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Abstract: This paper introduces a technique to transform between geometric and barometric estimates
of altitude and vice-versa. Leveraging forecast numerical weather models, the method is unbiased
and has a vertical error with a standard deviation of around 30 m (100 ft), regardless of aircraft altitude,
which makes it significantly more precise than established comparable conversion functions. This
result may find application in various domains of civil aviation, including vertical RNP, systemized
airspace, and automatic landing systems.
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1. Introduction

With increasing air traffic, there is a great need to develop systems that enable robust,
reliable, and predictable 3-D aircraft navigation, i.e., in the lateral as well as in the vertical
domain. At present, reliable navigation services for aircraft can be provided in the lateral
domain, i.e., in latitude and longitude. At present, there are clear rules for route/procedural
separation in the lateral dimension but the uncertainty around the vertical dimension results
in the reservation of large blocks of airspace per procedure. The relatively lower accuracy
of vertical is insufficient to provide seamless 3D navigation to service a larger number of
aircraft within a given service volume. This necessitates the development of robust and
accurate systems that can provide seamless and reliable estimates of aircraft altitude for all
phases of flight.

In air-traffic management, two different methods of representing vertical information
are widely used: barometric and geometric. Altitude measurements from a barometer
also known as pressure altitude. Barometric altitude relies on converting the pressure
reading taken at a particular location and converting it to the height above mean sea level
using the reference pressure and temperature values provided by the ICAO Standard
Atmosphere (ISA) [1]. The conversion allows aircraft to follow isobaric surfaces, expressed
in terms that are human-readable in units of feet. It also allows aircraft to follow pre-defined
descent profiles. During the approach phase of the aircraft, the reference setting of the
barometric altitude is changed from the ISA to the aerodrome depending on whether
the aircraft is in cruising altitude or in approach [2,3]. In contrast, the geometric altitude
is primarily measured with sensors like Global Navigation Satellite Systems (GNSS) or
radar altimeters where the altitude is referenced to either the WGS84 ellipsoid or the local
terrain, respectively.

In civil aviation, vertical navigation and localization are typically performed either in
terms of a geometric path, or else as a barometric reading expressed, not in units of pressure,
but in units of height. The conversion from barometric pressure to height is regulated
by the ICAO Standard Atmosphere (ISA) [1] or based on the pressure and temperature
measurements from the aerodrome depending on whether the aircraft is in cruising altitude
or in approach [2,3]. The conversion allows aircraft to follow isobaric surfaces, expressed in
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terms that are human-readable in units of feet; it also allows aircraft to follow pre-defined
descent profiles.

Controlling aircraft vertical dynamics by barometric measurements has certain ad-
vantages dating back to the times before GNSS was pervasive. In the upper airspace,
barometric altitude allows for the strategic deconfliction of air traffic going in different
directions. Roughly speaking, aircraft going in one direction stick to one isobaric surface,
while aircraft going in the opposite direction must be a thousand feet above or below.

The main disadvantage is that barometric measurements of altitude vary with the
weather. The ISA does account for that fact but leaves residual biases that can be significant,
relative to the requirements associated with the vertical guidance in landing the aircraft.
Using the ISA as a measurement of altitude can lead to errors over several hundred feet.
The current methodology as described in the DO-236C/ED-75D [2,3], cannot distinguish
between pressure changes that occur due to changes in altitude or due to the passage of
weather fronts. This is, however, not an issue for conventional operations, as these errors
are either common for all aircraft in an area, thus maintaining vertical separation, or can be
compensated by referring locally to a known altitude such as an aerodrome.

By contrast, GNSS-based measurements of height are unbiased and can achieve accu-
racies in the order of a few meters. The advantage of GNSS-based altitude over barometric
altitude is that they are not affected by variations in the atmosphere. With adequate pro-
cessing, satellite navigation services offer sufficient performance to support all phases of
flight, most notably departure, en-route, and approach. Note that satellite services can
also support more stringent operations, such as precision approach and landing, a similar
analysis of the methodology proposed in this paper is left as an item for future work.

The method presented in this paper: BiG-C (Barometric to Geometric Converter),
offers a way of converting barometric estimates of altitude to geometric altitude and vice-
versa. The proposed algorithm improves the vertical repeatability of barometric altitude
by accounting for the impact of off-nominal atmospheric effects such as weather fronts or
ducting on barometric altitude measurement. By using numerical weather forecasts, these
conversions have negligibly small biases and a residual uncertainty that is small enough
to support navigation services in the vertical for most en-route, as well as departure and
arrival applications.

The proposed conversions are interesting, in civil aviation applications, for a variety
of reasons. These include improved repeatability in the vertical position, reduced workload
in the cockpit, and vertical guidance in case of a GNSS failure, to name a few. An unbiased
conversion function between barometric and geometric altitudes, and vice versa, would
find wide application in making air traffic management more efficient.

DO-236C [2]/ED-75D [3] describes the Vertical Path Performance Limits (VPPL) that an
altitude measurement system must comply with for different phases of flight. The most stringent
VPPL value is about +48.768 m (160 feet) for aircraft altitudes below 5000 feet [2,3]. Thus, in the
context of this paper, any residual error below 424.384 m (80 feet) is considered negligible.

2. Materials and Methods

An altimetry system based on barometric measurements must be able to provide
real-time, robust, and repeatable altitude estimates, irrespective of any atmospheric vari-
ability. The underlying methodology of the BiG-C and the corresponding validation setup
described in this paper leverages the forecast NWM to demonstrate a near bias-free con-
version between the barometric and geometric altitudes. The evaluation of the BiG-C
methodology is performed by validating its behavior with respect to the GNSS altitude
collected as part of flight experiments conducted by the German Aerospace Center (DLR).

2.1. Operational Background

Different terminologies are utilized to differentiate the altitude derived from baro-
metric measurements based on the reference surface with respect to which the altitude
is derived. The reference surface selected depends on the barometric pressure set on the
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altimeter sub-scale. Three references for barometric pressure are in common usage: QNH,
QFE, and Hlight levels.

*  QNH: This refers to the height above the mean sea level (MSL), i.e., the height above
the geoid or also referred to as the orthometric height (H). The QNH pressure values
correspond to the local sea level pressure (with the ISA lapse rates) provided by the
nearest ground stations.

*  QFE: This refers to the height above the runway. Here, the local measurements in
the airport are transmitted to the aircraft to calibrate the barometric altimeter. In the
PANS-OPS Doc 8400 [4], see Q-Codes, QFE is referred to as “Atmospheric pressure
at aerodrome elevation (or at runway threshold)”. With the aerodrome QFE set in
the subscale, your altimeter will read zero on the highest point on the runway, and at
other altitudes will read the height above the airfield elevation.

¢  Flight Levels: Flight levels are used to ensure safe vertical separation between the
aircraft, despite local fluctuations in atmospheric pressure and temperature. It is used
by all aircraft operating above the transition altitude to provide a common reference for
vertical measurement. Though this setting is used to maintain the aircraft separation,
it does not give the actual height of the aircraft above sea level or the ground. Thus,
we use the transition altitude to indicate the shift from calibrating the barometer to
QFH to using flight levels. While operating at or below the transition altitude, the
aircraft altimeter shows the altitude above the local runway. Additionally, when above
the transition altitude, the barometer is adjusted to the ISA pressure surface (i.e., with
respect to 1013.25 hPa).

Each aircraft operating in airspace where vertical performance is specified shall have
total system error components in the vertical direction that are less than the specified
performance limit 99.7% of the flying time [2,3]. To ensure that the airplane remains on the
desired path, certain limits are established for errors in navigation performance. Table 1
illustrates the vertical path performance limit (VPPL) of the navigation system, including
static source pressure altimetry error as stated in DO-236C [2]/ED-75D [3].

Table 1. VPPL specifies the maximum tolerable altitude error of the altitude measurement system for
various phases of flight. Adapted with premission from Table 2-1 in RTCA DO-236C ©RTCA /ED-75D
©EUROCAE. Used with permission. All rights reserved [2,3].

Altitude Level (MSL) Vertical Path Performance Limit (VPPL) (d-feet)
At or Below 5000 feet 160
Above 5000 feet to 10,000 feet 210
Above 10,000 feet to 29,000 feet 210
Above 29,000 feet 260

The assumption of ICAO standard atmospheric (ISA) values results in significant
deviations in the derived altitude between warmer or colder climates. The assumption of
an ISA would be acceptable at high altitudes since all the aircraft make similar assumptions
and are all making the same error in their vertical altitude. Since at these altitudes the
important thing is to maintain the required minimum separation between the aircraft.
However, during the approach phase of the aircraft, the assumption of the standard ISA
atmosphere is not sufficiently accurate due to the following reasons:

e If the temperature at the sea level is different from 15 °C then the rate of decrease in
pressure will be different and thus will lead to erroneous altitude measurements. For
example, as shown in Figure 1, on a warm day the altimeter will yield a higher altitude,
and on a cold day, the altimeter will under-read, for the same pressure measurement
from the barometer.

¢ The surface pressure varies significantly when compared to the ISA or the
QONH measurement.
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Figure 1. The indicated altitude significantly deviates from the true altitude of the aircraft based on
the variation of the temperature from the ISA reference values in warmer or colder weather.

The current solution specified in DO-236C/ED-75D requires temperature compen-
sation functions to correct for the difference in the temperature between the ISA and the
atmosphere in which the aircraft is flying. An inherent problem with the present solution
is that even with temperature corrections for the reference level, the present approach
of utilizing the ISA does not account for altitude variations of pressure and temperature
in real time. Thereby, neglecting any changes in the pressure and temperature profiles
and the resulting impact on the barometric altitudes due to severe atmospheric conditions
such as weather fronts, ducting, etc. In addition, the current approach of utilizing the
temperature compensation functions is only applicable below the transition altitude and
when the aircraft is in the vicinity of the airport. Thus, above the transition altitude, the
barometric altitudes still exhibit significantly large altitude differences resulting from the
deviation of the ISA from the true state of the atmosphere.

In addition to the correction functions to compensate for atmospheric variability, the
pilot has to manually set the reference level to QNE or QFE for the barometric altitude
measurements depending on its altitude. Occasionally, a pilot may forget to reset the
barometric pressure reference setting to standard (1013.25 hPa) when transitioning through
the transition altitude. This can lead to the aircraft flying at a different altitude than that
assigned. Aircraft cruise within flight routes at assigned altitudes. If an aircraft is not
flying at its assigned altitude, it becomes a threat to other aircraft operating in the same
flight route.

Once the aircraft is above the transition altitude the barometric setting is changed
to QNE to maintain the altitude measurements with reference to the MSL using the ISA
reference values for pressure and temperature. Once the aircraft is below the transition
altitude the pilot needs to manually change the barometric reference to QFE where the
reference values are utilized as measured from the specific airfield. Non-uniform transition
altitudes defined across the world (varying significantly between 18000 feet in the USA to
various altitudes based on the location of the airport), lead to a significant pilot workload to
ensure an accurate reference plane is chosen along with the appropriate corrections being
applied to compensate any deviation from the ISA.
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2.2. Theoretical Background

Altimeter measurements are relative to the reference surface, which could range from
sea level to the local terrain (such as the mountain top). If airborne data are to be compared,
it is necessary to introduce a reference surface to which all measurements are compared.
Historically, the mean sea level (MSL) has been used as the zero of elevation, and this is
closely approximated by an equipotential surface for the earth’s gravity field called the
geoid [5]. Although much smoother than the topographic surface of the earth, the geoid
has significant vertical undulations due to the large-scale distribution of the earth’s mass.
A much smoother reference surface is the reference ellipsoid, which is used to approximate
the shape of the earth. The reference ellipsoid is convenient because three-dimensional
coordinates (latitude, longitude, and altitude) are easily defined with respect to it.

Definitions of height and altitude vary depending on the vertical datum or reference
level used. In dealing with airborne research data, it is common to encounter different
technical terms relating to altitude and vertical direction. These include geometric altitude,
GNSS altitude, pressure altitude, and geopotential height. Two altitude scales are widely
used in Air Traffic Management (ATM): geometric altitude and geopotential altitude or
height. Geometric altitude is the scale that is typically referenced to the WGS-84 ellipsoid
or the local terrain. On the other hand, the geopotential height is referenced to the so-called
geoid or the mean sea level (MSL) [5].

Figure 2 illustrates the relationship between various surfaces that are used as a ref-
erence for measuring height in individual height systems. As seen in Figure 2, the most
common vertical datums used in geodesy and navigation applications are [5]:

e Ellipsoidal Height: The normal distance of a point from the reference ellipsoid to a
point above the earth’s surface is termed the ellipsoid height (). The most recent
version of the reference ellipsoid is the WGS-84, which is also used by the Global
Position Systems (GPS).

®  Orthometric Altitude: The height normal to the geoid is called the orthometric height
(H,). In geodetic terminology, the term geometric altitude specifies the reference as
mean sea level, which means the perpendicular measured distance is related to the
geoid. Thus, the geometric height of a point relative to a geoid is usually related to the
orthometric height.

*  Geoid Undulation or Geoid Height: The normal distance, which can be positive or
negative, from the reference ellipsoid to the geoid is called geoid height/undulation
(Hu). The geoid undulation is dependent on latitude and longitude. Different values
of gravity can be used to determine H,. Nivenski [6] compared different gravity
values such as normal gravity, normal gravity without centrifugal contribution, and
an EGM96 expansion of the actual gravity, and found that the impact of using different
gravity formulas on the geoid undulation calculation is insignificant. In this work, we
use the geoid undulations defined by the EGM-96 earth gravitational model.

The height at or above the earth’s surface can be measured with respect to the reference
ellipsoid or the geoid, and these can differ by as much as £100 m. As described before the
geoid undulation (H,,) is required for the transformation between both reference systems.
Figure 3 shows the geographic variability of the geoid undulations (i.e., the difference
between the approximation made by the reference ellipsoid of the earth’s equipotential
surface and the mean sea level). At each latitude and longitude, the height of the geoid
above the WGS84 ellipsoid is computed using interpolation of a grid of values for the
EGM-96 earth gravity model. For this cubic interpolation is used. The RMS error of
using the interpolated height is about 1 mm [7]. The errors in the calculation of geoid
undulation values primarily stem from (1) the method of interpolation, (2) the height
ambiguity resulting from the fact that the geoid and ellipsoid are not parallel surfaces, and
(3) the grid format of the geoid harmonic coefficients, which require quantization of height
to 3 mm [7]. We observe that the geoid undulations are not negligible in most continental
regions, with significant variability ranging from —100 meters (in the Indian subcontinent)
to around +80 m in Europe.
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Figure 2. Different vertical data (geoid or ellipsoid) are possible depending on the selected ap-
proximation for the earth’s surface. The corresponding heights for the respective vertical data are
ellipsoidal height (h.), and orthometric height (H,). These two height systems are related by the
geoid height H,,.
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Figure 3. Selecting an appropriate vertical datum for height measurements at or above the earth’s
surface is crucial, as the Geoid (mean sea level) and the WGS84 reference ellipsoid can vary by as
much as £100 m.

Geopotential altitude ({) is referenced with respect to the mean sea level (MSL), at a
constant gravity acceleration at 45° latitude. Radiosondes and NWM data generally report
geopotential height—a scale that relates height to gravitational equipotentials, or surfaces
of constant gravitational potential energy per unit mass. Thus, the geopotential height
is constant if one follows the same gravity potential, as one moves from place to place.
Although geopotential height approximates geometric height, they are not the same. An
important type of geopotential height is pressure altitude, which is based on a standard
atmospheric model for temperature as a function of pressure. One particular model, the
ICAO ISA [1], is what all aircraft altimeters use to relate static pressure measurements on
an aircraft to a corresponding pressure altitude scale.

The gravitational potential energy or geopotential (®) of a unit mass of anything is
simply the integral from mean sea level (z = 0 m) to the height of the mass (z = I), given
as [5]:

h 2
o= [ g(p2)dz [Z‘z] M)

where, g(¢, z) is the gravity acceleration above the geoid at geodetic latitude ¢ and geomet-
ric altitude z. Now, while the geopotential (potential energy per unit mass) is useful for
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atmospheric dynamics studies (since it is a convenient way to compare meteorological data
from different locations), it is more convenient if it is expressed as a height above the geoid.
Thus, the geopotential (®) is divided by the normal gravity (g45) at a latitude of 45 degrees
to obtain the geopotential height as [5]:

=2 [, @
845
Transformation of geopotential to orthometric height is a non-linear process. As
described in Figure 4 and in Equations (1) and (2), we need to account for the variation of
gravity with altitude. In general, this is handled by the means of encoding the variation of
gravity with latitude and height using a fictitious, latitudinally varying, “effective earth’s
radius” (R.sf) [5], given as:

T 1t f+m—2fsin2(¢)

Refr(e) )

Following this, the geopotential height can be transformed into orthometric (geometric)
height as [5]:
R(¢)-¢
H, =
) pgy g

4)

845

where, g5(¢, H,) is the gravity acceleration at the latitude ¢ and at height H,,. Note that esti-
mating the orthometric height using Equation (4), in turn, depends on the value of gravity
at the given orthometric height (H,). This leads to an iterative and non-linear process.

Gravitational model .
. - Undulations +—
and conversion

[t S ————
Geopotential I| Orthometric Ellipsoidal }
Height : Height Height |
- e VY /
Vertical Geoid ) o
Datum eol Geoid Ellipsoid

Figure 4. The transformation between geopotential altitude and ellipsoidal height is a non-linear
process and depends on the underlying expressions used for the surface gravity on an ellipsoid and
geoid undulations (which in turn depends on the geoid model).

Now, for civil aviation, the atmospheric effects need to be accounted for up to the
mesosphere (altitude of ~80 km), which is considerably small in comparison to the earth’s
radius. Within the mesosphere, the altitude variability of the gravity over the ellipsoid
is found to be negligibly small and the fractional difference in the geopotential height is
primarily dominated by the variation in surface gravity [8]. Therefore, it is sufficient to
evaluate the gravity (described in Equation (4)) on the surface of the ellipsoid. The resulting
expression for the orthometric height is given as [5],

o R@)C
8s() R(§)— ¢

845

©)

where, g5(¢) is the normal gravity on the surface of an ellipsoid of revolution for a given
latitude (¢), which is based on the Somigliana’s expression [5], given as:

_ o _Ltksin(g)?
50 =30 . ¢)2> ©)



Sensors 2022, 22,9263

8 of 22

Aircraft Data

where, k is the Somigliana’s constant [5]. Note that the resulting difference in the orthomet-
ric height due to the simplification introduced in Equation (5) is negligibly small within
mesosphere [8].
Finally, the orthometric height (H,) is transformed into ellipsoidal height (h,) using
the geoid undulation (H,) as,
h, = H, + H,,. ?)

In controlled airspace, aircraft are typically assigned flight levels, which are defined
in terms of pressure but expressed in units of altitude (i.e., feet). Atmospheric pressure
varies in space and time; if an aircraft were to maintain a constant geometric altitude,
the barometer would read different pressure values. Thus, to have a constant barometric
altitude reading, the ISA model must be updated with local atmospheric conditions. The
ISA is described with a sea level pressure of 1013.25 hPa and temperature of 15 °C, and
thus may not correspond to the aircraft’s actual altitude above the true mean sea level or
above the ground level.

2.3. Computational Setup: Improved Altitude Measurements from Barometric Data

To validate the proposed methodology the computational setup compares the aircraft
altitude in two ways: from GNSS altitude derived from the improved barometric altitude
(h) and from the GNSS altitude (hgps) available from the GNSS receiver onboard the aircraft.
Figure 5 describes the various steps involved in estimating and validating the improved
barometric altitudes from the NWM with the GNSS altitude.

Altitude Processing Block

(. 4)

Aircraft GNSS Coordinates / Flight Path .
@
Observation Epoch (1) Temperature

ECMWF ERA-5 NWM
|— ————— —

Surface Pressure }

|

I

| Surface
Geopotential

| [ 3D Virtual | |

| Temperature

Temperature

Surrounding ERA-5 NWM
coordinates

‘ Lapse rate

mode levels
/" Bilinear Interpolation ]

Pressure

Temperature
\__ Geopotential Height

—aroat ) w12 ] -1 [2])

Pressure

¥

Surrounding ERA-5 J

Barometric Altitude

~ Aircraft GPS Height l o '
.| Residual Height
On

Figure 5. Computational setup for estimating barometric altitude.

The numerical data underlying the ray tracing stems from the ERA-5 European Center
for Mid-Range Weather Forecasts (ECMWEF) forecast and re-analyses model level numerical
weather model (NWM). This comprises the required meteorological data: surface geopo-
tential and pressure, together with 3D temperature on 60 model levels, at a horizontal
resolution of 0.125 x 0.125 degrees in latitude and longitude, and sampled every 6 h.

The meteorological data from NWM are available in a 3D field of latitude ¢, longitude
A, and height 1 with a certain horizontal and vertical resolution. The finest or highest
horizontal resolution is 0.125° x 0.125°in latitude and longitude [9]. Since the NWM is
the source of the meteorological data to generate the atmospheric reference values for the
barometric altitude computation, its horizontal resolution is set to that of the NWM.
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In meteorology, the virtual temperature is often used instead of the static tempera-
ture [10]. Compared to the temperature of a moist air mass, this is the theoretical (higher)
temperature that an equivalent dry air parcel with the same properties would have, such
as density and pressure. The use of this abstract variable simplifies the calculations within
NWP models because it considers the moisture content of the air while allowing the use
of mathematical expressions that are normally only used for dry air. Thus, we must use
virtual temperature in the computation of the reference NWM level temperature that will
be used in the computation of barometric altitude. The virtual temperature is computed

as [10],
Tv:T<1+L§d1}~q> 8)

where T is temperature, g is specific humidity and R; and Ry, are the universal gas constants
for dry and moist air, respectively.

Most often the location of the aircraft does not coincide with the coordinates where
the NWM is available. Therefore, for a given aircraft coordinate (latitude and longitude),
we horizontally interpolate the NWM data at all model levels, that spatially surround
the aircraft location. This provides a 3D snapshot of the meteorological parameters at
the exact aircraft latitude and longitude. In this work, we use bilinear interpolation (as
shown in Figure 6) of the constituent parameters such as pressure, geopotential, and virtual
temperature to compute the corresponding parameters at all model levels coinciding
with the latitude and longitude of the aircraft. The use of bilinear interpolation for the
meteorological parameter estimation is a well-tested and commonly used technique in
GNSS and atmospheric propagation delay modeling [11].

My, . . Mgy, xe

Ap=¢2—¢1
A= Aint — A1
———————— ’ Mpine, Nint
: ¢ = ¢int - ¢1
. 1
My, M AN =Xy — )\ Mepy,Xo

Figure 6. Geometry for bilinear interpolation of the refractive index at aircraft coordinates mg,, 1

int

using the surrounding refractive indices mg, A, Mg, Ay, M, Ay s Mgy 0 -

Figure 6 illustrates the bilinear interpolation of the NWM data from a set of surround-
ing grid points. As seen in the figure, considering a 2D grid of nodes, the NWM data
(pressure, temperature, and specific humidity) at the desired location denoted as my, . 1,
is obtained by considering the data mg, z,, Mg, A, Mg, 2, and Mg, », given at the grid nodes:
(¢1,A1), (¢1,A2), (¢2, A1) and (¢, A2) that surround the desired location (¢j,s, Ajy). The
surrounding nodes must satisfy the following conditions:

P < Pint < P2 A1 < A < Ag. )

The meteorological data my, . 1, at the aircraft coordinates m, 1, . is evaluated as:

m‘Pintr)\inf = (1 - X) (1 - é)m%,}\l + (1 - X)lepl,/\z + Xém(]?z,/\z + X(l - g)mlpz,)\l (10)
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where x and ¢ denote weighting parameters for the contribution of each grid node value to
the interpolation result. They are given as:

_ (Pint — (Pl
¢2 — 1

Most often the epochs at which the NWM is available do not match the time at which
the flight data is collected, thus, we interpolate the atmospheric parameters to the exact
observation times. The atmospheric parameters retrieved from the NWM are only valid at
a specific time with respect to the time at which the NWM is available. The ERA-5 NWM is
available with a time resolution of one hour. This fundamental time resolution of the NWM
is sufficient to compute the atmospheric variables using the two epochs that temporally
surround the desired time of observation at which we need to compute the barometric
altitude. Thus, in this case, a linear interpolation between the NWM determined at the
surrounding epochs leads to the final geopotential, pressure, and virtual temperature at the
exact observation time. Reference [12] describes the linear interpolation of tropospheric
delays with respect to the time domain,

Aint — M

e T (11)

X

mg,,, — M,
M(tobs - tepl) (12)

+
tepZ - tepl

my = m;

obs epl
where m; ,_is the interpolated meteorological data at the observation time #,ps. fep1 and fepn
are the NWM epochs at which the NWM data are available. Since the meteorological data
at t,ps is calculated from the surrounding NWM epochs, ¢, and t,,» additionally fulfill the
following condition:

tepl < fops < tepZ- (13)

The conventional exponential distribution used to describe the variation of pressure
with altitude is not applicable for altitudes with tropopause (~12 km), which is the usual op-
erational altitude for civil aviation [12]. In contrast, within the tropopause, the temperature
variability with altitude is well described by a linear model [13],

T =To— B(h—ho) (14)

where, Ty, B, and hy are the reference temperature, altitude, and temperature lapse rate, re-
spectively. Using this expression for temperature in the equation of hydrostatic equilibrium
and integrating from the surface to a height /1, we obtain the expression for the variation of
pressure with altitude as,

p(h) = Po(l - 5(hT_0h°)>Rdﬁ. (15)

Thus, re-arranging the equation for pressure (15), for a given reference pressure (po)
and temperature Ty, we can compute the altitude (k) for a given pressure measurement
(p(h))as,

R

= 30-() o

Equation (16) is known as the barometric altitude.

Utilizing a reference pressure and temperature from NWM accounting for the variabil-
ity in temperature and pressure gradients in the atmospheric column beneath the aircraft
yields the most accurate estimates of the barometric altitude. The nominal atmosphere is
usually characterized by a temperature lapse rate of 6.5 K/km. However, most often the
atmosphere deviates from the nominal temperature profile, especially in the presence of
off-nominal atmospheric effects such as ducting [14,15]. Ducting causes the temperature
gradient to be either zero or positive, which results in the temperature being either constant
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or increasing with an increase in altitude [14,15]. As seen in Equations (14) and (15), varia-
tions in temperature lapse directly impact the vertical profile of pressure and temperature.
This leads to a non-linear vertical temperature gradient. Since the measurement of baro-
metric altitude depends on the temperature lapse rate, deviations in temperature profile
from a linear model will result in errors in the estimated altitude. Thus, utilizing the mean
sea level pressure and temperature values does not yield the most accurate reference for
estimating the barometric altitude.

To account for the impact of non-ideal atmospheric variability in the barometric
Equation (16), we use the following procedure, as described in Figure 7:

*  NWM provides static pressure p,,;, virtual temperature T;, , and geopotential altitude
H,,; at discrete altitude levels.

e  For a given pressure and temperature measurement at the aircraft altitude, we use
the bilinear interpolated NWM data determined at the latitude and longitude of the
aircraft and compare the pressure measurement from the aircraft with the pressure
data at all model levels from the NWM.

*  This yields the model levels with pressure values that surround the aircraft pres-
sure data.

*  The surrounding model levels are used as the reference surface to determine the
temperature lapse rate,

T, Ty,
ST 17
IB h;nl . hml )

¢ Next, using the temperature lapse rate computed based on Equation (17), and using
the reference pressure and temperature from the model levels surrounding the aircraft,
we compute the aircraft altitude using the barometric equation.

* Next, the geopotential altitude (H,,;) of the reference model level is added to the
derived altitude (/) to obtain the barometric altitude of the aircraft above the mean
sea level.

*  Finally, we validate the barometric altitude obtained from step 6 by comparing it
against the GNSS altitude (hgps).

Model P T oy H'mi
level "i + 1"

—_ Pac> Tac

Model
Zel)el "i" pmir T?Jm[’ Hml

Figure 7. Computation of reference surface values and temperature lapse rate for estimating the
barometric altitude from a pressure and temperature measurement at aircraft.

Since the pressure and temperature at each model level of the NWM account for the
variability in atmospheric parameters in the model levels below it, utilizing a reference
surface for the barometric equation that surrounds the aircraft pressure measurement,
inherently considers any deviation of the temperature and temperature lapse rate due to
off-nominal atmospheric effects such as ducting.

2.4. Validation Setup

In real-time application of the proposed methodology, the ERA-5 forecast NWM
provides near real-time reference pressure and temperature values to compute barometric
altitude. We use the 6-hour and 12-hour forecast of the ERA-5 NWM data from ECMWEF to
generate the required meteorological information for computing the pressure, temperature,
and the associated temperature lapse rates to be used in the barometric equation.
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To validate the residual error of the proposed altitude estimation methodology, the
computational setup compares barometric altitude in two ways: by using the reference
pressure and temperature profiles from a more accurate re-analysis of NWM and from
the forecast NWM with the GNSS altitude. Figure 8 outlines the flowchart indicating the
various steps involved in validating the methodology using the forecast NWM to accurately
estimate the barometric altitude.

Truth Model
Re-Analysis {ra) Forecast (fc)
Weather Data Weather Data
v v
[ Altitude Processing ] { Altitude Processing ]

Figure 8. Computational setup for validating the accuracy of barometric altitude corrections using
forecast numerical weather data.

In general, the accuracy of the proposed methodology to provide the required reference
pressure and temperature values to compute the barometric altitude depends on the ability
of the forecast NWM to represent the state of the atmosphere. To validate the accuracy of the
forecast NWM, we utilize the re-analysis NWM. Reanalysis data provide the most complete
picture currently possible of past weather and climate. They are a blend of observations
with past short-range weather forecasts rerun with modern weather forecasting models.
They are globally complete and consistent in time and are sometimes referred to as ‘maps
without gaps’. Reanalysis combines past short-range weather forecasts with observations
through data assimilation. The process mimics the production of day-to-day weather
forecasts, which use an analysis of the current state of the Earth system as their starting
point. The analysis is a physically consistent blend of observations with a short-range
forecast based on the previous analysis. A detailed analysis of the accuracy of the forecast
NWM to predict various atmospheric parameters including off-nominal atmospheric effects
is given in [15].

The forecast NWM accurately predicts the atmospheric parameters even in presence
of off-nominal atmospheric in comparison to the reference re-analysis NWM. Recent work
showed that off-nominal atmospheric tropospheric effects such as ducts are not particularly
rare and can result in significant deviations in the pressure and temperature profiles in
comparison to the nominal behavior described in Equations (14) and (15) [14,15]. The
ability of the forecast NWM to accurately provide the reference pressure and temperature
values to estimate the barometric altitude is determined as follows:
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e  As described earlier, the reference aircraft altitude information is obtained from
GNSS (hgps).

*  The pressure, temperature, and the temperature lapse rate profiles from the forecast
and re-analysis NWM are used within the altitude processing block described in
Figure 5 to estimate the corresponding barometric altitude /¢, and gy, respectively.

®  The resulting altitude difference using the re-analysis NWM with respect to GNSS
altitude is given as:

€an = hgps — Ny + Oan (18)

where J, is the error resulting from the spatial and diurnal interpolation of the
re-analysis of NWM data.
e  Similarly, the altitude difference using the forecast NWM with respect to GNSS altitude
is given as:
€fc = hgps — hfc + 5fc (19)

where J. is the error resulting from the spatial and diurnal interpolation of the
re-analysis of NWM data.
*  Finally, the residual (r;) between the forecast (¢7) and re-analysis (€an) is computed as:

T = €fc — €an + 0y (20)

where, 6, = /62, + 62,

2.5. Flight Data

The results of this paper are backed by data collected using the German atmospheric
research aircraft (shown in Figure 9) High Altitude and Long Range Research Aircraft
(HALO), registration D-ADLR, of the German Aerospace Center (DLR), during the at-
mospheric research mission “Oxidation Mechanism Observation (OMO)” which was per-
formed in 2015 over parts of Europe and Asia [16]. HALO is based on a Gulfstream
G550 business jet. Its combination of long range of more than 8000 km, maximum flight
altitude (up to 15 km) [17] payload and flexibility makes HALO a worldwide unique
research aircraft.

Figure 9. The barometric and GNSS measurements used to validate the BiG-C methodology stem
from the DLR HALO research aircraft.

HALO is equipped with a large set of instruments including the Basic HALO Measure-
ment and Sensor System (BAHAMAS) which is used to measure and collect meteorological
and aircraft state parameters including static pressure, temperature, and wind data, among
several other atmospheric parameters, [17,18]. As shown in Figure 10, the basis sensor
system comprises:
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*  Access to the basic aircraft position data.

*  Measurement of the 3-D wind field and turbulence.

*  Measurement of pressure, temperature, and humidity with different sensors up to the
tropopause level.

¢ Radiation sensors.

*  Surrounding conditions in the aircraft.

e Aircraft Parameter from the Air Data Computer.

The data relevant to this study consist of a track of GNSS position fixes (latitude,
longitude, and altitude) along with a measurement of static pressure, temperature, and
humidity from the BAHAMAS instrument. The unique ability of the HALO aircraft
to collect measurements encompassing a wide range of aircraft altitudes ranging up to
15.5448 km (51,000 feet) above the surface of the earth, makes the data collected using
HALO aircraft a perfect candidate to test the validity of the methodology proposed in this
paper over a variety of atmospheric conditions. The full details of the OMO mission are
described in [16,19].

Basic sensors and data Acquisition
Integration and Operation: DLR-FB

Trailing Cone

Radiation

Video/Avionics data
Nose-boom 6 cameras incl. EVS
for turbulence measurements FWMS, ADS, IRS, WxR, TEPCDosimeter -

Radio Alt, Radar Alt, 5= -
pressure sensor TCAS, LSS, EGPWS, /
GPS, ASCE) -
/ ——" HALE)
, , 1 ar, - 55—

Temperature

[n] d
Sensors rop sondes

High Precision
Aircraft Position
Inertial Reference System

Cabin pressure
acceleration

radiation temperature  Monitoring of Fower Supply
radiation Cabin temperature

Humidity Sensors

Radar altimeter

Figure 10. The HALO comprises of several high precision avionics sensors to measure the aircraft
position and other air data measurements that is used to validate the BiG-C methodology stems from
the DLR HALO research aircraft.

The test flights offer a chance to verify the impact of providing accurate reference
atmospheric values for barometric altitude measurements in civil aviation. In Figure 11, we
show the ground track of the flight data where the test flight took place on 21 July 2015,
with take-off from the Oberpfaffenhofen (EDMO), Germany at 09:01 UTC and landing at
12:38 UTC at Paphos (LCPH), Cyprus. The flight data from the OMO mission provides
a wide variety of GNSS altitude measurements ranging from ~15.24 m (50 feet) to about
14.3256 km (47,000 feet), comprising about 12,407 data points, thereby providing an avenue
to validate the accuracy of the proposed methodology to reliably estimate the aircraft
altitude using the barometric measurements for a wide range of aircraft altitudes.
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Figure 11. Flight track of one of the flight segments of the OMO mission using the HALO aircraft
used for analysis in this study.

3. Results

Utilizing the ISA for the reference atmospheric values (pressure: 1013.25 hPa, temper-
ature: 288.15 K) results in vertical errors larger than the required Vertical Path Performance
Limit (VPPL) limits; in fact, at greater altitudes, the ISA introduces biases that are greater
than two standard deviations. Figure 12 shows the altitude difference between the baromet-
ric altitude derived using the ISA reference values and the geometric altitude as measured
with GNSS. Note that, the whiskers in Figure 12 are set to indicate 99.7% quantiles as
specified in the DO-236C [2]/ED-75D [3]. The deviations resulting from using the ISA as
the reference setting within the barometer results in altitude error (in the order of several
hundred feet) exceeding the VPPL limits irrespective of aircraft altitude.

The fact that residuals are relatively lower at lower altitudes in comparison to higher
aircraft altitudes is a direct consequence of the ISA, which is designed for simplicity, rather
than accuracy. From the barometric equation, we know that the altitude is derived by
projecting the reference pressure and temperature values to the point of the static pressure
measurement by the aircraft. Thus, any deviations in the reference values from the existing
pressure and temperature profiles will lead to errors, which grow with increasing altitude.

The residual error when using the reference pressure and temperature profiles from the
forecast NWM is significantly smaller than those using the ISA. Figure 13 shows the altitude
difference (Equation (19)) between the barometric altitude derived using the forecast NWM
reference values and the GNSS altitude. From the figure, we can observe that the deviations
resulting from using the parameters derived using the proposed methodology in this paper
from the forecast NWM, as the reference setting within the barometer causes altitude error
well within the VPPL limits for all aircraft altitudes. Comparing the residual of the improved
barometric altitudes (Figure 13) with the residual from using the existing methodology
based on the ISA reference values (Figure 12), illustrates that at altitudes above 5000 feet, the
proposed methodology has residual altitude error significantly smaller by several orders of
magnitude in comparison to that achieved with the existing ISA based approach.
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The proposed methodology enables estimating the barometric altitude of the aircraft
with sufficient accuracy to comply with vertical RNP, as defined in DO-236C [2]/ED-75D [3].
Ensuring vertical repeatability of the altitude measurement systems is crucial as it indicates
the ability to estimate aircraft altitude within the desired accuracy uniformly for all phases
of aircraft operations. The plot in Figure 13 illustrates this claim, as the residual vertical
errors (Equation (20)) are entirely contained by the error budget defined by the VPPL, for
all phases of flight.

Altitude difference between GNSS and barometric altitude (based on ISA)
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Figure 12. Estimating aircraft altitude using the ISA reference setting (pressure: 1013.25 hPa, tem-
perature: 288.15 K) within the barometric altimeter leads to significant error in comparison to GNSS
altitude measurements. The vertical thresholds indicate the VPPL limits, which are the maximum
values that the altitude data from the aircraft must satisfy to be eligible for use in providing accurate
vertical navigation.

Altitude difference between GNSS and barometric altitude (based on forecast NWM)
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Figure 13. Estimating aircraft altitude using the reference meteorological parameters derived using
the forecast NWM within the barometric altimeter in comparison to GNSS altitude measurements
leads to errors (Equation (19)) well contained within the VPPL limits regardless of aircraft altitude.
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The altitude residuals (r;, shown in Equation (20)) using the reference pressure and
temperature from the forecast NWM is in the order of +12.192 m (40 feet) compared to that
determined from the more accurate re-analysis NWM. Figure 13 shows the residual between
the altitude difference (h — hgps) computed by the forecast and re-analysis of NWM. From
the figure, we observe that the forecast NWM provides accurate reference atmospheric
profiles enabling accurate estimation of barometric altitude with the unmodeled error
within +12.192 m (40 feet) even at higher altitudes, which is significantly smaller compared
to the residual error (Figure 12) obtained when utilizing the ISA.

The residual error (r;, shown in Equation (20)) has two components: one from the
mismatch between the forecast and re-analysis derived barometric altitudes, and the
other arising from the difference of the barometric altitudes (estimated using forecast:
Equation (19) and re-analysis: Equation (18) NWM, respectively) with the GPS altitude.
As shown in Figure 14, at altitudes above 8.8392 km (29,000 feet), the residual error is in
the order of 12.192 to 18.288 m (40 to 60 feet), which results primarily due to the deviation
of the atmospheric profile predicted by the forecast NWM from the actual state of the
atmosphere (as described by the re-analysis NWM). In addition, since the spatial and
temporal resolution of the forecast NWM data is limited to 0.125°in latitude and longitude
and 1 h in time, a part of this residual error also results from the spatial and diurnal
interpolation (as described in the Section 2.3) of the meteorological parameters to estimate
the reference pressure and temperature matching the exact coordinates of the aircraft and
the time of observation.

Altitude difference between GNSS and barometric altitude
(Forecast vs. Re-analysis NWM)

600
= 400
Q
2
o
2 2001 - ~ - ~ ~ __ - - -
v
3‘3:-’ o
© 0 - == —_—
o 5 ———
°
=
D00 L
©
b
< —4001 HE Below 5000 feet
I Above 5000 feet and below 29,000 feet
I Above 29,000 feet

—600

570 1462 10375
Number of data points for each altitude segment

Figure 14. The ERA-5 forecast NWM effectively predicts the reference pressure and temperature,
with negligibly small residual altitude difference (Equation (20)) in comparison to accurate re-
analysis NWM.

The unmodeled altitude error (r) is relatively smaller than those derived using re-
analysis NWM and can be bound with a zero mean Gaussian distribution. As seen in
Figure 15, the distribution of the residual error (r,) using the forecast NWM to estimate the
barometric altitude in comparison to those derived using re-analysis NWM is completely
contained within +12.192 m (40 feet). Figure 16 shows the CDF of the residuals (r},), along
with the non-inflated Gaussian distribution, and the overbounding Gaussian distribution.
From Figure 16, we notice that the residual error has a standard deviation of about 5.7912 m
(19 feet), which is overbound completely with an inflation factor corresponding to 3-sigma,
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using a zero mean Gaussian distribution resulting in a standard deviation of around
~7.0104 m (23 feet), which is significantly smaller than the residual error from using the
ISA (Figure 12). This clearly illustrated the potential of the proposed methodology to enable
accurate vertical navigation using barometric measurements.

Histogram of altitude difference between GNSS and barometric altitude
(Forecast vs Re-analysis NWM)

800

600

400

200

=40 —-20 0 20 40 60
Residual error (feet)

Figure 15. The residual altitude error when using the forecast NWM in comparison to the re-
analysis NWM is significantly smaller than the ISA-based method, and, it is completely contained
within —12.192 and +12.192 m (—40 and +40 feet), and therefore can be overbounded with a Gaus-
sian distribution.
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Figure 16. The residual altitude error of the proposed methodology when using the forecast NWM in
comparison to the more accurate re-analysis NWM can be overbound with a Gaussian distribution
with a standard deviation significantly smaller in comparison to the ISA-derived values.
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4. Impact of Improved Vertical Navigation with Barometric Measurements

Satellite-based estimates of altitude are relevant in precision approach and landing
applications, where aircraft can execute the “Autoland” function. Here, the key point is
that satellite-based estimates of altitude are essentially unbiased, making them sufficiently
accurate for such a critical maneuver.

Barometric measurements, on the other hand, are commonly used in en-route appli-
cations, where aircraft are at greater altitudes and accuracy is less of a concern. Instead,
aircraft rely on so-called flight levels, which are isobaric surfaces, defined in terms of
barometric pressures, but labeled in units of altitude for historic reasons. Flight levels serve
to deconflict air traffic, as biases in barometric estimates of altitude are common across
altitudes: while the actual altitude of a flight level may vary day-to-day or even during one
day, the difference in altitude between two flight levels stays fairly constant. As such, it is
very common to enforce a minimum vertical separation of 1000 ft between aircraft flying in
different directions.

Currently, an aircraft, in an en-route operation, with a barometric malfunction can
disrupt air traffic by requiring vertical buffers for vertical separation. Conversely, an aircraft
with a GNSS malfunction will be able to better estimate its own altitude, thereby enhancing
the performance of its non-GNSS navigation.

The state of the practice for converting between air pressure and altitude is based on
the ISA, which cannot account for real-time variability of the atmosphere. As discussed
earlier, this model has some advantages, mainly its simplicity in estimating the barometric
altitude. Like any model-based approach, it also has shortcomings, but they can be ad-
dressed with a complexity that is now accessible to users in civil aviation. With improving
weather forecasts and more adequate digital aeronautical communication systems, it seems
reasonable that BiG-C will be able to compensate for many of the inherent biases of the ISA,
as well as reduce the associated uncertainty. Detailed analysis of the operational aspects of
transmitting and subsequent assimilation of real-time weather forecast data into the aircraft
is a subject for future work.

An unbiased transformation between geometric altitude and barometric pressure will
provide redundancy between barometric altimetry and satellite-based estimation of altitude.
Each type of estimate has its own applications, reasons for being, and, more generally, pros
and cons. It is also true that currently no effective cross-checks are enabled, because of the
erratic nature of the drifting biases in barometric estimates, which BIG-C compensates.

Another compelling prospect is that of supporting vertical navigation performance
which can enhance RNP operations. Improvements in the vertical performance for flights
within RNP operations are key enablers for advanced concepts such as the systemization of
controlled airspace. A Vertical RNP function will reduce the vertical allocation of airspace
required for a flight within a systemized operation, thus potentially reducing vertical
separation requirements while increasing capacity and flexibility within the airspace. As
the systemization of airspace evolves, aircraft will follow routings with a high degree of
predictability and certainty from an ATC perspective, allowing for a reduced need for
intervention from controllers. The result will be a significantly reduced workload for ATC.
In summary, the progressive systemization of airspace, and all contributing functions, will
enable improvements in the safety, capacity, flexibility, and efficiency of airspace, especially
within volumes with higher complexity.

It is worth highlighting that twinned with the ability to potentially support reduced
vertical separation, a key benefit of aligning barometric and geometric altitude indications
is the harmonization of operations. The ability of the aircraft to accurately follow a specific
geometric profile, especially while pursuing continuous descent and climb operations
without needing to change the baseline being used for the calculation of vertical position is
of great interest to ATC. This can reduce a great deal of uncertainty, for example, if terrain
or obstacles are involved.

Finally, there is the potential for referencing all pressure-based altitudes to the same
level, removing the need for a so-called Transition Altitude. The concept of “Transition
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Altitude” was established to provide a reference altitude level assisting a shift or the
transition of the reference setting in the barometric altimeter on board the aircraft from
ISA standard values to the locally-referenced values of pressure and temperature usually
obtained from the approaching airport. When approaching an airfield, however, it is
practical to reference pressure readings to the altitude of the local airfield. This transition
is currently executed manually, in the cockpit, and is known to be a potential source of
operator error [20]. Removing the transition altitude would, therefore, represent a gain in
safety, alongside any of the aforementioned operational benefits.

The proposed methodology behind BIG-C provides a more universal approach to
convert barometric measurements to geometric altitude, regardless of aircraft location. This
kind of redundancy can improve the reliability of aircraft systems at relatively little expense
and high scalability. There are also ways in which these conversion functions reduce the
need for pilot input at what is called the “Transition Altitude”, where aircraft go from
barometric vertical guidance to geometric vertical guidance (either from GNSS or other
navigation sources).

The principle of operation proposed in this paper could be potentially applied to
other domains, beyond aviation, for example in UAS (unmanned aerial systems) and UAM
(urban air mobility).

5. Conclusions

Aircraft vertical guidance is at present primarily dependent on GNSS, and in the
event of loss of GNSS, it may lead to inefficient use of airspace and potentially lead to
service degradation. Developing a robust altitude estimation approach using barometric
measurements provides an alternate means to enable improved vertical guidance to ensure
efficient use of airspace both in the presence or absence of GNSS.

Established methods as described in the DO-236C [2]/ED-75D [3] aviation standard,
use the ISA values to estimate aircraft altitude using barometric measurements. During
the approach of an aircraft to an airport, DO-236C/ED-75D provides a temperature com-
pensation function to correct for any deviations in the reference setting of pressure and
temperature used in the barometric altimeter. Moreover, at higher altitudes, the existing ap-
proach leads to significant deviations from the GNSS altitude. This conventional approach
may lead to availability issues in case of loss of GNSS. This creates a need to develop a new
methodology to improve the barometric altitude estimates.

The methodology proposed in this paper provides a means to improve the vertical
repeatability of the altitude estimates derived using barometric measurements, regardless
of aircraft altitude. BiG-C achieves this by utilizing the forecast NWM data to derive
near real-time estimates of reference pressure and temperature profiles considering any
anomalous weather conditions such as weather fronts and ducting between the aircraft and
the surface of the earth.

BiG-C can achieve altitude estimates accurate to 30 m (100 ft), which is well within the
VPPL limits defined in DO-236C/ED-75D, irrespective of the aircraft altitude measurements
(ranging from ~50 to ~47,000 ft) analyzed from the flight experiment data. In addition,
we validated the forecast NWM with respect to the more accurate re-analysis of NWM
and showed that forecast NWM provides accurate reference atmospheric profiles enabling
unbiased and robust transformation between barometric and geometric altitudes with the
unmodeled error in the order of 12 m (40 ft). Finally, we can completely overbound the
residual errors arising from the difference between the altitude estimates using forecast
and re-analysis data with a Gaussian distribution with a standard deviation of around
~7 m (23 ft), which is significantly smaller compared to the residual error obtained utilizing
the ISA.

The proposed methodology of improving the altitude estimates using barometric
measurements enables a new type of service by applying a more complex conversion than
ISA, demonstrating that the method provides a viable solution for vertical RNP based on
barometer altitude.



Sensors 2022, 22,9263 21 of 22

Author Contributions: Conceptualization, methodology, validation, writing—original draft prepara-
tion, writing—review and editing, S.N. and O.O. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the German Aerospace Center (DLR).
Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank European Center for Mid-Range Weather Forecasts
(ECMWEF) for providing access to the ERA-5 re-analysis and forecast data. We would like to thank
Ricardo De Sousa and Daniel Nelson from National Air Traffic Services (NATS), UK for providing
valuable feedback for this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

Big-C Barometric to Geometric Converter

GNSS Multidisciplinary Digital Publishing Institute
ECMWEF Directory of open access journals

NWM Numerical Weather Model

ERA ECMWEF re-analysis

ATC Air Traffic Control

ATM Air Traffic Management

VNAV Vertical Navigation

ICAO International Civil Aviation Organization

ISA International Standard Atmosphere

PBN Performance Based Navigation

MSL Mean-Sea Level

HALO High Altitude and Long Range Research Aircraft
OMO Oxidation Mechanism Observation

DLR German Aerospace Center

BAHAMAS Basic HALO Measurement and Sensor System
VPPL Vertical Path Performance Limit

FMS Flight Management System

LDACS L-Band Digital Aeronautical and Communication Systems
DME Distance Measuring Equipment

VOR VHF Omni-Directional Radar

UAM Urban Air Mobility

UAS Unmanned Aerial System
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