
Citation: Jin, R.; Yang, J. Domain

Adaptive Hand Pose Estimation

Based on Self-Looping Adversarial

Training Strategy. Sensors 2022, 22,

8843. https://doi.org/10.3390/

s22228843

Academic Editors: Anne Roudaut,

Hai Liu, Zhanpeng Shao and

Tingting Liu

Received: 21 October 2022

Accepted: 12 November 2022

Published: 15 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Domain Adaptive Hand Pose Estimation Based on Self-Looping
Adversarial Training Strategy
Rui Jin and Jianyu Yang *

School of Rail Transportation, Soochow University, 8 Jixue Road, Xiangcheng District, Suzhou 215100, China
* Correspondence: jyyang@suda.edu.cn

Abstract: In recent years, with the development of deep learning methods, hand pose estimation
based on monocular RGB images has made great progress. However, insufficient labeled training
datasets remain an important bottleneck for hand pose estimation. Because synthetic datasets can
acquire a large number of images with precise annotations, existing methods address this problem by
using data from easily accessible synthetic datasets. Domain adaptation is a method for transferring
knowledge from a labeled source domain to an unlabeled target domain. However, many domain
adaptation methods fail to achieve good results in realistic datasets due to the domain gap. In this
paper, we design a self-looping adversarial training strategy to reduce the domain gap between
synthetic and realistic domains. Specifically, we use a multi-branch structure. Then, a new adversarial
training strategy we designed for the regression task is introduced to reduce the size of the output
space. As such, our model can reduce the domain gap and thus improve the prediction performance
of the model. The experiments using H3D and STB datasets show that our method significantly
outperforms state-of-the-art domain adaptive methods.

Keywords: hand pose estimation; adversarial training; domain adaptation

1. Introduction

Human hand poses are one of the long-standing research topics in computer vision. In
recent decades, hand pose has had a wide range of applications in VR/AR, robot control [1],
and human–machine interaction. Moreover, similar to human pose estimation for action
recognition, 3D hand pose estimation can be further applied to gesture recognition and sign
language recognition [2–7]. Despite the great success of applying deep neural networks to
pose estimation tasks [8–14], the lack of well-labeled datasets has limited the development
of powerful deep learning methods for hand pose estimation tasks. It is not an easy task to
annotate real-world images because it is time-consuming and labor-intensive. To solve the
problem of a lack of data, some researchers started to study synthetic datasets [15] after
finding them easily accessible [16–21]. Therefore, making use of synthetic data, which is of
high sufficiency, is the mainstream method to make up for the deficiency of training data in
hand pose estimation.

However, there is a domain gap in skin texture and background between synthetic
and real images, and this gap can affect the performance of the trained model [17–21]. To
solve the domain gap problem, many methods have been proposed in existing works, for
example, Mueller et al. [20] proposed a Cyclegan network, which aims to make synthetic
images closer to realistic images in terms of background and texture. In the unlabeled
target domain, in order to make use of the output of the teacher network, a mean-teacher
model was proposed by Tarvainen et al. [22] for the guidance of the training of student
network. During the domain shift, the noise of the pseudo labels would affect the training
process of the model, which may lower the performance. As illustrated in the literature, the
regression space of key point estimation is generally continuous. Therefore, the sparsity
of the regression space was discovered by Jiang et al. [19] in a probabilistic sense. Then, a
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domain adaptive method was proposed in an unsupervised way, which is called RegDA.
The RegDA method transforms the mini–max game between regressors to achieve the
minimization of two opposite goals. Based on this, RegDA reduces the domain gap by
adversarial training.

To solve the issue caused by the large output space, both RegDA [19] and MarsDA [23]
consider the sparsity of the regression space. This means that, if there is wrong prediction
on the target domain, the distribution of the error predictions is not uniform in the pixel
space. For an error predicted position of the finger joint, for example, the wrong position
is always located at an adjacent fingertip or other key points. It is rarely located in the
background. However, this is not absolute (see Figure 1), and when we only consider
spatial locations with high probability and ignore locations with low probability, it will
affect the accuracy and robustness of model prediction. The output space of the estimation
model usually has a size of 64 × 64, and we can consider reducing the output space size
such as 16× 16. Inspired by this, we designed a new adversarial training strategy to reduce
the output space of the regression task by adding a refinement module. With the reduced
output space, we can effectively perform adversarial training to improve the prediction
performance of the network and reduce the output fluctuations.

Figure 1. Some visualizations on the unlabeled target domains. The first row is the prediction results
of the source-only model. The second row shows that the results of our model are more accurate. The
colors indicate the estimated skeletons of different fingers.

In this paper, we propose a new domain adaptive method for hand pose estimation.
It can effectively reduce the domain gap and extract domain invariant features. We use
the mean-teacher network to compose a multi-branch output model. We train the mean-
teacher network on the synthetic data with labels. Furthermore, a set of pseudo labels
are then generated for the unlabeled real-world data. However, the noise of the pseudo
labels limits the accuracy of the model. To this end, we solve this problem by performing
adversarial training with three branching networks. We add a refinement module to the
student network to change the size of the output space to 16 × 16, thus assisting the model
in adversarial training. The redesigned adversarial training strategy can effectively reduce
the noise of pseudo labels. Our model is trained using accurate pseudo-labels, which
ultimately results in better prediction accuracy.

We perform experiments on the H3D [24] and STB [25] datasets to evaluate the pro-
posed method, and the results show that RegDA yields the best prediction results. The
main contributions are as follows.

• We designed a new unsupervised domain adaptive model for hand pose estimation,
which designed self-looping adversarial training strategy to bridge the gap between
synthetic and real-world images.
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• A new self-looping adversarial training strategy was designed to learn domain-
invariant features more efficiently, which can lead to more accurate pseudo labels
generated by the teacher network.

• Achieving state-of-the-art performance on H3D and STB real-world datasets demon-
strates that self-looping adversarial training strategies can effectively reduce do-
main differences.

We organize the rest of this paper as follows. The related work is discussed in Section 2.
The proposed method is then presented in Section 3. After that, experimental evaluation
and analysis are performed in Section 4. Finally, Section 5 concludes the paper.

2. Related Work
2.1. Hand Pose Estimation

In recent decades, hand posture estimation has attracted the attention of many re-
searchers, so there are very many innovations and applications [3,5,20,26–31]. Thanks
to the rapid development of deep learning algorithms, hand pose estimation based on
RGB images has become a popular research topic [3,32–35]. However, deep learning algo-
rithms require many labeled data to train the model, so that a good model can be obtained.
High-quality RGB hand pose datasets are very scarce, which restricted the development
of pose estimation. Some researchers have started to find solutions. Spurr et al. [36] pro-
posed a VAE-based “cross-modal variational model” that learns the shared latent space
between different modalities. Wan et al. [37] proposed a network structure based on two
generative networks with the goal of 3D hand pose estimation. The network consists of
a variational autoencoder for hand pose and a generative adversarial network for deep
image distribution modeling.

As the rendering technology has undergone significant development, synthetic datasets
are widely used by researchers in order to assist in real-world hand pose estimation tasks.
To enable the adaptation from synthetic datasets to the real-world unlabeled datasets, an
end-to-end network was proposed by Dibra et al. [38]. A separated potential space was
proposed by Yang et al. [39] to separate the image variations, e.g., the image background
content and hand pose, which can be utilized to estimate hand pose and for image synthe-
sis. There are several widely used benchmark datasets for testing hand pose estimation
methods, including the Stereo Hand Pose Tracking Benchmark (STB) [25], the Rendered
Hand Pose Dataset (RHD) [17], and the Hand-3D-Studio dataset (H3D) [24]. The proposed
method is tested on these benchmarks and achieves state-of-the-art performance on H3D
and STB with an accuracy of 81.3% and 82.4%.

2.2. Unsupervised Domain Adaptation

The unsupervised domain adaptation methods are designed to train a model in the
unlabeled target domain from a labeled source domain. Then, the trained model on the
unlabeled target domain performs well. Using the adversarial learning is the mainstream
approach. The domain invariant features are learned by a feature extractor to fool a do-
main discriminator. Domain adaptation has many applications in areas such as semantic
segmentation, classification tasks, and image recognition. Domain adaptation has many
applications in areas such as semantic segmentation, classification tasks, and image recog-
nition [9,40–43]. Li et al. [44] proposed an MMD-AAE framework that aligns the features
extracted from multiple domains. Sankaranarayanan et al. [45] proposed a domain adaptive
method which uses an adversarial training framework for weak segmentation. However,
the relationship between images and 3D poses is nonlinear, so stronger constraints are
required to effectively eliminate the domain gap. These above algorithms do not obtain
the expected results when applied to the hand estimation task, and for this reason, a new
domain adaptive algorithm was designed.
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3. The Proposed Method

In this section, we describe our unsupervised domain adaptation model in detail.
Figure 2 shows the overview architecture. The acquired images of the unlabeled target
domain are fed into the network, and finally, the network model outputs an accurate 2D
hand pose. To this end, we design a student–teacher network. Both the teacher network
and the student network are composed of a feature extractor and three regressors. The
student network utilizes source and target domain data to train, while the teacher network
generates pseudo-labels for the unlabeled target domain data. These pseudo labels are
noisy due to the domain gap. Training the model directly with pseudo-labels will have
an impact on the model prediction. To reduce this effect, we introduced an adversarial
training strategy in the multi-branch structure.
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Figure 2. Our network is a student–teacher architecture, where the student network consists of a
feature extractor, three regressors, and a refine module. The source and target images are fed into the
student network, while the target images are fed into the teacher network. In addition, The teacher
network also has three regressors, but the regressors f ∗2 and f ∗1 , which correspond to the adversarial
regressors and f1 in the student network, are not used during training and testing, so we do not
draw them.

3.1. Multi-Branch Domain Adaptation Module

The domain adaptation task contains data from two different domains, where the first
domain is the source domain Xs =

{
xi

s
}N

i=1 with label Ys =
{

yi
s
}N

i=1 and the second domain

is the target domain Xt =
{

xi
t
}N

i=1. It worth noting that, the samples of the target domain
are not the ground truth. The proposed student network includes a feature extractor,
different regressors, and a refinement network. Both of the data in the source domain and
the target domain are input into the model. The output of the teacher network is used
as the pseudo label in the domain of the target. The teacher network and the output are
denoted by symbols “*” and “∼ ”, respectively. The final prediction result is the output of
the regressor when performing the testing phase.

Similarly to MarsDA [23], the student network is trained following the way of the
standard supervised network in the training phase. The learning of the parameters θ of
the student network is different from that of the parameters θ′ of the teacher network.
The student network is learned using stochastic gradient descent (SGD), while the teacher
network is not involved in gradient direction propagation. The exponential moving average
normalization (EMAN) is employed to update the parameters θ′ of the teacher, i.e.,

θ′t = mθ′t−1 + (1−m)θt, (1)

µ′t = mµ′t−1 + (1−m)µt, (2)
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σ′2t = mσ′2t−1 + (1−m)σ2
t , (3)

where µ is the mean of batch normalization (BN), and σ2 is the variance of BN. t denotes the
epoch number of training. The value of the momentum m is a number close to 1, i.e., 0.999.

For a better comparison with RegDA [19] and MarsDA [23], the loss between the
ground truth and the estimated heatmaps is calculated by the Kullback–Leibler (KL)
divergence. In the task of hand pose estimation, the same performance can be obtained
for a model trained with KL divergence as for a model trained with MSE. First, a spatial
probability distribution PT

(
Hk

)
, k ∈ {1, 2, . . . , K} is defined, which aims to normalize the

heatmap of each key point Hk ∈ RH×W . K is the number of key points in the hand, K = 21.

PT

(
Hk

)
=

Hk

∑H
h=1 ∑W

w=1
(

Hk
)

h,w

. (4)

Denoting Q(·) as the spatial softmax function:

Q(z)h,w =
exp(zh,w)

∑H
h=1 ∑W

w=1 exp(zh,w)
, (5)

We can use KL divergence to calculate the loss.

LT(Hs, ys) =
1
K

K

∑
k

KL
(

PT

(
Hk

ys

)
‖Q

(
Hk

s

))
, (6)

where Hs = f0(ψ(xs)) ∈ RK×H×W , ψ is the feature extractor, f0 is the main regressor, and
Hk

ys is the heatmap of each keypoint k in the label ys.
Equation (6) represents the loss in the source domain between the heatmap predicted

by the main regressor and the ground truth.

Ls = LT(Hs, ys). (7)

We use the pseudo-label ỹt of the target domain instead of the ground truth, and thus
calculate the loss function in the target domain.

LT(Ht, ỹt) =
1
K

K

∑
k

KL
(

PT

(
Hk

ỹt

)
‖Q

(
Hk

t

))
, (8)

where ỹt = f ∗0 (ψ
∗(xt)) is the pseudo-label. The output of regressor f ∗0 is the pseudo-labels.

To bridge the domain gap between the source and target domains, we apply a feature
alignment loss to align the feature distributions between synthetic and real-world domains.
Global feature alignment loss is introduced.

Lglobal = LT(Fs, Ft). (9)

This loss can mitigate the effect of noise on the pseudo-label at a certain level.

3.2. Self-Looping Adversarial Training

Since the data distributions of the source and target domains are different, it is a
core problem of the domain adaptation task to measure the difference between the data
distributions of these two domains. Currently, adversarial training is commonly used in
domain adaptation tasks to align the data distribution of these domains.

Inspired by the latest theory [19,46], we designed an multi-branch adversarial training
strategy. As shown in Figure 2, we use three regressors ( f0, f1 and f2) and a refinement
module r to implement adversarial training. f1 is the auxiliary regressor, and f2 is the
adversarial regressor.



Sensors 2022, 22, 8843 6 of 14

The size of the output space of the hand pose estimation model is 64 × 64, while the
classification model is much smaller than that. Therefore, we cannot directly apply the
model for the classification task to the hand pose estimation task. For this problem, RegDA
and MarsDA consider the sparsity of the regression space in the sense of probability, thus
constraining the output space from a whole image space into a smaller one with only K key
points. However, this method only considers the locations with higher probability in the
output space, which is incomplete and affects the accuracy and robustness of the model
prediction. To circumvent this problem, we propose a new adversarial training strategy
that reduces the size of the output space to 16 × 16 using the refinement module.

The input of the refinement module is the output of the regressor f2, which is denoted
as Rt. As shown in Figure 2, we designed a self-feedback loop. We first made the output
of the refinement module the K × 16 × 16 heatmaps. Then, we upsampled the output of
the refinement module and used it to supervise the regressor f2. As such, the gap between
classification and regression may be bridged. We also proposed an error probability
distribution to make the optimization of adversarial training easier. The distribution of
error probability is generated using the pseudo labels in the target domain. That is, the
ground error prediction, which is intended to make the distance from f2 to the correct key
points as far as possible. Hence, the optimization of f2 is guided. The error probability
distribution can be redesigned as follows:

HF

(
Hk

)
= I − Rt, (10)

where I is the matrix whose elements are all 1. Then, we can obtain PF(Hk):

PF

(
Hk

)
=

HF(Hk)

∑H
h=1 ∑W

w=1
(

HF(Hk)
)

h,w

. (11)

PF(Hk) represents the probability of the distribution of errors made by the model at
different locations. Therefore, we convert the mini–max game of the two regressors to the
minimization problem of two opposite objectives.

From the above, we need to keep the output of the refinement module away from
the correct keypoint location. Then, the output of f2 is supervised by the output of the
refinement module via the self-feedback loop:

Ladv = LT( f2(ψ(xt)), Rt). (12)

We concurrently supervised the output of the refinement module with the pseudo
labels, i.e.,:

Lr = LF(Rt, y′t), (13)

where Rt = r(Ht), Ht = f0(ψ(xt)), y′t is also the pseudo labels, and y′t ∈ RK×16×16.
To reduce the difficulty of model training, we converted the max–min game in adver-

sarial training into two minimization strategies. These two minimization strategies are
defined as follows.

LF(M2, ỹt) =
1
K

K

∑
k

KL
(

PF

(
Hk

ỹt

)
‖Q

(
Mk

2

))
, (14)

LT(M2, M1) =
1
K

K

∑
k

KL
(

PT

(
Hk

M1

)
‖Q

(
Mk

2

))
, (15)

where M1 = f1(ψ(xt)), M2 = f2(ψ(xt)). They are the predicted results of two regressors f1
and f2.
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3.3. Training Process

The purpose of the adversarial training strategy is to train the feature extractor ψ to
deceive the adversarial regressor f2, so that the feature extractor ψ can effectively learn
domain invariant features. As with MarsDA, the final training steps are divided into three
phases, namely A, B, and C. It is important to know that the loss functions in these three
steps are optimized simultaneously in one framework.

Firstly, the feature extractor and the three regressors are trained using the source
domain data, while the main regressor f0 is trained using the pseudo-labels of the target
domain. It should be noted that we minimize the loss functions of the adversarial regressors
f2 and f1 on the source domain.

min
ψ, f0, f1, f2

E(xs ,ys)∼P(LT( f0(ψ(xs)), ys)

+LT( f1(ψ(xs)), ys)

+λ1LT( f2(ψ(xs)), f1(ψ(xs))))

+λ2E(xt ,ỹt)∼Q(LT( f0(ψ(xt)), ỹt))

+λ3LT(Fs, Ft),

(16)

where λ1, λ2, λ3 are the weights to balance all losses.
Secondly, we minimize the losses of the adversarial regressor f2 and the refinement

module (Fix ψ, f0 and f1).

min
f2

µE(xt ,ỹt)∼Q(λ4LT( f2(ψ(xt)), Rt)) + λ5LF(Rt, ỹt). (17)

where λ4, λ5 are the weights to balance all losses.
Thirdly, we train the feature extractor ψ to minimize the loss function between the

regressors f1 and f2 over the target domain.

min
ψ

µE(xt ,ỹt)∼Q(LT( f2(ψ(xt)), f1(ψ(xt)))). (18)

We keep repeating the above process to train the model and finally achieved the
consistency of the data distribution in both domains.

4. Experiments

In the experimental section, we performed experiments using a synthetic dataset and
two real-world datasets to validate our proposed method.

4.1. Datasets and Metrics

RHD: Rendered Hand Pose Dataset (RHD) [17] is a synthetic dataset with an image
resolution of 320 × 320. The dataset is collected from 20 characters, where each character
performs 39 different actions. This includes 4k training images as well as 3k testing images.
All images are labeled with the locations of 2D and 3D keypoints. During the training
process, we also cropped and resized the images to 256 × 256.

H3D: Hand-3D-Studio (H3D) [24] is a real-world dataset containing 22k images. It
builds on hand poses performed by 10 people. Both sexes were represented and all the
skin tones of the 10 people were different. According to RegDA, we used 3.2k images for
testing, and used the rest for training. For the training process, cropped images were used
with 512 × 512 resolution, which are provided by RegDA.

STB: Stereo Hand Pose Tracking Benchmark (STB) [25] is a dataset of the real-world
including images with 640× 480 resolution. This dataset has 18 k images, and 21 hand joint
locations are collected as ground truths. The 18k images were divided into 15k images for
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training, and another 3k images for testing. In the training phase, the images are cropped
and resized into 256 × 256.

We used the percentage of correct keypoints (PCK) as an evaluation metric. Specifically,
we used PCK@0.05. That is to say, if the distance between the prediction and the ground
truth is no more than a fraction α = 0.05 of the size of an image, the prediction is regarded
as a correct result. The average PCK of the 21 keypoints are calculated. At the same
time, the PCK of different hand parts are also shown, e.g., the metacarpophalangeal joint
(MCP), proximal interphalangeal joint (PIP), and distal interphalangeal joint (DIP), and the
fingertip. RHD→H3D stands for the domain adaptation between the source dataset RHD
and the target dataset H3D. RHD→STB stands for domain adaptation from the source
dataset RHD to the target dataset STB. The image processing is implemented via Python.

4.2. Implementation Details

Resnet101 [8] is employed as the extractor ψ of features. We used two convolutional
layers for regressors. There is a bottleneck block in the refinement module, followed
by a convolutional layer. As with MarsDA [23], we cropped and resized the training
images to 256 × 256. The whole model was trained for 100 epochs. The mini-batch SGD
with a momentum was 0.9. The batch size was 32. We adjusted the learning rate by
lp = l0(1 + αp)−β. The p here denotes the step of the training. l0 = 0.1, α = 0.0001
and β = 0.75. According to [47], we set the feature extractor learning rate to one tenth
of the regressor. In the optimization phase, the weights of losses are separately set to
λ1 = 6, λ3 = 0.5, λ4 = 0.8, λ5 = 0.2 and λ2 = min(0.01 ∗ epoch, 0.3).

4.3. Main Results

We compared the proposed method with some of the latest domain adaptive methods,
and the experimental results are shown in Tables 1 and 2. The experimental results show
that the model directly trained with synthetic data does not achieve excellent performance.
Although the teacher–student network improves the performance of the model, the per-
formance improvement is limited due to the inaccurate pseudo-labeling. Methods such
as MCD and DANN also struggled to obtain excellent performance in the hand pose esti-
mation task due to the domain gap between the source and target domains. RegDA and
MarsDA achieved better performance because they exploited the probabilistic sparsity of
the model on the output space, allowing the model to efficiently learn domain invariant
features. Compared with them, our method reduced the output space by self-looping
adversarial training. Then, the gap between the source and target domains effectively were
bridged, and the teacher network is allowed to generate accurate pseudo labels and help
the model to be trained. The average accuracy is increased by more than 2% compared with
MarsDA on the STB dataset. From Figure 3, this demonstrates that our model effectively
improves the accuracy and robustness of the prediction.

Table 1. Results on the task RHD→H3D. The last row (oracle) denotes the results of training with
target domain labels.

Method MCP PIP DIP Fingertip Avg

Res101 [8] 67.4 64.2 63.3 54.8 61.8
MCD [46] 59.1 56.1 54.7 46.9 54.6
DD [48] 72.7 69.6 66.2 54.4 65.2
DANN [47] 67.3 62.6 60.9 51.2 60.6
Cyclegan [49] 63.8 63.6 61.3 53.5 60.1
Mean-teacher [22] 72.6 71.2 67.1 59.4 66.8
RegDA [19] 79.6 54.4 71.2 62.9 72.5
MarsDA [23] 87.7 85.8 80.7 70.1 80.6
Our 87.2 86.2 80.8 72.5 81.3

Oracle 97.7 97.2 95.7 92.5 95.8
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Figure 3. Accuracy of different models during training.

Table 2. Results on the task RHD→STB. The last row (oracle) denotes the results of training with
target domain labels. The best performance is achieved by our MarsDA.

Method MCP PIP DIP Fingertip Avg

Res101 [8] 67.6 65.4 65.9 59.9 63.1
MCD [46] 58.1 56.3 55.4 46.7 54.9
DD [48] 62.5 70.1 68.5 71.9 68.4
DANN [47] 68.1 64.1 65.1 59.2 63.1
Cyclegan [49] 58.2 58.5 57.9 58.9 58.1
Mean-teacher [22] 68.9 71.2 69.7 67.2 68.9
RegDA [19] 67.4 79.6 75.4 73.8 73.6
MarsDA [23] 75.7 84.7 81.2 83.5 80.2
Our 79.8 89.1 84.9 76.8 82.4

Oracle 93.9 93.0 93.8 94.4 93.4

To more visually demonstrate the superiority of the proposed method, we show some
visualization results in Figures 4 and 5. The proposed method is compared with other meth-
ods in the figures. From the figures, we can see that our method can obtain more accurate
prediction results, while correcting the keypoints that other methods incorrectly predict.

Source 
only

RegDA

Ours

Ground 
Truth

Figure 4. Qualitative results of different methods on the H3D dataset. The colors indicate the
estimated skeletons of different fingers.
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Source 
only

RegDA

Ours

Ground 
Truth

Figure 5. Qualitative results of different methods on the STB dataset.

4.4. Ablation Study

We conducted ablation experiments in the H3D dataset, which were used to investigate
the contribution of different modules in the proposed model. The specific experimental
results are shown in Table 3. The “source only” in the table refers to the model trained
directly using the source domain data. “RD” refers to the RegDA network. “MT” refers to
the mean-teacher network. “SAT” stands for the self-looping adversarial training strategy.
“FA” refers to feature alignment. As can be seen, the new adversarial training strategy can
effectively improve performance and bring 2.2% PCK improvement over the RegDA. The
mean-teacher network gives a 3.8% performance improvement to the model, and feature
alignment gives another 2.6% performance improvement. The self-looping adversarial
strategy brings 1.6% PCK improvement. The final experimental results verify the superior-
ity of the proposed method, which can obtain a PCK gain of 19.3% over the baseline. From
the results, we can see that the method with SAT+MT+FA obtains the best performance of
81.3% in accuracy. This result indicates that the proposed self-looping adversarial training
strategy significantly improves the result of hand pose estimation, which validates the
effectiveness of this strategy. Furthermore, the feature alignment can also further improve
the performance of the network.

Table 3. Ablation study results of the proposed model.

Method MCP PIP DIP Fingertip Avg

Source only 67.4 64.2 63.3 54.8 61.8
+RD 79.6 74.4 71.2 62.9 72.5
+SAT 82.5 77.2 73.5 63.4 74.7
+RD+MT 82.6 82.2 79.1 67.4 76.3
+RD+MT+FA 85.4 84.6 79.9 67.6 78.9
+SAT+MT+FA 87.2 86.2 80.8 72.5 81.3

We also conducted an ablation study to illustrate how different methods of adversarial
training influences adaptation. Table 4 shows the results. The first row is RegDA, which
minimizes two opposite goals separately. The second row is MarsDA, which optimizes the
RegDA method. These are both trained by considering the sparsity of the output space in
terms of probability. The last row is our method, where we reduce the size of the output
space and thus perform the adversarial training. Our proposed method outperforms the
first two methods to a large extent.

The training process is visualized in Figure 6. For RegDA, we can see that RegDA,
like several other domain adaptation methods, suffers from the problem that there is a
significant drop in accuracy as the training epoch increases. Marsda is the same as RegDA in
that it considers the sparsity of the regression space in the sense of probability. Its accuracy,



Sensors 2022, 22, 8843 11 of 14

although improved, still suffers from the large fluctuation of the network output. However,
this does not occur in our method. This demonstrates that our model effectively converts
the mini–max game between two regressors into the minimization of two opposite goals.
From Figure 3, we can see the training processes of different methods. It is shown that
our method outperforms it in terms of accuracy and stability. In order to more effectively
demonstrate the robustness of the model, we used 10 epochs as a group to calculate the
variance, and the results are shown in Table 4. As can be seen from the table, the variance
calculated by Marsda and Regda in 50–100 epochs has a very large fluctuation, while the
proposed method differs from them in that it has a very small fluctuation. More specifically,
the variance values calculated by the proposed method in 50–100 epochs are within 0.01,
while the other methods are above 0.4. Compared to the student network, the teacher
network is much more stable than the student network because the teacher network is a
temporal aggregation of the student network. To better demonstrate the distribution of
features learned by the proposed model, we used t-sne [50] to visualize the features in the
source and target domains extracted by the feature extractor. The results are shown in
Figure 7, from which we can see that the proposed domain adaptive model can effectively
reduce the domain differences and thus obtain better prediction performance.

Table 4. Model Robustness Analysis.

Method 0–10 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100

RegDA 1.471 0.367 0.247 0.405 0.376 0.196 0.726 1.087 1.432 0.450
MarsDA 1.578 0.378 0.216 0.196 0.659 0.714 0.565 0.848 1.188 0.594
Our 1.308 0.251 0.194 0.346 0.162 0.064 0.084 0.089 0.065 0.070

Figure 6. Accuracy of different adversarial training strategies during training.

Source Only Adpted (Ours)

Figure 7. We randomly selected 1920 samples of synthetic and real-world images and used t-SNE [50]
to visualize the features learned by the source-only model and our MarsDA model, respectively. The
red points are samples in the source domain while the blue points are samples in the target domain.



Sensors 2022, 22, 8843 12 of 14

5. Discussions

From the experimental results on different datasets, we can find that the colors will
not affect the effectiveness of the proposed method. Meanwhile, it should be noted that,
although the colors in the datasets are a little different, their difference is not significant.
Since the data were captured in the lab with stable lighting, the results are stable under
different illuminations. If there is an extreme illumination condition, the result depends on
the effectiveness of hand detection results. Of course, the distance between the camera and
the hand will influence the performance due to the change in the resolution of the hand.
We conduct the experiments on the NVIDIA 3090 GPU to run the deep learning algorithms.
The proposed method can be used for a robot, since the resources needed for inference
are much less than that of training and the inference time is fast. The proposed method is
robust with different backgrounds. From the figures of experimental results, we can find
that the backgrounds of the images are significantly different, and the proposed method
performs well with its promised results.

6. Conclusions

In this paper, a new unsupervised domain adaptation method is proposed for hand
pose estimation. A self-looping adversarial training strategy is designed for knowledge
transfer between the synthetic source domain and the real-world target domain. In the
adversarial module, we reduce the size of the regression space, thus effectively converting
the minimax game of the two regressors to a minimization problem between the two
opposite goals. Thereby, the issue of the noise in pseudo labels at the training phase can be
mitigated. Meanwhile, the data distribution between the synthetic and real-world domains
are aligned. Extensive experiments on two benchmark datasets show the effectiveness
of our approach. The main contributions including three main aspects. (1) We designed
a new unsupervised domain adaptive model for hand pose estimation, which designs a
self-looping adversarial training strategy to bridge the gap between synthetic and real-
world images. (2) A new self-looping adversarial training strategy was designed to more
efficiently learn domain-invariant features, which can lead to more accurate pseudo labels
generated by the teacher network. (3) Achieving state-of-the-art performance on H3D and
STB real-world datasets demonstrates that self-looping adversarial training strategies can
effectively reduce domain differences.
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