error term for the i pair of points is defined as ei = Pi − (RPi

′ + t).
For each current plane observation, it is necessary to find the associated match in the

global map and create a new map plane if the above conditions cannot be satisfied. Once
the two planes are matched, the in-plane points are associated with the relevant attributes
of the planes instead of looking up from the ORB feature matching, which significantly
reduces the search and optimization time. We denote the set of matched two in-plane
points as Pc,L

Π , where Pc
π denotes the points in the current plane of the current frame and

PL
π denotes the in-plane points as landmarks in the local map.

3.8. Position Estimation

According to the previous section, we obtain the matched points, the matched planes,
and the matched in-plane points. Therefore the tracked points, planar features, and in-plane
points are then used to construct the cost function to estimate the poses jointly. In contrast,
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the g2o [38] graph optimization, a method for constructing error functions from edges and
vertices, is often used to optimize the poses in the pose-optimization problem of SLAM.
In g2o, binary edges (one edge and two vertices) are the most frequently used optimization
method; therefore, based on these three constraints, a factor graph can be constructed as in
Figure 4.

1T 2T 3T0T

1P 2P

0π

0P

1π

0P

1P

2P

3P

4P

Point Landmark

Keyframe

New Inserted Keyframe

Point In Plane

Point Landmark

Figure 4. Factor graph optimization.

The optimization process of the non-planar in-plane points corresponds to the blue
node in Figure 4. The cost function of the reprojection error of the non-planar map point
Pc

w in the world coordinate system of the current frame concerning the camera coordinate
system is expressed as:

EP =
∥∥Pc

c − p
(
Tc

c,wPc
w
)∥∥

Ω (11)

where Pc
c denotes the observation of the point in the camera coordinate system (subscript

c) for the current frame (superscript c), p(.) denotes the projection of the map point in the
global coordinate system in the camera coordinate system, and ‖x‖Ω is expressed based on
the Marxian criterion and is equivalent to X>Ω−1X, and Ω denotes the covariance matrix.

The process of plane optimization is equivalent to the orange node in Figure 4. Simi-
larly, the cost function of the constructed out plane error for the current frame world plane
πw

c transformed into camera plane πc
c = T−>c,w ·πw

c is

Eπ =

∥∥∥∥log
(

Q
(

T−>c,w ·πw
c
)−1
⊗Q

(
πL

c

))∥∥∥∥
Ω

(12)

where Q(•) is denoted as the normalized transfer function of a four-dimensional vector. As
the green node in Figure 4, in-plane point Pπ ⊂ Pc,L

Π , we find the corresponding in-plane
point in the matching plane for reprojection to construct the cost function:

Epπ =
∥∥∥Pc

π − p
(

TcwPL
π

)∥∥∥
Ω

(13)

In summary, the current pose can be optimized using a combination of points, planes,
and in-plane points:

Tc
c,w = arg min

Tc
c,w

∑
Pc,L

ρ
(
Ep
)
+ ∑

Πc,L

ρ(Eπ) + ∑
Pc,L

Π

ρ
(
Epπ

) (14)

where ρ(.) is a Huber robust kernel function.
We extracted feature points and a sufficient number of in-plane points based on CAPE

in the depth map and the advantage of the cytoplasmic center of mass brought about
by region-based growth. In the case of successful tracking of the previous frame, the
homogeneous model is commonly used to track and predict the locus pose of the current
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frame. The construction of cost functions for points, planes, and in-plane points with
planar correlation coefficients is completed based on local point landmarks or a global
search for planar landmarks. Each local map contains several keyframes; the current frame
shares point and plane landmarks with the keyframes, and the points in the same plane are
indirectly linked together by sharing plane correlation coefficients. Thus, optimizing the
above conditions of the completed local map makes the current locus more accurate.

4. Experimental Design and Analysis

To evaluate the performance of YPD-SLAM, we conduct relevant experiments on the
dynamic public scene TUM [39] (RGB-D) dataset. All experiments are done on an Intel
Core i5-12400F desktop computer with 16 GB RAM and Ubuntu 18.04 system without
GPU acceleration.

The TUM RGB-D dataset was published by the Computer Vision Lab at the Technical
University of Munich and consists of 39 sequences recorded by Kinect sensors in different
indoor scenes. This paper used sequences under the category “Dynamic Objects” for
evaluation tests. The sequences can be divided into two categories; one is a low dynamic
sequence called “Sitting” fr3/sitting (fr3/s for short): fr3/s_xyz, fr3/s_half, and fr3/s_xyz,
which describes two people sitting in front of a table and talking while doing actions; the
other category is the highly dynamic sequence fr3/walking (fr3/w for short): fr3/w_half,
fr3/w_rpy, fr3/w_static and fr3/w_xyz. This sequence describes two people moving in the
background foreground and exchanging positions. Highly dynamic sequences in which
dynamic objects occupy a large portion of the field of view severely affect the positional
estimation and are very challenging for SLAM systems.

In the half-sphere (half for short) sequence, the camera moves along the hemisphere; in
the rpy sequence, the camera performs panning and pitching motion; in the static sequence,
the camera’s position remains constant; and in the xyz trajectory, the camera moves along
the axis, axis and axis, respectively.

First, we qualitatively evaluate and analyze the dynamic object detection and planar
detection effects of YPD-SLAM. Then, the system is quantitatively compared and analyzed
with state-of-the-art dynamic SLAM methods and planar-based SLAM methods, and the
enhancement of YPD-SLAM in dynamic scenes is quantified. Finally and most importantly,
we evaluate the system in real-time, calculate the running time of each segment, and compare
the same with the running time of the state-of-the-art algorithms mentioned above.

4.1. Dynamic Point Rejection

First, the dynamic point rejection section is shown in TUM at fr3/w_xyz. As shown
in Figure 5, from left to right, (a) the original image; (b) the target detection using Yolo-
FastestV2; (c) the dynamic and static points filtered out by dynamic point checking under
the premise of target detection; (d) after removing the dynamic points. From (a) to (b), we
can find that several classes of objects in the visual field trained with the COCO dataset
have been detected, including “person”, “tv”, and “chair”. Subfigure (c) shows that only
the highly dynamic object “person” is detected, and dynamic point detection is performed
in the corresponding “Bounding Box”. Compared with the traditional SLAM algorithm
that removes all the feature points from the target detection box, this paper retains the static
points to remove the relative dynamic points, which increases the number of feature points
that can be used for pose estimation. Subfigure (d) shows the final figure after removing
the dynamic points. It can be seen that the method in this paper is effective in removing
the effect of dynamic points.
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Figure 5. Dynamic point rejection, from left to right: (a) original image; (b) target detection; (c) dy-
namic feature point detection for dynamic objects; (d) rejection of dynamic feature points.

4.2. Plane Detection

Following the above, three sequences of fr3/w_xyz, fr3/w_rpy, and fr3/w_half are
selected to demonstrate the cases where the number of detectable feature points is small
and the low-texture scenes are many or even the tracking is lost.

As shown in Figure 6, the third image of fr3/w_xy, fr3/w_rpy, and the second and
fourth images of fr3/w_half all offer a large number of planes with very few feature points
on them. The method in this paper can cleverly solve the following problem—adding
planar detection when the number of feature points is insufficient, and the number of
points available for pose estimation becomes even less due to dynamic point rejection.
The center of mass of the cell is back-projected to the point cloud plane after the planar
region is grown. This allows the 3D points in the map to be recovered based on the camera
model, significantly increasing the number of observable points.

As shown in Figure 7, due to the low confidence of the edge points in the plane, we
skip the set of points closest to the edge in the ICP process. The matching corresponding
3D points are back-projected to the camera plane, and the matching corresponding points
are added to the line segment description in the RGB map.

As seen in Figure 8, planes and points within planes appear successfully and realisti-
cally on the global map.
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Figure 6. Planar detection, from top to bottom, for the highly dynamic sequences fr3/w_xyz,
fr3/w_rpy, and fr3/w_half.

Figure 7. Points in the 3D plane that have been matched. Their matching relationship is expressed in
RGB images in the form of two-dimensional coordinate lines.

fr3/w_xyz fr3/w_rpy fr3/w_half

Figure 8. Global map.
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4.3. Positioning Accuracy

For the convenience of expression, we use this simplified expression for the following
parts: YPD (YPD-SLAM); ORB2 (ORB-SLAM2); SP-SLAM (SP); DS (DS-SLAM); RDMO
(RDMO-SLAM); RDS (RDS-SLAM).

In this paper, absolute trajectory error (ATE) and relative attitude error (RPE) [39]
are used to evaluate the positioning accuracy of the algorithms. The Root Means Square
Error (RMSE) is selected as the evaluation metric for quantitative comparison with several
state-of-the-art algorithms. In this paper, the most classic original algorithm ORB-SLAM2,
plane-based SP-SLAM, and semantic-based DS-SLAM, RDMO-SLAM, and RDS are selected
for comparison.

As in Table 1 for the low dynamic sequence fr3/s_ static, the RMSE of YPD is improved
by only 11.30%. The original algorithm ORB2 shows strong robustness, whereas RDS
performs the best. This is because RDS can handle low dynamic sequences well and has
achieved a high level of localization accuracy, so the improvement to YPD is limited. YPD
significantly improved for high dynamic sequences over the original ORB2, especially
in the fr3/w_xyz sequence, where the RMSE improvement reaches 98.21%. Since the
fr3/w_ rpy dataset undergoes a significant angle rotation, the target detection network
YolofatestV2 less effective than the semantic segmentation network Segnet. However, the
compensation by plane and in-plane points makes the difference of RMSE between YPD
and RDS for ATE under fr3/w_ rpy dataset tiny. In order to meet the fast operation of
the system we lost some of the accuracy within the acceptable range. Furthermore, except
RDS, YPD still outperforms several other algorithms. YPD in fr3/w_half and fr3/w_static
were each improved by 93.90% and 86.87%, respectively, compared to ORB2. According to
the comparison with the other SLAM algorithms mentioned above in Table 1, it is found
that the RMSE of YPD is the smallest in fr3/w_static and fr3/w_xyz, which are marked
in bold in the table. In general, YPD and state-of-the-art RDS systems almost achieve
similar position accuracy in ATE; however, the running time is much less than in RDS, see
Section 4.4.

Table 1. Experimental RMSE results of absolute trajectory error (ATE). Our method is YPD-SLAM,
and Improvement stands for comparison with the original algorithm ORB-SLAM2.

Sequence
Original Plane-Based Semantic-Based Ours

Improvement
ORB-SLAM2 SP-SLAM DS-SLAM RDMO-SLAM Paper [24] RDS-SLAM YPD-SLAM

fr3/s_ stati 0.0087 0.0090 0.0065 0.0066 0.0058 0.0039 0.0077 11.30%
fr3/w_half 0.4811 0.5364 0.0303 0.0304 - 0.0291 0.0294 93.90%
fr3/w_rpy 0.9548 0.8324 0.4442 0.1283 0.0612 0.0128 0.0345 96.39%
fr3/w_static 0.0476 0.2745 0.0081 0.0126 0.0069 0.0215 0.0072 86.87%
fr3/w_xyz 0.9026 0.5927 0.0247 0.0226 0.0565 0.0565 0.0161 98.21%

According to the data in Tables 2 and 3, it can be obtained that the trends of a relative
translation error and relative rotation error in the TUM dataset are similar to those of ATE.
The overall performance is that the high dynamic sequences have a significant enhancement
effect, and the low dynamic sequences have a minor enhancement.

Table 2. Experimental RMSE results of translational relative pose error (RPE). Our method is YPD-
SLAM, and Improvement stands for comparison with the original algorithm ORB-SLAM2.

Sequence
Original Plane-Based Semantic-Based Ours

Improvement
ORB-SLAM2 SP-SLAM DS-SLAM RDMO-SLAM RDS-SLAM YPD-SLAM

fr3/s_static 0.0106 0.0096 0.0078 0.0090 0.0050 0.0093 12.15%
fr3/w_half 0.3050 0.3008 0.0297 0.0294 0.0295 0.0318 89.57%
fr3/w_rpy 0.3767 0.3921 0.1503 0.1396 0.0245 0.0504 86.63%

fr3/w_static 0.0689 0.1665 0.0102 0.0160 0.0221 0.0094 86.39%
fr3/w_xyz 0.3945 0.3990 0.3330 0.0299 0.0269 0.0110 97.21%
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Table 3. Experimental RMSE results of rotational relative pose error (RPE). Our method is YPD-SLAM,
and Improvement stands for comparison with the original algorithm ORB-SLAM2.

Sequence
Original Plane-Based Semantic-Based Ours

Improvement
ORB-SLAM2 SP-SLAM DS-SLAM RDMO-SLAM RDS-SLAM YPD-SLAM

fr3/s_static 0.3004 0.2943 0.2735 0.3233 0.1520 0.2732 9.06%
fr3/w_half 6.0318 5.9273 0.8142 0.7915 0.7332 0.8648 85.66%
fr3/w_rpy 7.2879 7.5682 3.0042 2.5472 0.4973 1.1675 83.98%

fr3/w_static 1.2309 2.8911 0.2690 0.3385 0.4944 0.2508 79.63%
fr3/w_xyz 7.5193 7.6226 0.8266 0.7990 0.7768 0.6535 91.31%

To further highlight our contribution, we set up a set of experiments for quantitatively
evaluating the contribution of each to the system performance based on the RMSE of ATE.
We use the abbreviation YFV2 to denote YoloFatestV2 for easy tabular presentation. Only
“ours(4)” represents YPD-SLAM, while “ours(1), ours(2), and ours(3)” represent only partial
components and not the complete YPD-SLAM.

As shown in the Table 4, comparing ours(1), ours(2), and ours(4), only ours(4) shows
the best performance in face of both dynamic and low-texture scenes, although all have
improved. It is worth noting that, in fr3/w_rpy, where low-texture scenes occur more often,
ours(1) and ours(2) do not perform very well, with ATE improvements of only 40% and
22.8%, respectively. However, combining them as “ours(4)”, the ATE improves by 96.39%
in RMSE. Observing ours(3) and ours(4), the RMSE of ATE decreases after adding in-plane
points constraint to the system.

Table 4. For the TUM dataset, different algorithms are composed to obtain the RMSE of ATE.

Sequence
Original YPD-SLAM

ORB-SLAM2 Ours(1)
Yolo-FatestV2

Ours(2) Plane +
In-Plane Points

Ours(3)
YFV2 + Plane

Ours(4) YFV2 + Plane +
In-Plane Points

fr3/s_ static 0.0087 0.0089 0.0091 0.0078 0.0077
fr3/w_half 0.4811 0.0427 0.0526 0.0313 0.0294
fr3/w_rpy 0.9548 0.5738 0.7372 0.0763 0.0345

fr3/w_static 0.0476 0.0158 0.2743 0.0102 0.0062
fr3/w_xyz 0.9026 0.0352 0.5731 0.0467 0.0161

In addition to the tables, we have drawn figure forms that are easy to observe. Figure 9
compares the estimated and absolute trajectories of YPD with ORB, SP, DS, RDMO, and
RDS for low and high dynamic sequences and the error plots. The red line indicates the
error between the estimated and true trajectory.

Figure 10 compares the RPE plots of the ORB and the YPD. Both figures clearly show
that the ATE and RPE of the YPD are at a relatively low level and are generally better than
the ORB and SP. Again, this indicates that the system achieves similar tracking performance
to the advanced DS and RDMO. However, the DS and RDMO perform poorly in terms of
real-time performance.
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4.4. Real-Time Performance

The time cost is an essential indicator of system quality in practical applications, and
this paper also focuses on real-time performance in indoor environments. As shown in
Table 5, it can be seen from the previous article that YOLO-FastestV2 using the Shufflenet V2
backbone network, runs extremely fast, and the target detection thread runs in parallel with
the tracking thread in the whole system.The average running time of the target detection
module is only 4.40 ms per frame when tested under five sequences of TUM, and the
average time spent for CAPE plane extraction is only 3.73 ms per frame. Since the tracking
thread sets the requirement to wait for the result of the target detection thread, we merge
the time of target detection into the tracking thread time. The average time for the whole
tracking thread to run is only 42.68 ms, which fully satisfies the real-time requirement.
Finally, the average local optimization time is only 53.83 ms after adding the in-plane and
in-plane point constraints.

Table 5. Average operating time of principal components (ms).

Main
Components

ORB Feature
Extraction

Object
Detection

Dynamic
Points Culling

Plane and
Points

in-Plane
Extraction

Matching and
Landmarks

Tracking
Total Local

Optimization

Seq
Thread Tracking Object

Detection Tracking Tracking Tracking - Local
Mapping

fr3/s_ static 9.56 4.14 16.84 3.62 4.38 38.54 28.66
fr3/w_half 9.80 4.60 15.05 3.82 11.66 44.92 79.75
fr3/w_rpy 10.43 4.57 15.31 3.93 11.97 46.21 51.78

fr3/w_static 10.07 4.11 17.15 3.52 5.58 40.42 54.37
fr3/w_xyz 11.43 4.59 16.05 3.76 7.45 43.27 54.58

Average 10.26 4.40 16.08 3.73 8.21 42.68 53.83

Table 6 shows the execution time of YPD-SLAM compared with ORB-SLAM2, SP-
SLAM, DS-SLAM, RDS-SLAM, and RDMO-SLAM for the leading models in the tracking
thread for the TUM dataset. Although the overall time consumption of the SP-SLAM
tracking thread is less, its local BA optimization for the assumed plane is very time-
consuming, up to 141.1678 ms. In terms of the speed of processing semantic information,
the model segmentation of DS takes 37.57 ms, while the target detection of YPD takes
only 4.4 ms, presenting an improvement of 88.29%. Unlike DS, only the points inside the
Lable frame are checked and culled in this paper, which can significantly reduce the time
consumed by the global dynamic point screening. Therefore, the Dynamic Points Culling
section takes 16.08 ms, which is 45.51% better than the Move Consistency Check section of
DS. Therefore, the proposed system fully meets the real-time requirement.

In order to select the case with more keyframes for a fairer evaluation, the table
selects the runtime of RDS and RDMO at 15HZ. The RDMO combined with Mask R-
CNN semantic segmentation phase takes about 205.42 ms, and the RDS combined with
Segnet segmentation takes about 35.04 ms. According to the table, we know that the target
detection of YPD-SLAM takes only 4.4 ms. Since RDMO and RDS add semantic threads on
keyframes and optimize them, this brings the benefit of significantly reducing the system
tracking time, but they are still GPU-based, and it is difficult to cope with fast motion and
motion blur.

Under COCO data, the network model size of Mask-RCNN is 245.6 MB, and that of
Segnet is 29 MB, and both require GPU-accelerated inference, which cannot be done on the
CPU. Therefore, RDS/RDMO is less lightweight and requires a higher hardware platform.
In contrast, the network model of YoloFastestV2 is only 1.3 MB, which is more efficient and
dramatically reduces the hardware requirements.
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Table 6. The average operation time of principal components in various latest algorithms (ms).

Systems Hardware
Platform Main Module In Tracking Thread Total

ORB-SLAM2

Intel Core
i5-4288U CPU

Feature
Extraction

Initial Pose
Estimation

Track
Local Map

- -

- 21.6900 3.1500 11.5300 - - 36.37

SP-SLAM
Intel Core i7 Feature

Extraction
Plane

Segmentation
Supposed Plane

Generation
Matching and

Tracking
Landmarks

-

- 11.55 6.8 7.06 11.88 - 37.29

DS-SLAM
Intel Core i7 Feature

Extraction
Move Consistency

Check
Semantic

Segmentation
- -

P4000 GPU 9.38 29.51 37.57 76.46

RDS-SLAM
- Segmentation

and mask
generation

Update moving
probability

Semantic-based
optimization

- -

GeForce RTX
2080Ti GPU 205.42 0.17 0.54 - - 50–65

RDMO- SLAM
- Segmentation

and mask
generation

Optical flow Update moving
probability

Velocity
Estimation and

Label Prediction

-

GeForce RTX
2080Ti GPU 35.04 54 0.14 4.1 - 50–65

YPD-SLAM

Intel Core
i5-12400F CPU

Feature
Extraction

Object Detection Dynamic
Points Culling

Plane and
Points in-Plane

Extraction

Matching and
landmarks

tracking
- 10.2600 4.4000 16.0800 3.7300 8.2100 42.68

In the TUM dataset, the tracking time per frame for RDMO/RDS is 50–65 ms, while
the YPD tracking time is only 42.68 ms. The tracking time is still improved by 14.6–34.33%
without GPU. Furthermore, the presence of in-plane and in-plane points makes the global
map more structured and realistic. This will increase the 3D perception of the system in the
real environment. YPD-SLAM has a higher value for wide engineering deployment and
applications considering cost, time, and accuracy.

In addition, planes and in-plane points make the global map more structured and
realistic. This will increase the system’s 3D perception of the real environment. YPD-SLAM
has a higher value for various engineering deployments and applications, considering the
cost, time, and accuracy factors.

5. Conclusions

In this paper, we propose a real-time VSLAM system based on CAPE plane extraction
and YPD-SLAM based on YOLO-FastestV2 target detection for indoor dynamic environ-
ments, which mainly adds semantic threads to ORB-SLAM2 and adds planes and in-plane
points to the original tracking threads and adds a back-end optimization process.

To overcome the problem that traditional SLAM pose estimation is vulnerable to
dynamic objects, pixel-level segmentation networks (e.g., Mask R-CNN) are very time-
consuming. This paper uses the fastest and moderately accurate target detection network,
YOLO-FastestV2, which makes the semantic thread execution speed significantly faster.
It also combines the optical flow method and dyadic geometry to reject dynamic feature
points of highly dynamic targets between consecutive frames. In the experimental session,
the rejection effectively meets the real-time requirements (the average time spent per frame
for target detection and dynamic point rejection is 20.48 ms). The number of feature points
used for pose estimation is insufficient, and the number of indoor low-texture scenes is
high after rejection. We recover the map by CAPE planar extraction and depth map back-
projection to the point cloud, increasing the planar constraint of indoor structures and
in-plane point constraint. Matching points, planar landmarks, and in-plane points of the
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global map jointly optimize the poses, dramatically improving the system’s localization
accuracy and robustness.

The experimental results based on the TUM dataset show that YPD-SLAM has excel-
lent robustness, accuracy, and real-time performance in a dynamic indoor environment.
Yolo-FastestV2 target detection network and morphological CAPE plane extraction are
both highly versatile. The whole system can be performed on CPU, which dramatically
reduces the hardware cost and is advantageous for deployment on various platforms.

However, YPD-SLAM still has some shortcomings. For example, a large rotation
causes the target detection network abnormal, leading to false identification, rejection, and
even fewer tracking failures in the experiments. Therefore, more object constraints and
feature point selection methods must be added. To achieve the effect of real-time, the plane
extraction in this paper has a lot of edge jaggedness due to erosion expansion operation will
affect the plane effect. However, in reality, this jaggedness does not exist. This work may
focus on extending the morphological plane extraction to better plane extraction networks
in the future.
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