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Abstract: Atrial fibrillation (AF) is the most common cardiac arrhythmia in the world. The arrhythmia
and methods developed to cure it have been studied for several decades. However, professionals
worldwide are still working to improve treatment quality. One novel technology that can be useful is
a wearable device. The two most used recordings from these devices are photoplethysmogram (PPG)
and electrocardiogram (ECG) signals. As the price lowers, these devices will become significant
technology to increase sensitivity, for monitoring and for treatment quality support. This is important
as AF can be challenging to detect in advance, especially during home monitoring. Modern artificial
intelligence (AI) has the potential to respond to this challenge. AI has already achieved state of the
art results in many applications, including bioengineering. In this perspective, we discuss wearable
devices combined with AI for AF detection, an approach that enables a new era of possibilities for
the future.
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1. Introduction

Atrial fibrillation (AF) has become a global problem [1]. Despite all efforts to tackle
it, professionals are still eager to discover new groundbreaking solutions and significant
improvements to existing ones. The detection of AF can play a crucial role in treatment qual-
ity. For example, early detection of the arrhythmia helps to prevent severe consequences.
Therefore, technologies that can monitor the patient at home and provide information
related to cardiac health are useful.

Cardiac monitoring can be a prolonged process. Moreover, it is costly, also caus-
ing treatment quality challenges. Early detection can help prevent, for example, embolic
stroke [2]. Typically, the electrocardiogram (ECG) is used for short- or long-term ob-
servation. The traditional method needs many recordings for diagnosis. Alternatively,
photoplethysmogram (PPG) recordings are sometimes used as preliminary information [3].

Artificial intelligence (AI) has become an interesting tool to use in many challenging
tasks. As bigger annotated datasets have become available, the performance of AI-based
techniques has improved significantly. Furthermore, improved optimization methods and
increased computational power have supported the progress, along with novel models [4].
Many applications seeking breakthroughs are being increasingly combined with AI.

This perspective is organized as follows: section one is about different recording
devices, section two is about AI, and the third section includes a discussion. In the first
section, the focus is on wearable devices, mainly for private use. The second section reviews
the modern AI field. The third is about the point of view concerning wearable devices and
AI combinations (for AF).
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1.1. Wearable Devices
1.1.1. ECG and PPG

The two most common recording techniques for arrhythmias in smart devices are the
ECG and PPG. The ECG is based on the heart’s electrical activity, measured from the body
surface [5]. Starting from the SA node, the electrical activation progresses through the atria
to the AV node and then through the ventricles before the heart tissue returns to the rest
state. These phases are shown in the ECG as the P wave, the QRS complex, and the T wave
(followed by U wave). The P wave concerns atrial contraction, the QRS complex relates to
ventricular activation, and the T wave corresponds to the return to resting. One healthy
heartbeat consists of all of these, but in the case of AF, the P wave is replaced by a ripple F
wave, and the RR intervals differ irregularly.

The PPG signal records the blood flow (volume caused by pressure) from the skin
by measuring the reflecting light [6]. It is related to R peaks time stamps (RR intervals)
in the ECG. Figure 1 shows an ideal ECG (in a sinus rhythm) and PPG signal, along with
categories of devices that contain ECG and PPG recordings.
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1.1.2. Smart Devices

Smart devices present the most emerging technology for the future. Three current
main devices are smartphones, smartwatches, and smart rings. Smartphones are not
exactly wearable devices, but people carry them on their person, which is why they are
also mentioned. Smartphones are the most used smart devices so far. Some have a PPG
recording function by placing the camera on a fingertip [7]. Furthermore, these devices
have an ECG patch option [8]. Smartwatches are mainly used for PPG recording, but an
ECG possibility exists [9]. Watches are also popular among smart devices and can be used
for short and long recordings; therefore, they offer the potential for future applications.
The smart ring is the newest technology in this area. It has all the benefits required for
recording [10]. Rings can be used for multiple purposes [11]. However, they are still mostly
a single-task device. Because of their user-friendly and simple interface, these devices
constitute potential future technology.



Sensors 2022, 22, 8588 3 of 7

1.1.3. ECG Recorders

ECG recordings can be performed using different amounts of electrodes. The more
electrodes, the higher the resolution of the information produced. A single electrode
recording can be taken from different places of the body, but 12-lead ECG are collected
from specific spots. Both wired and wireless recording devices are available. Some of the
wired devices are similar to smartphones in the sense that they are not actually wearable.
The ECG recording downside is uncomfortable patches.

1.2. Artificial Intelligence

AI, especially machine learning, has developed fast and has gained popularity recently.
It has contributed to many applications, including medical applications [12]. For example,
image classification and speech recognition are two of the most known contributions [4].
In recent years, it has become one of the most focused research fields. AI is not new
technology, but many groundbreaking contributions are relatively new. Therefore, more
significant outcomes can be expected. AI is a wide area of algorithms and models that
consists of sub-branch machine learning, including deep learning [13]. The training is
implemented using supervised, unsupervised, or reinforcement learning, and output
prediction is either for classification or regression tasks. The machine learning field in this
preview is divided into three subfields: traditional machine learning, deep learning, and
deep reinforcement learning.

Supervised learning is based on labeled data to train the model. The classification
task is a good example of supervised learning. Unsupervised learning, in contrast, forms
an unknown pattern directly from the data. The reinforcement learning in this preview is
taken as deep reinforcement learning (DRL). DRL is the latest significant novel contribution
to medical applications [14]. It is drawn from animal behavior psychology, which also
relates to human brain function [15]. Based on the action, state, and reward relationship
as agent acting in the environment, the goal is to maximize the reward by optimizing
the policy, which defines the action the agent chooses. The policy in DRL is deep neural
network (DNN), and the policy update is achieved by updating DNN weights towards
minimizing some error function, as in a supervised learning fashion.

Traditional machine learning includes models more restricted in structure than deep
learning. Nevertheless, these can be robust. For example, a decision tree is suitable as a
simple model, but its accuracy can decrease when it becomes too complex [16]. The benefit
of these models is a low computational requirement. However, it does not always provide
an initially optimal outcome for every application, as deep learning models do [17].

Deep neural networks (DNN) have gained a lot of attention in recent years. A DNN
mimics human brain functionality [18] and is, in many cases, a simulation tool for brain
research [19]. DNNs have produced state-of-the-art results in AF detection [20]. These
models’ benefits are the optimal use of large datasets and the possibility of deep structure [4].
Nevertheless, many choices exist to optimize the final model.

DNN has become a popular tool because it can be trained using raw data with state-of-
the-art results. From this perspective, DNN has surpassed the performance of traditional
machine learning models in some applications. However, both have their own benefits,
which should be considered when designing one for a task.

Machine learning has many tasks with AF to apply in addition to detection [21], such
as risk assessment in real time and AF management. One significant task to tackle with
arrhythmias using DNN is detection using embedded or wearable devices [22]. It would
have a significant impact on the future if these devices integrated with DNN were part of
diagnosing and treating AF. The DRL can also contribute to the future by consolidating the
treatment; for example, the selection of ablation areas for curing AF using catheter ablation
can potentially be improved by DRL [23].
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2. Discussion

Wearable devices can play a significant role in AF detection and in supporting treat-
ments in the future. Furthermore, AI will provide a tool to answer demand in the long run.
This combination is already under study [3] and is likely to take a more substantial role in
novel approaches. There are many benefits to combining these two technologies. Perhaps
one of the significant perspectives is personalized treatment [24]. A classifier whose per-
formance is on a par with the level of cardiologists will make significant differences in the
future [25].

AF and its details are highly diverse in terms of its electrophysiology. For example,
cardiologists must consider multiple factors outside of the AF knowledge and cardiological
details of AF before the diagnosis [26]. This procedure includes checking which drugs
the patient is already using and possible symptoms to avoid a false connection to AF.
Furthermore, the doctor has to match the AF-related symptoms when considering diagnosis.
Eventually, the gold standard ECG (12-lead, possibly) is analyzed to confirm the diagnosis.
However, the ECG analysis is not easy because it can contain a lot of noise, and many
recordings are needed for a robust diagnosis. This is where AI can facilitate the process
when considered in combination with wearable devices.

In AF detection, early detection plays a vital role. Embolic stroke is a severe problem
with AF, and high-quality treatment demands early detection [2]. In many cases, the patient
does not consult a cardiologist before clear symptoms arise. Therefore, home devices would
be useful for early detection. These would mostly be smart devices. Combined with AI,
these devices are suitable for the task. With the help of an AI, early-stage detection and
management of AF can help preventing further progress of the disease and further atrial
damage. Patients with paroxysmal (early) AF can be more easily cured than those with
longer-term (persistent or permanent) AF [27]. Early detection of AF events would help
improve treatment quality [28].

Machine learning provides a potential tool to respond to challenges with AF detection.
Using PPG and accelerator meter recordings, AF can be detected by peak detections after
processing to remove motion and noise artifacts [29]. The detection accuracy is reinforced
via premature contraction clearance. This method (or similar ones) might require strong
signal processing and background knowledge. Another method that has the same aspects
is an entropy-based AF detector [30]. The more traditional machine learning models used
for detection are, for example, support vector machine with feature vector input [31],
decision tree with multilevel features input [32], and random forest with PPG, inter-pulse
intervals, and accelerometer features input [33]. Furthermore, k-nearest neighbor and
discriminant analysis are also used based on feature inputs [34]. The common factor for
these models is feature dependency, and they frequently require significant background
knowledge. These are still suitable for low-computational power devices. In addition
to these models, stacking classifier, extreme gradient boosting, and adaptive boosting
provides potential in AF detection [35]. The factors related to these are the same as for
traditional machine learning models, also with stacking classifier if those models are used.
Nevertheless, DNN has recently gained more attention [21]. For example, Residual Neural
Network can detect AF using RR intervals as inputs [20], and bidirectional long short-term
memory network produces significant results on filtered short ECG segment [36]. However,
inference (reasoning) behind the DNN prediction would be desired [37]. Therefore, DNN
structure is established to produce information about ECG waveform using bidirectional
recurrent neural networks combined with an attention model [38] and a diverse deep
learning model [39]. DNN’s benefit is its usefulness for end-to-end classifiers using raw
data [2]. That has raised significant interest with notable results, but further work is
needed to confirm the validation [40]. However, usually these models require significant
computational power, which limits their use to small smart devices.

Machine learning use is not problem-free with biological data. There are a couple of
fundamental dilemmas with AF. One such challenge is good-quality data gathering [28].
Another challenge is availability of a comprehensive dataset, without which the machine
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learning model might not become a good enough generalizer [41]. Furthermore, the quality
of recordings significantly affects the final outcome [28]. AI researchers are busy developing
solutions to these challenges. For example, artificial data generators could address some of
these problems [42]. Furthermore, DRL does provide potential for the future.

One significant perspective is DNN development work in the future. DNN suitable for
smart devices with far less computational power than laptops, for example, is a considerably
attractive perspective. If a wearable device can inform the user of AF signals (for the first
time, before symptoms arise), it could become cutting-edge technology for improving
treatment quality and lowering costs. Furthermore, privacy, which is very important to
many people, could be addressed by keeping information/data in the device only.

The future may bring new wearable devices that record useful data; it could be
ECG, PPG, or something else entirely. However, the concept is most likely the same as
AI predicting meaningful information. Finally, AI development in the future provides
prospects for further innovations [43].

Author Contributions: Conceptualization, M.M. and F.S.S.; methodology, M.M. and F.S.S.; software,
M.M.; validation, M.M.; formal analysis, M.M.; investigation, M.M.; resources, F.S.S.; data curation,
M.M.; writing—original draft preparation, M.M.; writing—review and editing, M.M., G.A.N., X.L.
and F.S.S.; visualization, M.M.; supervision, G.A.N., X.L. and F.S.S.; project administration, G.A.N.,
X.L. and F.S.S.; funding acquisition, G.A.N., X.L. and F.S.S. All authors have read and agreed to the
published version of the manuscript.

Funding: The study is supported by the NIHR Leicester Biomedical Research Centre. X.L. received
funding from the British Heart Foundation (BHF Project Grant no. PG/18/33/33780). G.A.N.
(G. André Ng) received funding from a British Heart Foundation Programme Grant (RG/17/3/32774).
X.L. (Xin Li), F.S.S. and G.A.N. (G. André Ng) are supported by a Medical Research Council Biomedical
Catalyst Developmental Pathway Funding Scheme (MR/S037306/1).

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to thank G. André Ng (University of Leicester, depart-
ment of cardiovascular sciences) and Xin Li (University of Leicester, school of engineering) for their
support and contribution to this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rahman, F.; Kwan, G.F.; Benjamin, E.J. Global epidemiology of atrial fibrillation. Nat. Rev. Cardiol. 2014, 11, 639–654. [CrossRef]
2. Attia, Z.I.; Noseworthy, P.A.; Lopez-Jimenez, F.; Asirvatham, S.J.; Deshmukh, A.J.; Gersh, B.J.; Carter, R.E.; Yao, X.; Rabinstein,

A.A.; Erickson, B.J.; et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation
during sinus rhythm: A retrospective analysis of outcome prediction. Lancet 2019, 394, 861–867. [CrossRef]

3. Faust, O.; Ciaccio, E.J.; Acharya, U.R. A Review of Atrial Fibrillation Detection Methods as a Service. Int. J. Environ. Res. Public
Health 2020, 17, 3093. [CrossRef]

4. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
5. Sörnmo, L.; Laguna, P. Bioelectrical Signal Processing in Cardiac and Neurological Application; Academic Press: Cambridge, MA, USA,

2005.
6. Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1. [CrossRef]

[PubMed]
7. Lagido, R.B.; Lobo, J.; Leite, S.; Sousa, C.; Ferreira, L.; Silva-Cardoso, J. Using the smartphone camera to monitor heart rate

and rhythm in heart failure patients. In Proceedings of the IEEE-EMBS International Conference on Biomedical and Health
Informatics (BHI), Valencia, Spain, 1–4 June 2014; pp. 556–559.

8. Shabaan, M.; Arshid, K.; Yaqub, M.; Jinchao, F.; Zia, M.S.; Bojja, G.R.; Iftikhar, M.; Ghani, U.; Ambati, L.S.; Munir, R. Survey:
Smartphone-based assessment of cardiovascular diseases using ECG and PPG analysis. BMC Med. Inform. Decis. Mak. 2020, 20,
177. [CrossRef] [PubMed]

9. Isakadze, N.; Martin, S.S. How useful is the smartwatch ECG? Trends Cardiovasc. Med. 2020, 30, 442–448. [CrossRef]
10. Kinnunen, H.O.; Rantanen, A.; Kenttä, T.V.; Koskimäki, H. Feasible assessment of recovery and cardiovascular health: Accuracy

of nocturnal HR and HRV assessed via ring PPG in comparison to medical grade ECG. Physiol. Meas. 2020, 41, 04NT01. [CrossRef]

http://doi.org/10.1038/nrcardio.2014.118
http://doi.org/10.1016/S0140-6736(19)31721-0
http://doi.org/10.3390/ijerph17093093
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1088/0967-3334/28/3/R01
http://www.ncbi.nlm.nih.gov/pubmed/17322588
http://doi.org/10.1186/s12911-020-01199-7
http://www.ncbi.nlm.nih.gov/pubmed/32727453
http://doi.org/10.1016/j.tcm.2019.10.010
http://doi.org/10.1088/1361-6579/ab840a


Sensors 2022, 22, 8588 6 of 7

11. Bardot, S.; Rey, B.; Audette, L.; Fan, K.; Huang, D.Y.; Li, J.; Li, W.; Irani, P. One Ring to Rule Them All: An Empirical Understanding
of Day-to-Day Smartring Usage Through In-Situ Diary Study. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2022, 6, 1–20.
[CrossRef]

12. Yu, K.H.; Beam, A.L.; Kohane, I.S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [CrossRef]
13. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [CrossRef]

[PubMed]
14. Zhou, S.K.; Le, H.N.; Luu, K.; Nguyen, H.V.; Ayache, N. Deep reinforcement learning in medical imaging: A literature review.

Med. Image Anal. 2021, 73, 102193. [CrossRef] [PubMed]
15. Botvinick, M.; Ritter, S.; Wang, J.X.; Kurth-Nelson, Z.; Blundell, C.; Hassabis, D. Reinforcement Learning, Fast and Slow. Trends

Cogn. Sci. 2019, 23, 408–422. [CrossRef] [PubMed]
16. Albu, A. From Logical Inference to Decision Trees in Medical Diagnosis. In Proceedings of the 6th IEEE International Conference

on E-Health and Bioengineering, Sinaia, Romania, 22–24 June 2017; pp. 65–68.
17. Dang, H.; Sun, M.; Zhang, G.; Qi, X.; Zhou, X.; Chang, Q. A novel deep arrhythmia-diagnosis network for atrial fibrillation

classification using electrocardiogram signals. IEEE Access 2019, 7, 75577–75590. [CrossRef]
18. Kumaran, D.; Hassabis, D.; Mcclelland, J.L. What Learning Systems do Intelligent Agents Need? Complementary Learning

Systems Theory Updated. Trends Cogn. Sci. 2016, 20, 512–534. [CrossRef]
19. Yang, G.R.; Wang, X.J. Artificial neural networks for neuroscientists: A primer. arXiv 2020, arXiv:2006.01001v1. [CrossRef]
20. Faust, O.; Kareem, M.; Ali, A.; Ciaccio, E.J.; Acharya, U.R. Automated Arrhythmia Detection Based on RR Intervals. Diagnostics

2021, 11, 1446. [CrossRef]
21. Olier, I.; Ortega-Martorell, S.; Pieroni, M.; Lip, G.Y. How machine learning is impacting research in atrial fibrillation: Implications

for risk prediction and future management. Cardiovasc. Res. 2021, 117, 1700–1717. [CrossRef]
22. Lee, K.S.; Park, H.J.; Kim, J.E.; Kim, H.J.; Chon, S.; Kim, S.; Jang, J.; Kim, J.K.; Jang, S.; Gil, Y.; et al. Compressed deep learning to

classify arrhythmia in an embedded wearable device. Sensors 2022, 22, 1776. [CrossRef]
23. Muizniece, L.; Bertagnoli, A.; Qureshi, A.; Zeidan, A.; Roy, A.; Muffoletto, M.; Aslanidi, O. Reinforcement Learning to Improve

Image-Guidance of Ablation Therapy for Atrial Fibrillation. Front. Physiol. 2021, 12, 733139. [CrossRef]
24. Sánchez de la Nava, A.M.; Atienza, F.; Bermejo, J.; Fernández-Avilés, F. Artificial intelligence for a personalized diagnosis and

treatment of atrial fibrillation. Am. J. Physiol. -Heart Circ. Physiol. 2021, 320, H1337–H1347. [CrossRef] [PubMed]
25. Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia

detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65–69. [CrossRef]
26. Gutierrez, C.; Blanchard, D.G. Diagnosis and treatment of atrial fibrillation. Am. Fam. Physic. 2016, 94, 442–452. [PubMed]
27. Linz, D.; Hermans, A.; Tieleman, R.G. Early atrial fibrillation detection and the transition to comprehensive management. EP

Europace 2021, 23 (Suppl. 2), ii46–ii51. [CrossRef] [PubMed]
28. Rizwan, A.; Zoha, A.; Mabrouk, I.B.; Sabbour, H.M.; Al-Sumaiti, A.S.; Alomainy, A.; Ali Imran, M.; Abbasi, Q.H. A review on the

state of the art in atrial fibrillation detection enabled by machine learning. IEEE Rev. Biomed. Eng. 2020, 14, 219–239. [CrossRef]
[PubMed]

29. Bashar, S.K.; Han, D.; Hajeb-Mohammadalipour, S.; Ding, E.; Whitcomb, C.; McManus, D.D.; Chon, K.H. Atrial fibrillation
detection from wrist photoplethysmography signals using smartwatches. Sci. Rep. 2019, 9, 1–10. [CrossRef] [PubMed]

30. Liu, C.; Oster, J.; Reinertsen, E.; Li, Q.; Zhao, L.; Nemati, S.; Clifford, G.D. A comparison of entropy approaches for AF
discrimination. Physiol. Meas. 2018, 39, 074002. [CrossRef]

31. Czabanski, R.; Horoba, K.; Wrobel, J.; Matonia, A.; Martinek, R.; Kupka, T.; Jezewski, M.; Kahankova, R.; Jezewski, J.; Leski, J.M.
Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine. Sensors 2020, 20, 765.
[CrossRef]

32. Shao, M.; Bin, G.; Wu, S.; Bin, G.; Huang, J.; Zhou, Z. Detection of atrial fibrillation from ECG recordings using decision tree
ensemble with multi-level features. Physiol. Meas. 2018, 39, 094008. [CrossRef]

33. Eerikäinen, L.M.; Bonomi, A.G.; Schipper, F.; Dekker, L.R.; de Morree, H.M.; Vullings, R.; Aarts, R.M. Detecting atrial fibrillation
and atrial flutter in daily life using photoplethysmography data. IEEE J. Biomed. Health Inform. 2019, 24, 1610–1618. [CrossRef]

34. Bashar, S.K.; Hossain, M.B.; Ding, E.; Walkey, A.J.; McManus, D.D.; Chon, K.H. Atrial fibrillation detection during sepsis: Study
on MIMIC III ICU data. IEEE J. Biomed. Health Inform. 2020, 24, 3124–3135. [CrossRef] [PubMed]

35. Jahan, M.S.; Mansourvar, M.; Puthusserypady, S.; Wiil, U.K.; Peimankar, A. Short-term atrial fibrillation detection using
electrocardiograms: A comparison of machine learning approaches. Int. J. Med. Inform. 2022, 163, 104790. [CrossRef] [PubMed]

36. Rahul, J.; Sharma, L.D. Artificial intelligence-based approach for atrial fibrillation detection using normalised and short-duration
time-frequency ECG. Biomed. Signal Process. Control 2022, 71, 103270. [CrossRef]

37. Siontis, K.C.; Yao, X.; Pirruccello, J.P.; Philippakis, A.A.; Noseworthy, P.A. How will machine learning inform the clinical care of
atrial fibrillation? Circ. Res. 2020, 127, 155–169. [CrossRef]

38. Mousavi, S.; Afghah, F.; Acharya, U.R. HAN-ECG: An interpretable atrial fibrillation detection model using hierarchical attention
networks. Comput. Biol. Med. 2020, 127, 104057. [CrossRef]

39. Jo, Y.Y.; Cho, Y.; Lee, S.Y.; Kwon, J.M.; Kim, K.H.; Jeon, K.H.; Cho, S.; Park, J.; Oh, B.H. Explainable artificial intelligence to detect
atrial fibrillation using electrocardiogram. Int. J. Cardiol. 2021, 328, 104–110. [CrossRef]

http://doi.org/10.1145/3550315
http://doi.org/10.1038/s41551-018-0305-z
http://doi.org/10.1126/science.aaa8415
http://www.ncbi.nlm.nih.gov/pubmed/26185243
http://doi.org/10.1016/j.media.2021.102193
http://www.ncbi.nlm.nih.gov/pubmed/34371440
http://doi.org/10.1016/j.tics.2019.02.006
http://www.ncbi.nlm.nih.gov/pubmed/31003893
http://doi.org/10.1109/ACCESS.2019.2918792
http://doi.org/10.1016/j.tics.2016.05.004
http://doi.org/10.1016/j.neuron.2020.09.005
http://doi.org/10.3390/diagnostics11081446
http://doi.org/10.1093/cvr/cvab169
http://doi.org/10.3390/s22051776
http://doi.org/10.3389/fphys.2021.733139
http://doi.org/10.1152/ajpheart.00764.2020
http://www.ncbi.nlm.nih.gov/pubmed/33513086
http://doi.org/10.1038/s41591-018-0268-3
http://www.ncbi.nlm.nih.gov/pubmed/27637120
http://doi.org/10.1093/europace/euaa424
http://www.ncbi.nlm.nih.gov/pubmed/33837752
http://doi.org/10.1109/RBME.2020.2976507
http://www.ncbi.nlm.nih.gov/pubmed/32112683
http://doi.org/10.1038/s41598-019-49092-2
http://www.ncbi.nlm.nih.gov/pubmed/31636284
http://doi.org/10.1088/1361-6579/aacc48
http://doi.org/10.3390/s20030765
http://doi.org/10.1088/1361-6579/aadf48
http://doi.org/10.1109/JBHI.2019.2950574
http://doi.org/10.1109/JBHI.2020.2995139
http://www.ncbi.nlm.nih.gov/pubmed/32750900
http://doi.org/10.1016/j.ijmedinf.2022.104790
http://www.ncbi.nlm.nih.gov/pubmed/35552189
http://doi.org/10.1016/j.bspc.2021.103270
http://doi.org/10.1161/CIRCRESAHA.120.316401
http://doi.org/10.1016/j.compbiomed.2020.104057
http://doi.org/10.1016/j.ijcard.2020.11.053


Sensors 2022, 22, 8588 7 of 7

40. Sehrawat, O.; Kashou, A.H.; Noseworthy, P.A. Artificial intelligence and atrial fibrillation. J. Cardiovasc. Electrophysiol. 2022, 33,
1932–1943. [CrossRef]

41. Seo, H.C.; Oh, S.; Kim, H.; Joo, S. ECG data dependency for atrial fibrillation detection based on residual networks. Sci. Rep. 2021,
11, 18256. [CrossRef]

42. Zhu, F.; Ye, F.; Fu, Y.; Liu, Q.; Shen, B. Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial
network. Sci. Rep. 2019, 9, 6734. [CrossRef]

43. Shahawy, M.; Benkhelifa, E.; White, D. A Review on Plastic Artificial Neural Networks: Exploring the Intersection between
Neural Architecture Search and Continual Learning. arXiv 2022, arXiv:2206.05625.

http://doi.org/10.1111/jce.15440
http://doi.org/10.1038/s41598-021-97308-1
http://doi.org/10.1038/s41598-019-42516-z

	Introduction 
	Wearable Devices 
	ECG and PPG 
	Smart Devices 
	ECG Recorders 

	Artificial Intelligence 

	Discussion 
	References

