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Abstract: This paper presents a navigation approach for autonomous agricultural robots based on
LiDAR data. This navigation approach is divided into two parts: a line finding algorithm and a
control algorithm. The paper proposes several line finding algorithms (based on PEARL/Ruby
approach) that extract lines from a LiDAR data set. Once the lines have been processed from the data
set, a control algorithm filters these lines and, using a fuzzy controller, generates the wheel speed
commands to move the robot among the crop rows. This navigation approach was tested using a
simulator built on ROS middle-ware and Gazebo (the source codes of the simulation are available on
GitHub). The results of the simulated experiments show that the proposed approach performs well
for a large range of crop configurations (with or without considering weeds, with or without holes in
the crop rows. . . ).

Keywords: crop navigation; LiDAR measurements; line extraction; fuzzy controller; ROS/Gazebo

1. Introduction
1.1. Context

The development of robotic tools for agriculture is a growing field. Current research is
exploring a variety of tasks ranging from weeding robots [1,2] to harvesting robots [3,4].
Most of the platforms being developed aim to be autonomous.

One of the most fundamental problems for autonomous robots is autonomous naviga-
tion. In an agricultural application, such as market gardening, the robot must be able to
follow the crop rows regardless of the weather conditions, the surrounding luminosity, or
the configuration of the field.

Most recent works consider GPS or camera data for navigation [5,6]. However, these
sensors do not provide reliable data in all conditions. Indeed, at the edge of a forest
or in a greenhouse, the GPS signal is degraded. In these situations, range sensors are
commonly used. This paper proposes an approach based on LiDAR (Light Detection
and Ranging) data.

The work presented here aims to propose an approach for the navigation of a
symmetrical robot based on LiDAR sensor data only. This paper presents a number of
novelties, including:

• The improvement of the existing line finding algorithm (Figures 1 and 2 introduces
the line finding idea). The interested reader can refer to Section 4 for the algorithm
behavior comparison;

• The setup of filters and a fuzzy controller to have a full navigation stack. The control
algorithm presented in this paper (Section 3) allows the simulated robot to move
autonomously through the entire field. Considering a symmetrical robot eases the
row changing maneuver;

• The development of a new simulation based on ROS and Gazebo. To ease the reusabil-
ity of the work and to be able to test the algorithms for several crop configurations, a
simulation has been developed based on ROS Robot Operating System middle-ware
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and Gazebo (Section 4). Note that all the simulator source codes and documentation
are available in Ref. [7].

LiDAR MotorsLine finding Control Motor speedSet of modelsSet of points

Figure 1. Overview of the approach: the LiDAR sensor provides points, and, from those points, lines
(models) are extracted and from those lines the motor speeds are deduced.
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Figure 2. The line finding problem: The objective is to identify the crop rows from LiDAR data. The
left part of the figure depicts a top view of the scene (a robot moving between two crop rows), the
middle part depicts the data from the sensors (i.e., points corresponding to plants) and the right part
shows an ideal result from the line finding algorithm (that is, the left and right crop rows have been
identified from the LiDARs data set).

1.2. Overview of the Approach

Using LiDAR data, without prior knowledge of the field, the objective is for the
robot to be able to autonomously navigate between the rows. The considered robot is a
symmetrical two-wheeled differential robot. The navigation approach presented in this
paper can be divided into two parts: a line finding algorithm and a control algorithm, as
depicted in Figure 1.

To be able to navigate among the crops, it is necessary to identify the crop rows from
the LiDAR data. This step corresponds to the line finding process of the approach and
is depicted in Figure 2. One should note that it is assumed that the robot is equipped
with 2D LiDAR sensors and that the sensors can detect the crop plants and the weeds (i.e.,
the LiDAR is low enough or the plants are high enough). In other words, plants have to
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be detected by the sensors, otherwise this approach can not be applied. Nomenclature
resumes the considered notations.

The line finding algorithm thus provides a set of models (i.e., a set of lines) that best
fit the points detected by the sensors. Those models (lines) are then filtered in order to
hopefully correspond to actual rows in the crop. This filtering is done by the control
algorithm, which also provides a fuzzy controller to maintain the robot in the middle of
the rows.

Section 2.1 presents several line finding algorithms while Section 3 describes the
considered control algorithm. Section 4 presents the designed simulation and the results
obtained when testing the algorithms. Finally, Section 5 concludes this paper.

2. Materials and Methods
2.1. Line Finding Algorithms

To ease the reading of this paper, the Ruby algorithm introduced in Ref. [8] is presented
in Section 2.1.1. The novelties brought to this algorithm are then presented in Section 2.2.

2.1.1. The Ruby Algorithm

The Ruby algorithm is based on the Pearl method presented in [9]. Pearl, thus Ruby,
is a method that aims at minimizing a function called energy. In the latter, a model
Lj : f j(x) = ajx + bj corresponds to a line, and Li depicts a set of models. A point p
(an obstacle detected by the LiDARs) is associated with a model L(p). Note that L(p)
could be the empty model L∅ (if p is an outlier for instance). These notations are listed
in Nomenclature.

The considered energy function is described in Equation (1).

E(L) = E∅(L) + EN (L) + ∑
Lj∈L\{L∅}

EL(Lj). (1)

For a set of models L, the energy E(L) is divided into three terms: the outlier energy
E∅(L), Equation (2), the penalty energy EN (L), Equation (3), and the sum of all the model
energies EL(Lj), Equation (6).

The outlier energy E∅(Li) aims at taking into account the points that are not associated
with a model (i.e., those that are associated with the empty model L∅). It is defined as

E∅(Li) = ρ · ∑
p∈P(L∅)

1, (2)

where ∑
p∈P(L∅)

1 is the number of points in the current empty model L∅ ∈ Li and ρ is a

constant value that is heuristically chosen. As it is assumed that the LiDAR will detect
more crops than weeds, it is appropriate to penalize the points that are not attached to any
model (i.e., outliers and weeds).

The penalty function tends to favor the association of two nearby points (according to
the Euclidean distance) to the same model. This energy is defined as

EN (Li) = λ · ∑
(p,q)∈N

wpq · δ6=(L(p), L(q)), (3)

where N is the set of neighboring points such that an element (p, q) ∈ N corresponds to
two points p and q in the same neighborhood, with p associated with the model L(p) and
q associated with the model L(q). λ is a constant heuristically chosen. δ6=(L(p), L(q)) is
defined as

δ6=(L(p), L(q))
{

1 if L(p) 6= L(q)
0 otherwise

, (4)
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additionally

wpq = exp
−||p− q||2

ζ2 , (5)

where ||p− q|| is the Euclidean distance between the points p and q, while ζ is a heuristically
chosen constant.

Finally, the energy of a model Lj is defined as

EL(Lj) = ∑
p∈P(Lj)

||p− Lj||, (6)

where ||p− Lj||is the Euclidean distance between a point p attached to the model Lj and
that model.

2.1.2. Details of the Algorithm

The Ruby algorithm is presented in Figure 3 and detailed in Algorithm 1. The different
steps are explained in the latter.

1. Line 1 Algorithm 1, which corresponds to the initialization. The initial set of models
L0 is initialized with the one from the previous find line computation L−1

i . Note that
if it is the first ever call of line finding, the initial set of models is initialized with only
an empty model: L−1

i = {L∅} with P(L∅) = Z , i.e., all the points are associated with
the empty model, Z being the set of all the points. This is relevant because in a crop
navigation context, it is assumed that between two LiDAR scans, the robot will sense
mostly the same crops and weeds: the rows will not be completely different from two
consecutive find line calls.

2. Lines 5 to 10 Algorithm 1. Three random points (p, q, z) are picked in L∅ and the best
model is computed (linear regression) so that it fits those points. This creates a new
model that is added to the model set. This process is then repeated until half of the
outliers are attached to a model (or below a threshold).

3. Lines 11 to 16 Algorithm 1, the merging part. It merges all the models that are too
close to each other.

4. Lines 17 to 20 Algorithm 1, the deleting part. It removes all the models that do not
meet the constraint

EL(Lj)

ψLi (Lj) · ∑
p∈P(Lj)

1
− α < 0, (7)

where EL(Lj) is the energy of the model Lj as described in Equation (6), α is the
constant chosen heuristically and ψL(Lj) is the number of models of Li parallel to the
model Lj. ψLi (Lj) is defined as

ψLi (Lj) = ∑
Lk∈Li\{Lj ,L∅}

δq(Lj, Lk), (8)

with

δq(Lj, Lk)

{
1 if |aj − ak| − β < 0
0 otherwise

, (9)

where aj and ak are the slopes of the models Lj and Lk, and β a constant chosen
heuristically.

5. Lines 21 to 24 Algorithm 1. All the points are detached from their models and re-
attached to the closest model. Then the new energy is computed for the complete set
of models.

6. Lines 26 to 27 Algorithm 1. If the energy of the new set of models is worse (bigger)
than the previous iteration, the previous set of models is kept instead of the new
computed one.



Sensors 2022, 22, 8918 5 of 22

Algorithm 1: Ruby algorithm.

1 Data: Z , L−1
i

2 Result: Li

3 L0 = L−1
i , E(L0) = +∞;

4 for i = 1, ..., max iteration do
5 while ∑

p∈P(L∅)

1 < threshold do

6 (p, q, z) ∈ P(L∅);
7 P(L∅) = P(L∅) \ {p, q, z};
8 Lj = arg min

Lj
||p− Lj||+ ||q− Lj||+ ||z− Lj||;

9 P(Lj) = {p, q, z};
10 Li = Li

⋃
Lj;

end
11 for ∀Lj ∈ Li \ {L∅} do
12 for ∀L′j ∈ Li \ {L∅, Lj} do
13 if ||Lj − L′j|| < threshold then
14 P(Lj) = P(Lj)

⋃
P(L′j);

15 Li = Li \ {L′j};
end

end
16 Lj = arg min

Lj
∑

p∈P(Lj)

||p− Lj||;

end
17 for ∀Lj ∈ Li \ {L∅} do

18 if
EL(Lj)

ψLi (Lj) · ∑
p∈P(Lj)

1
− α < 0 then

19 ∀p ∈ P(Lj), L(p) = L∅;
20 Li = Li \ {Lj};

end
end

21 for ∀p ∈ Z do
22 L(p) = Lj|∀L′j ∈ Li \ {L∅}, ||p− Lj|| < ||p− L′j||;
23 if ||p− L(p)|| > threshold then
24 L(p) = L∅;

end
end

25 E(Li) = E∅(Li) + EN (Li) + ∑
Lj∈Li\{L∅}

EL(Lj);

26 if E(Li) > E(Li−1) then
27 Li = Li−1;

end
end
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Figure 3. Overview of the Ruby method.

2.2. Ruby Suggested Refinements

In this section we will present refinements for the Ruby algorithm. These refinements
are part of the originality of the work presented in this paper. They lead to an improvement
of the robot navigation results, as shown in Section 4.

2.2.1. Ruby Genetic

Pearl and Ruby algorithms are very similar to genetic algorithms [10]. To enhance this
resemblance, the Ruby genetic refinement proposes to modify the deleting part of step 2
(Figure 3). In the classical Ruby approach, a constant α is used (Equation (7)) to decide if a
model has to be removed or not. Ruby genetic proposes a fitness criterion instead, named
ϕj and defined as

ϕj =
b2

j + τ · EL(Lj)

ψLi (Lj) ·∑p∈P(Lj)
1

, (10)

with EL(Lj), defined in Equation (6), ψLi (Lj)m defined in Equation (8) and where τ is a
heuristically chosen constant. By using this criterion, the best models are sorted, while the
others are removed.

2.2.2. Ruby Genetic One Point

The idea of this refinement is based on the assumption that one plant of the crop will
generate several LiDAR readings. Thus, the data that are close to each other can be merged
together as they may belong to the same plant. This leads to the computation of a new
point set named Z∗. The process is described in Algorithm 2.

For this Ruby Genetic One Point refinement, the input data is no longer Z , as defined
in Algorithm 1, but Z∗. The rest of the algorithm remains the same as for the Ruby genetic.
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Algorithm 2: The computation of Z∗.
1 Data: Z
2 Result: Z∗
3 Z∗ = ∅;
4 for ∀p ∈ Z do
5 if first iteration then
6 p∗ = p;

end
7 else
8 if ||p∗ − p|| < threshold then
9 p∗ = p∗+p

2 ;
end

10 else
11 Z∗ = Z∗ ⋃{p∗};

end
end

end

2.2.3. Ruby Genetic One Point Positive/Negative

This refinement proposes to change the way models are found (step 1 in Figure 3).
For the classical Ruby approach, three points are randomly taken from the empty model
L∅. However, assuming that the robot will most of the time be parallel to the crop rows,
and not perpendicular to them, the points can be separated into two sets Ple f t(L∅) and
Pright(L∅), defined as

Ple f t(L∅) = {p ∈ P(L∅)}|yp < 0, (11)

Pright(L∅) = {p ∈ P(L∅)}|yp > 0. (12)

Then the research for models is done into those two subsets. Thus, step 1 of the Ruby
algorithm (Figure 3), i.e., lines 5 to 10 of Algorithm 1, becomes as detailed in Algorithm 3.
An example of this new model research approach is depicted in Figure 4.

P(LØ)

L0

L1

Considered set of points Searching models
randomly over all 
the points

Searching models
considering the position
of the points regard to
the robot 

Pleft(LØ) Pright(LØ)

P(LØ)

x

y

L1
L0

P(LØ)

Figure 4. The idea behind considering Ple f t(L∅) and Pright(L∅). Without doing so, there is a chance
that the model research considers improbable models regarding the orientation of the robot (middle
part of the illustration), reducing the chance of finding the best models. On the other hand, while
dividing the model research into left and right points, as the rows should be on the left or on the
right, the chances of finding the correct models are increased (the right section of the illustration).
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Algorithm 3: Ruby Genetic One Point Positive/Negative-Search models-step 1.

1 Data: Li
2 Result: Li
3 while ∑

p∈Ple f t(L∅)

< threshold do

4 (p, q, z) ∈ Ple f t(L∅);
5 Ple f t(L∅) = Ple f t(L∅) \ {p, q, z};
6 Lj = arg min

Lj
||p− Lj||+ ||q− Lj||+ ||z− Lj||;

7 P(Lj) = {p, q, z};
8 Li = Li

⋃
Lj;

end
9 while ∑

p∈Pright(L∅)

< threshold do

10 (p, q, z) ∈ Pright(L∅);
11 Pright(L∅) = Pright(L∅) \ {p, q, z};
12 Lj = arg min

Lj
||p− Lj||+ ||q− Lj||+ ||z− Lj||;

13 P(Lj) = {p, q, z};
14 Li = Li

⋃
Lj;

end

2.2.4. Ruby Genetic One Point Positive/Negative Infinity

The last considered refinement was proposed after noticing that as a point can only be
associated with one model, a bad model can consume a point of a potentially good model, as
it can be noticed in the middle part of Figure 4. To handle this limitation, this refinement
proposes to allow a point to be attached to several models at the same time.

The main drawback of this approach is that it is time-consuming: all the points have
to be checked all the time.

3. The Control Algorithm

Once models (lines) have been extracted from the points (the data set from the LiDAR),
a control can be processed based on those models. The control algorithm presented here
can be divided into three main steps: an initialization, filtering, and control step. The steps
are depicted in Figure 5.

Find Lines

Control

Filtering

Initialization

Fuzzy
Controller

Wheel speeds

Figure 5. Details of the control approach.
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3.1. Initialization

The idea of the overall approach is to allow the robot to autonomously navigate into a
crop with the minimum of prior information (width and length of the rows for instance).
The only assumptions about the field are that:

• The field is organized in straight lines, as this is the case most of the time [11,12];
• The distance between two rows does not change inside a crop;
• The initial position of the robot is somewhere between two crop rows;
• The initial orientation of the robot is roughly parallel with the crop rows.

It can be noticed that the two first assumptions (about the field configuration) do not
reduce the application as it is done in most crop row detection approaches [13,14]. The last
two assumptions (about the robot’s initial position) may be more restricting, but as long as
it is assumed that the robot can be placed in the crop, it is not an issue.

Based on these assumptions, an initialization step has been developed. The idea is to
compute the distance between the rows from the models given by the line finding algorithm
before starting to move the robot.

To that end, the initialization process extracts from the models the closest pair of
models that are equidistant to the robot (the robot should be in the middle of two rows
for its initial position) and have a slope close to 0 (the robot should be parallel to the crop
rows). Once a pair of models {L1, L2} is found, the distance between the rows is computed
as follows (see Figure 6).

d

L1 : y = a1x + b1

L2 : y = a2x + b2

θ

θ

b1

b2

y

x

Figure 6. Computing the distance between two parallel models L1 and L2. Note that a1 = a2 for the
models to be parallel.

cos(θr) =
d

|b1 − b2|
,

d = cos(θr) · |b1 − b2|,
d = cos(arctan(a1)) · |b1 − b2|,
d = cos(arctan(a2)) · |b1 − b2|,

With θr the orientation of the robot, d the distance between two rows in the field and
(ai, bi) the parameters of the model Li. As

cos(arctan(a)) =
1√

a2 + 1
(13)

It can be concluded that
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d =
|b1 − b2|√

a2
1 + 1

=
|b1 − b2|√

a2
2 + 1

(14)

To have a more stable distance, this distance computation is done several times (ac-
cording to several results of the line finding algorithm) and an average of all the computed
distances is done to get an estimation of the distance between two rows. This estimation is
then stored for use by the robot’s navigation.

3.2. Filtering

The line finding algorithm, as detailed in Section 2.1, provides models (lines) according
to a point set (LiDAR data). However, most of the time some returned models do not
correspond to effective rows in the field (Figure 7). Filtering is then required to remove
models that do not meet the field geometry assumptions (distance d between the rows and
previously computed and verified models). This filter is presented in Algorithm 4 and is
detailed in the latter.

L0

L1

L2

Figure 7. Assuming that from the top configuration, the line finding algorithm returns the models L0,
L1, and L2 (bottom part of the figure). The expected behavior of the filter is to keep the models L0 and
L1 (removing the model L2) and knowing the distance d between the rows, to compute the missing
models (dotted lines). Note that for the bottom part of the figure, the colors of the dots correspond to
the models the points are associated to.

The required data are:

• L: the set of models provided by the line finding algorithm;
• Ln,−1 = {L1,−1, L2,−1, . . . , Li,−1, . . . , Ln,−1}: the filtered model set of the previous iter-

ation with n a defined number of models that is constant during the robot navigation.
The i index represents the position of the row identified by the model (from left
to right).

• d: the distance between the rows, computed during the initialization step (Section 3.1).
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Algorithm 4: Model filtering.

1 Data: L, Ln,−1, d
2 Result: Ln

3 Ln = ∅;
4 for ∀Lj ∈ L do
5 for i = 1, ..., n do
6 if ||Lj − Li,−1|| < threshold then
7 Li = Lj;
8 Ln = Ln

⋃{Li};
end

end
end

9 for i = 1, ..., n do
10 if Li 6∈ Ln then
11 Li : f (x) = ax + bibest + d · (ibest − i)

√
a2 + 1;

12 Ln = Ln ⋃{Li};
end

end

The result of the filtering is a filtered model set Ln = {L1, . . . , Li, . . . , Ln}, with n a
fixed number of models. Note that a filtered model Li may be extracted from the models
L provided by the line finding algorithm or may be computed according to other filtered
models Lj and the row distance d. Figure 8 depicts an expected filtered result according to
the situation described in Figure 7.

L1 L2

L3

L4

d d d

Figure 8. The filtered models Ln, with n = 4, resulting in the configuration depicted in Figure 7. The
models L2 and L4 are computed according to L0, L1, and d.

The filtering algorithm can be divided into two parts: searching for expected models
and computing missing models.

The search for the expected models, lines 4 to 8 of Algorithm 4, is based on the
assumption that between two iterations the robot will not move significantly, i.e., the rows
are mostly at the same place as they were for the prior iteration. It means that the new
models should be similar to the previous ones. Thus, from the new model set L provided
by the line finding algorithm, we search all the models that are close enough (according to a
threshold) to the previous filtered ones Ln,−1. If a match is found, this new model is added
to the new filtered set Ln. Note that if during this step no match is found, the previous
filtered models are kept (Ln = Ln,−1). If this happens for several iterations then the robot
is considered lost and stops navigating.
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Once all the models from L have been tested, some expected filtered models Li may
not have a match in the model set L (at most n− 1). That is, they have to be computed
regarding the found filtered models and the row distance d, lines 9 to 12 of Algorithm 4.
The computation of a missing model Li is done as

Li : f (x) = ax + bibest + d · (ibest − i) ·
√

a2 + 1, (15)

where a is the average slope of the found filtered models

a =

∑
Li∈Ln

ai

∑
Li∈Ln

, (16)

and where ibest is the index of the best match

ibest = arg min
i
||Li − Li,−1||. (17)

At the end of this filter step we have n models Ln = {L1, ..., Ln} that should be consis-
tent with the crop and the robot configuration. These are the models that are considered by
the controller presented in the next section.

3.3. Fuzzy Controller

A fuzzy controller is a classical approach when dealing with a mobile robot control
that can be applied to agricultural robots [12,15]. The objective of the controller detailed in
the latter is, according to the filtered models Ln, to compute the needed wheel speeds for
the robot to move between the rows. The fuzzy controller presented here has three steps:

• Fuzzification: transforms the inputs into fuzzy inputs (Section 3.3.1);
• Rule evaluation: defines how the inputs impact the outputs (Section 3.3.2);
• Defuzzification: from the fuzzy outputs, generated by the fuzzy inputs and the rules,

defines a non-fuzzy output (Section 3.3.3).

3.3.1. Inputs of the Controller

From the filtered models Ln we are only interested in the model Lle f t that is directly
to the left of the robot and the model Lright that is directly to the right of the robot. For
instance, in the example depicted in Figure 8, Lle f t = L2 and Lright = L3.

The orientation of the robot in the field is computed as:

θr =

∑
Li∈Ln

arctan(ai)

n
(18)

The position of the robot between the models Lle f t and Lright is defined as

xr =


|ble f t |
|bright | − 1 if |ble f t| < |bright|

1− |ble f t |
|bright | otherwise

, (19)

These are the inputs of the fuzzy controller (xr and θr). To proceed to the fuzzification,
the membership functions depicted in Figure 9 are considered. For instance, a position of
−0.25 will be considered as 0.5 left and 0.5 center.
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position

0

−1

very left left center right very right

−0.5 0 0.5 1
1

orientation

0

1
0°−30° +30°

very left left center right very right

−15° +15°

0−pi/6 pi/6−pi/12 pi/12

Figure 9. Input membership functions.

3.3.2. The Rules

Before defining the rules, it is necessary to define the fuzzy output membership
functions. These functions are the same for the left and the right wheels (note that the
considered robot is a two-wheeled differential robot) and are depicted in Figure 10.

wheel speed

0

1

0

stopslow
backward

medium
backward

maximum
backward

slow
forward

medium
forward

maximum
forward

maxmax/3 2×max/3−max/3−2×max/3−max

Figure 10. Output membership functions. Note that the left wheel speed and the right wheel speed
have the same membership function, and that “max” means the maximal possible speed value.

A fuzzy controller’s last step is to define its rules. These rules aim to keep the robot at
the center of two rows, and parallel to them. Figure 11 shows a graphical representation of
the defined rules and Table 1 details them.
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Figure 11. Rule chart. The detailed rules for the left and right wheel speeds according to the position
and orientation of the robot.
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Table 1. A more classical representation of the controller rules. L: left, R: right, V: very, C: center, 1:
slow, 2: medium, 3: maximum, F: forward, B: backward.

Left Wheel Speed

Position
VL L C R VR

Orientation

VL 2 F 2 F 1 F 3 F 3 F

L 1 F 1 F 2 F 1 F 2 F

C 3 F 3 F 3 F 2 F 1 F

R 2 F 1 F 1 F 1 B 1 B

VR 2 F 1 F 1 B 2 B 2 B

Right Wheel Speed

Position
VL L C R VR

Orientation

VL 2 B 2 B 1 B 1 F 2 F

L 1 B 1 B 1 F 1 F 2 F

C 1 F 2 F 3 F 3 F 3 F

R 2 F 1 F 2 F 1 F 1 F

VR 3 F 3 F 1 F 2 F 2 F

3.3.3. Operators Summary

The considered operators for the fuzzy controller are as follows:

• AND operator: minimum;
• OR operator: maximum;
• Implication method: Algebraic product;
• Aggregation method: maximum;
• Defuzzification method: the centroid method. This corresponds to the “center of mass”

of the results.

4. Simulation and Results

To test the algorithms under several controlled environments, a simulation has been
designed based on ROS middle-ware and Gazebo robot simulation. These tools are widely
used in the robotics community, and thus in agricultural robotics [16–18]. It can be noticed
that all the source code of this simulation can be downloaded from GitHub [7]. This section
presents the developed simulation as well as the methodology used to test the algorithms
and the results of the conducted tests.

4.1. The Simulation

Figure 12 presents an overview of the simulation. Gazebo is used to simulate the
physics of the system: it generates the LiDAR measurements from the environment and the
robot’s pose, and moves the simulated robot according to the wheel speed.

ROS nodes (i.e., programs) were developed to implement the line finding algorithms
and the control algorithm.

To handle the fuzzy controller, the open source FuzzyLite C++ library was used [19].
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Figure 12. The simulator overview.

4.1.1. The Robot

The simulated robot is a two-wheeled differential robot, with two caster wheels for
stability reasons. Figure 13 depicts the considered robot.

(a) (b) (c)

Figure 13. The simulated robot: the white wheels are the differential wheels, the black balls are the
caster wheels and the blue/red boxes are the LiDARs. Note that the blue rays depict the LiDAR
measurements. (a) General view; (b) Side view; (c) Top view.

The robot is equipped with two LiDAR sensors, one at the front and one at the back of
the robot. Both LiDAR characteristics are:

• Update rate: 40 Hz;
• Number of measurements: 360;
• Minimum angle: −π

2 ;
• Maximum angle: π

2 ;
• Minimum range: 0.1 m;
• Maximum range: 4 m;
• Resolution: 0.01 m;
• Measurement noise: a Gaussian noise with a 0 mean and a 0.01 standard deviation

is considered
fnoise(x) =

1
0.01
√

2π
e−

1
0.0002 x2

. (20)

Two LiDAR sensors are used so that the robot will have the same amount of infor-
mation from its front as from its back. This symmetry helps to handle the change of row:
indeed, the robot still detects the crops when moving out of a row as the back LiDAR sensor
still detects the plants behind it. Furthermore, the robot does not have to turn around when
changing rows, it just has to go backwards.
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4.1.2. The Simulated Environments

Four fields were designed to test the algorithms. From the easiest to the hardest, the
set-ups are:

• Crop 1, Figure 14a. This corresponds to the easiest configuration, which is a five-row
crop, with equal rows, proper plant positioning, and without any weed;

• Crop 2, Figure 14b. In this configuration weeds are still not considered. Nevertheless,
the plants are randomly spaced among the rows;

• Crop 3, Figure 14c. This is the first configuration with weeds (depicted as 50 red dots
on the Figure 14);

• Crop 4, Figure 14d. This corresponds to the hardest configuration, which is 5 uneven
rows with holes and weeds (100 in this case).

(a) (b)

(c) (d)

Figure 14. Simulated test crops. The green dots represent crops while the red dots represent weeds.
(a) Crop 1; (b) Crop 2; (c) Crop 3; (d) Crop 4.

It can be noticed that the distances between the rows are not the same for all the
simulated crops, but remain the same inside a crop.

4.2. Methodology

The following experiments were designed to test two things:

• How the presented refinements affect the line finding results;
• Considering the presented navigation algorithm: if the robot is able to autonomously

navigate in the fields and how reliable the navigation is.

To do that, the same control approach (described in Section 3) has been tested with
six different line finding algorithms: The two published algorithms Pearl [9] and Ruby [8],
and the four proposed Ruby refinements (Section 2.2), which are Ruby Genetic (RG), Ruby
Genetic One Point (RGOP), Ruby Genetic One Point Positive/Negative (RGOPPN), and
Ruby Genetic One Point Positive Negative Infinity (RGOPPNI).

These six navigation algorithms (a navigation algorithm is the association of a line
finding algorithm with the control approach) were tested in the four previously described
environments (Figure 14).
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A test run was done as follows: given a crop and a navigation algorithm, the robot is
initially placed at the (0, 0) position of the environment and oriented according to the rows
(as shown in Figure 15). Then the robot has to autonomously move through the rows until
it reaches the end of the fifth row. Figure 15 presents an example of successful trajectory in
the crop 3 environment. Before each run, the robot only has three pieces of information:

• It is at the beginning of the first row between two plant rows;
• It has to navigate through five rows;
• The first new row will be on the left.
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(
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)

Figure 15. Example of trajectory: the robot starts at the position (0, 0), parallel to the crops, as depicted
in the figure. Then it has to reach the end of the fifth row without running over the plants. This figure
depicts an example of a successful trajectory.

Aside from this, it does not know the number of outliers, the distance between the
rows, nor the length of the rows.

It can be noticed that for all the runs, the algorithms constants and thresholds do not
change, even when changing the field environment. Furthermore, when starting a new run,
all the information gathered during the previous run (e.g., the distance d), is removed.

The full experiment is presented in Algorithm 5: all the algorithms are tested five
times over all the crops.

Algorithm 5: Test plan.

1 Data: control_algo, constants
2 find_lines_algos = {Ruby, RG, RGOP, RGOPPN, RGOPPNI}constants;
3 crops = {crop 1, crop 2, crop 3, crop 4};
4 for all find_lines ∈ find_lines_algos do
5 for all crop ∈ crops do
6 for i = 1, . . . , 5 do
7 Run a test with find_lines and control_algo in crop;
8 Save the results ;

end
end

end

4.3. Experiment Results

Several criteria were considered to compare these algorithms.
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• The ratio of successful runs, computed as the number of successful runs divided by the
total number of runs (i.e., 5). A run is considered successful when the robot managed
to reach the end of the fifth row without running over the “green” plants, i.e., the crop.
Figure 15 presents an example of a successful run while Figure 16 presents an example
of a failed run. Table 2 details the results according to this criterion.

• The mean square error when the robot navigated between two rows (not including
the changing row maneuver). In a perfect situation, the robot should be exactly
equidistant to the direct left and right rows at any time (once again, not including the
changing row maneuver). Table 3 details the results according to this criterion.

• At the end of a row, the LiDAR sensor will have fewer points than it would have
between two rows (because it detects fewer plants as it is at the end of the crop). That
is, in order to have a fair representation of the following criteria, they were obtained
over the 500 first iterations only (that is, before reaching the end of the first row).

– The average execution time of the line finding algorithm. As the control algo-
rithms are the same for all the tested navigation approaches, it is only relevant to
test the line finding execution time (the only part that differs from one navigation
algorithm to another). Table 4 details the results according to this criterion.

– The average number of points processed by the line finding algorithms. While
some algorithms consider the raw point data set Z , others use the filtered one Z∗
(Section 2.2.2). That is, the average number of points, presented in Table 5, allows
us to verify that for the 500 first iterations the line finding algorithms considered
the same number of points (all the Z and all the Z∗ have consistent sizes).

– The average execution time per 100 points. Since the line finding algorithm
does not consider the same number of points (Z versus Z∗), the execution time
presented in Table 4 may not be comparable regarding only the line finding pro-
cesses. That is, Table 6 provides an execution time normalized on the processing
of 100 points.

0 10 20 30
−1

0

1

2

3

4

5 Weed

Plants
trajectory

X-coorditate (m)

Y
-
c
o
o
r
d
i
t
a
t
e
 
(
m
)

Figure 16. An example of a failed trajectory: the robot reaches the end of the fifth row but runs over
the crop plants.
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Table 2. The ratio of successful runs regarding the total number of tries (five, in this case). A result of
1 means that the algorithm never failed, a result of 0 means that the robot never reached the end of
the field without crushing crop plants.

Successful Runs (%)

Crop 1 Crop 2 Crop 3 Crop 4 Mean

Ruby 0.8 0.8 1 0.2 0.75
RG 0.8 0.8 0.4 0 0.5

RGOP 1 1 1 1 1
RGOPPN 1 1 1 0.8 0.95

RGOPPNI 1 1 1 0 0.75

Table 3. The positioning error that the robot made when moving between two crop rows. In a perfect
situation, the robot should be exactly in the middle of the two crop rows, and thus should have an
error of 0.

Mean Squared Error (mm2)

Crop 1 Crop 2 Crop 3 Crop 4 Mean

Ruby 2900 360 120 5500 2200
RG 8700 3100 89 9640 5300

RGOP 65 430 67 750 320
RGOPPN 300 700 140 2240 840

RGOPPNI 67 310 260 60,000 15,000

Table 4. The average execution time for the line finding algorithms (LiDAR data to models) during
the 500 first iterations of each run.

Average Execution Time (ms)

Crop 1 Crop 2 Crop 3 Crop 4 Mean

Ruby 4.14 21.15 9.39 9.61 11.07
RG 5.25 8.12 6.56 6.11 6.51

RGOP 2.35 3.44 2.9 2.7 2.84
RGOPPN 1.58 3.57 2.8 2.37 2.58

RGOPPNI 3.3 6.37 4.42 4.05 4.5

Table 5. The average number of points considered by the line finding algorithms during the 500 first
iterations of each run.

Average Number of Points

Crop 1 Crop 2 Crop 3 Crop 4 Mean

Ruby 91 179.3 122.54 120.36 128.3
RG 91.16 178.1 124.53 120 128.4

RGOP 40.1 73.12 54.18 47.16 53.64
RGOPPN 40 73.15 54.19 47.12 53.61

RGOPPNI 40.08 73.96 54.19 47.17 53.85

Table 6. The average execution time per 100 points for the line finding algorithms (LiDAR data to
models) during the 500 first iterations of each run.

Execution Time /100 Points (ms)

Crop 1 Crop 2 Crop 3 Crop 4 Mean

Ruby 4.54 11.79 7.66 7.98 7.99
RG 5.75 4.55 5.26 5.09 5.11

RGOP 5.86 4.7 5.35 5.7 5.4
RGOPPN 3.95 4.88 5.16 5.02 4.75

RGOPPNI 8.2 8.61 8.15 8.58 8.38
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Regarding the data presented in the tables, it appears that filtering the input data with
a genetic approach (Ruby Genetic One Point) increases the robustness and improves the
precision and the computation time. As a matter of fact, combining the Ruby Genetic One
Point line finding algorithm with the control algorithm provides a 100% success rate over
the five experimental crops (Table 2). It also appears to be the most stable approach (Table 3).
However, adding the positive/negative filtering and allowing a point to be associated with
several models at the same time results in worse performance than RGOP (Table 2).

The number of processed points is consistent with what is expected: the first algorithms
named Ruby and RG consider the same number of points, while the algorithms RGOP,
RGOPPN, and RGOPPNI use fewer points (due to the filter point set Z∗). This can be seen
in Table 5.

The considered sensors have a rate of 40 Hz (Section 4.1.1), thus they provide a data
set every 25 ms. According to Table 4, the RGOP approach needs less than 3 ms to process a
data set. That is, it can be used in real time with this sensor, as can all the other algorithms.

It must be emphasized that the crops (more precisely the weed positions) were ran-
domly generated (the source code for the generation of the simulated crops is available in
Ref. [7]). This suggests that this navigation approach will provide reliable results in a wide
range of crop configurations. Even if the approach needs to be tested in real conditions, the
simulation results are more than encouraging.

5. Conclusions

In this paper a novel approach to extract crop rows from LiDAR data is presented.
This approach has been coupled with a fuzzy controller to propose a complete navigation
algorithm.

A simulator was developed to test this approach in various field situations, and the
results are positive: according to the simulated environments, the approach appears to
perform well even when the crop has uneven rows with holes and weeds.

Future work will be focused on implementing this approach into an experimental
platform and performing navigation in actual fields. Furthermore, cameras will be added
to the loop in order to limit the current assumptions about the field.
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Nomenclature

p ∈ R2 A 2D point (provided by the LiDAR sensor for instance), p = (xp, yp)

N The set of neighboring points such that an element (p, q) ∈ N corresponds to two points p and q in the
same neighborhood

Lj A model (a line for the crop navigation case), Lj : f (x) = ajx + bj
Lj The jth filtered model, Lj : f (x) = ajx + bj

Lle f t The filtered model closest to the left of the robot, Lle f t : f (x) = ale f tx + ble f t

Lright The filtered model closest to the right of the robot, Lright : f (x) = arightx + bright

Lj,−1 The jth filtered model of the previous iteration
L∅ The empty model (for the outliers)
Li = {Lj} A set of models
L−1 A set of models from the previous call of line finding
Ln A set of n filtered models, Ln = {L1, L2, ..., Ln}
Ln,−1 The set of n filtered models of the previous iteration
L(p) The model associated with the point p
E(L) The total energy of the model set L
EN (L) The penalty energy of associating close points to different models
E∅(L) The outlier energy of the model set L
EL(Lj) The energy of the model Lj
P(Lj) The set of points that are associated with the model Lj, P(Lj) = {p ∈ Z|L(p) = Lj}
Z = {p} The set of all the points
Z∗ A set of points based on Z , such that all the points that are close enough in Z are fused together
||X|| The Euclidean distance of the X expression
ψj Number of models parallel to model Lj
ρ, λ, ζ, τ, α, β Constants, heuristically chosen
δ6=(L(p), L(q)) A function that equals 1 if the point p is not associated with the same model as the point q, 0 otherwise
wpq A weight associated with δ6=(L(p), L(q)) in the computation of EN (L)
δq(Lj, Lk) A function that equals 1 if the models are parallel, 0 otherwise
ϕj Fitness criteria for Ruby Genetic
xr The position of the robot between two rows
θr The orientation of the robot in the field
d The distance between the rows (constant over the all crop)
ibest The index of the previous filter that best match the current expected ith one
bibest The b value of the previous filter that best match the current expected ith one
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