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Abstract: The state-of-energy (SOE) and state-of-health (SOH) are two crucial quotas in the battery
management systems, whose accurate estimation is facing challenges by electric vehicles’ (EVs) complex-
ity and changeable external environment. Although the machine learning algorithm can significantly
improve the accuracy of battery estimation, it cannot be performed on the vehicle control unit as it
requires a large amount of data and computing power. This paper proposes a joint SOE and SOH
prediction algorithm, which combines long short-term memory (LSTM), Bi-directional LSTM (Bi-LSTM),
and convolutional neural networks (CNNs) for EVs based on vehicle-cloud collaboration. Firstly, the
indicator of battery performance degradation is extracted for SOH prediction according to the historical
data; the Bayesian optimization approach is applied to the SOH prediction combined with Bi-LSTM.
Then, the CNN-LSTM is implemented to provide direct and nonlinear mapping models for SOE. These
direct mapping models avoid parameter identification and updating, which are applicable in cases with
complex operating conditions. Finally, the SOH correction in SOE estimation achieves the joint estimation
with different time scales. With the validation of the National Aeronautics and Space Administration
battery data set, as well as the established battery platform, the error of the proposed method is kept
within 3%. The proposed vehicle-cloud approach performs high-precision joint estimation of battery
SOE and SOH. It can not only use the battery historical data of the cloud platform to predict the SOH
but also correct the SOE according to the predicted value of the SOH. The feasibility of vehicle-cloud
collaboration is promising in future battery management systems.

Keywords: joint estimation; state of energy; state of health; vehicle-cloud collaboration

1. Introduction

The two significant energy and environmental pollution issues have increasingly become
the focus of attention [1]. Automobiles are an essential part of the industrial field, and
researchers are also looking for more environmentally friendly energy sources to replace
conventional petroleum [2–4]. Due to the advantages of high energy density, the high number
of cycles, and pollution-free, Lithium-ion battery is widely applied in many industrial fields,
such as new energy vehicles and hybrid energy ships [5]. Lithium-ion batteries play an
essential role in these fields, and their safety and reliability should be guaranteed. Therefore,
the estimation of battery status should be real-time and accurate. The short driving range is
the fatal weakness of EVs, and how to improve accuracy is an urgent research hotspot. Battery
state estimation is also a significant factor in driver mileage anxiety, related to many factors,
such as weather, road conditions, and temperature. Accurate estimation of SOE effectively
alleviates range anxiety as it is straightly related to energy consumption [6]. Moreover, battery
performance decreases over time due to irreversible physical and chemical alters until the
battery is retired [7]. Thus, it is also necessary to accurately estimate battery SOH to guarantee
the performance and safety of the battery.
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1.1. Review of SOE Estimation Methods

SOE is defined as the ratio of the residual energy storage in the battery; the fully
charged battery SOE is 100%. Accurate SOE provides the fundamental basis of energy man-
agement, load balancing, and security for complex energy systems [8]. The mathematics of
SOE can be presented as follows [9]:

SOEt = SOEt0 +

∫ t
t0

P∂d∂

EN
(1)

where SOEt and SOEt0 denote the SOE values at the time t and the initial state, respectively.
EN is the battery nominal energy, P∂ means the battery power at time ∂.

To date, wide-ranging attempts have been made to improve SOE estimation effec-
tiveness continually. Battery SOE estimation is mainly divided into the direct calculation
approach, adaptive algorithm-based approach, and machine learning method [9]. Usu-
ally, the most used direct methods are the power integration and mapping methods.
Barai et al. [10] propose the power integration method for SOE estimation, and the result
shows it is practical to reduce the computational burden. However, this approach auto-
matically results in accumulated errors subject to uncertain noises and measurement faults.
The usual mapping method is applied to SOE estimation to avert this problem [11]. Even
though the mapping-based method shows function improvements compared to the power
integration method, it requires precise equipment and extensive testing. In this case, many
scholars handle nonlinear systems using the adaptive algorithm-based approach to solve
accumulated errors and device defects. Furthermore, efficient SOE estimators are built
to obtain promising results, such as Kalman filtering [12,13], adaptive unscented Kalman
filtering [14], extended Kalman filtering, and particle filtering [15]. Given the battery man-
agement system’s limited storage and computing performance, many complex algorithms
and models in the battery management system (BMS) are challenging to calculate.

With the hot development of machine learning, especially the advent of Alpha Go
and AlphaGo Zero, deep learning and reinforcement learning in various fields have been
promoted [16]. Meanwhile, deep learning technology is also being studied in battery SOE
estimation. For instance, Back Propagation Neural Network (BPNN) was used to catch
the battery’s nonlinear and coupling characteristics considering irreversible energy losses
from joule heating and electrochemical reactions. Liu et al. [17] take battery temperature,
open-cycle voltage, and current as input training of BPNN to overcome the complex
electrochemical principles inside the battery. Then the test and simulation results show
that BPNN can improve the accuracy and reliability of SOE estimation. Ma et al. [6]
propose an LSTM model with additional convolutional layers to enhance the accuracy of
SOE prediction. However, the accuracy of the machine learning approach is exceptionally
reliant on the amount and quality of the training data and the fitting algorithms. Due
to the insufficiency of existing onboard vehicle control unit hardware, machine learning
techniques cannot be implemented on the vehicle [18,19].

1.2. Review of SOH Estimation Methods

SOE describes the battery energy change state from the microscopic level on a relatively
small scale. In contrast, the battery SOH represents the battery state from the macroscopic
level on a large time scale. With the charged and discharged battery in real applications, the
irreversible and inevitable electrochemical reactions will cause performance degradation.
The SOH is frequently used as an index to quantify the aging degree of a battery [20]. The
SOH is usually used to reveal the capacity fade [21] or the power fade [22]. The capacity
fade presents the component’s loss of capacity, and the power fade denotes the internal
impedance augmentation. The mathematic definition of SOH can be given as follows [9]:

SOH =
Ca

Cr
× 100% (2)
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The mathematical definition of SOH can also be presented as follows:

SOH =
Ra − Rr

Rr
× 100% (3)

where Cr and Ca express the rated and actual value of capacity, respectively. Rr and Ra
denote the rated and actual value of internal resistances, respectively.

Accurate estimation of SOH is beneficial to guarantee the electric system running safely
and conduce to a better cognition of the degradation rules. Furthermore, it is helpful for
precisely estimating the SOE. Many scholars have done much research to improve the accuracy
of SOH. Similar to SOE estimation, there are mainly two categories to estimate SOH: adaptive
filtering and data-driven [20]. Yan et al. [23] propose a Lebesgue-sampling-based extended
Kalman filter to estimate SOH, and the estimated SOH is considered the initial capacity for SOC
estimation. The result demonstrates the excellent performance of this method. Xu et al. [24]
introduce an adaptive dual extended Kalman filter algorithm to predict SOH and SOC jointly.
Vichard et al. [25] build an electrical circuit model and then use an optimization method and a
Kalman filter based on an experimental dataset to estimate SOH.

The above methods are practical, but their accuracy needs to be improved compared
to machine learning. On the other hand, Kaur et al. [26] propose three different deep
learning algorithms, feed-forward neural network (FNN), LSTM, and CNN, to estimate
SOH considering external complexity affection. Subsequently, they proved the better
performance of FNN. However, they neglect to combine these methods to achieve better
results. In this case, Fan et al. [27] introduces a hybrid neural network, GRU-CNN,
concerning voltage, current, and temperature to estimate battery SOH. Then the open-
access dataset is adopted to prove the effectiveness of GRU-CNN. Inspired by this approach,
it is still necessary to adjust the parameters and structure to improve the performance of the
neural network algorithm. Furthermore, deep learning is challenging to apply to vehicles
due to BMS computing power and storage data limitations.

1.3. Key Contributions

Owing to the rise of vehicle-to-everything (V2X) communication, cloud computing
has attracted widespread attention from researchers. Combined with the cloud, machine
learning also has been reborn in the automotive field. For this reason, this paper proposes
a vehicle-cloud collaboration approach for the joint estimation of SOE and SOH via deep
learning. Specifically, the significant contributions are summarized as follows:

1. A vehicle-cloud collaboration model is developed to estimate battery state online.
2. A joint estimation of battery SOE and SOH based on deep learning is proposed.
3. SOH is the feedback of SOE estimates for higher accuracy.
4. Macro and micro dimensions of time are used to analyze SOH and SOE.

1.4. Paper Organization

The rest of this paper is organized as follows. Section 2 proposes a collaborative
strategy containing SOE and SOH estimation in EVs and clouds. Section 3 introduces the
datasets and methodology for battery state estimation. In Section 4, the developed model
is validated under various working conditions. Finally, a brief conclusion about this paper
and future work will be proposed in Section 5.

2. Vehicle-Cloud Collaboration

As stated, the vehicle-cloud collaboration strategy integrates multi-model adaptation
and machine learning for SOE and SOH joint estimations. Accurate battery models are
the basis of battery state estimation algorithms. As to battery management applications
in EVs, we established a high-precision battery model, and reasonable computing power
requirements are integral to BMS development. The model’s performance will significantly
affect BMS’s safety, accuracy, and robustness. The current models for state estimation
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and behavior analysis of lithium-ion batteries can be roughly divided into electrochemical
models, equivalent circuit models (ECM), and data-driven models [28]. Electrochemical
models usually contain multiple partial differential equations, and some model parameters
are difficult to obtain. Although many methods, such as the average electrode model,
simplify the issue, applying them in real-time on EVs is still challenging [11]. ECM uses a
variety of circuit elements, such as resistors, capacitors, and voltage sources, to simulate the
electrochemical dynamics of lithium-ion batteries. The model parameters have a specific
physical meaning, usually a centralized parameter model with few parameters. Due to
its excellent combination with various advanced control algorithms, it is widely used in
real-time control and simulation [29].

Data-driven algorithms can extract critical information from lithium-ion battery operating
data and historical data, and there is no need for in-depth research on the battery reaction
mechanism [30]. So it has received increasing attention in the automotive field. However, high-
performance data-driven algorithms mostly rely on cloud platforms and big data technologies,
which is difficult to reach the requirement through BMS [31]. With the revival of V2X, the
limitation of BMS computing power in EVs will be solved by utilizing cloud computing.
This paper proposes a learning-based vehicle-cloud collaboration approach combining the
advantages of BMS and cloud computing. Specifically, an ECM is established at the EVs to
estimate the battery state; a data-driven model is also built in the cloud platform, given in
Figure 1. Besides, this paper aims to jointly predict the SOE and SOH of EVs based on the
vehicle-cloud collaboration approach under the following basic assumptions.

1. The cloud platform can store a large amount of battery history data.
2. When the EVs are driving in the networked road environment, they can obtain the

networked information in real-time.
3. The communication problem of vehicle–cloud collaboration approach is not considered.

Figure 1. The schematic of vehicle-cloud collaboration.

Dissemination of the results in this paper mainly aims at verifying the rationality of the
subsequent experiment; in this case, the complexity of the actual conditions is simplified
in a targeted manner. After completing the simplified problem, these assumptions will be
gradually removed for a more in-depth discussion.

2.1. Power Battery Modeling
2.1.1. ECM

Previous research has established that the second-order RC model performs better than
the higher-order RC model considering complexity and accuracy [16]. Motivated by this, we
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take the second-order ECM as the research object. The second-order ECM model consists of
three parts, the voltage source, the ohmic resistance, and the RC network, given as Figure 2.
Furthermore, the mathematical model of the second-order ECM can be expressed as follows,[

V̇1
V̇2

]
=

[
−1

R1C1
0

0 −1
R2C2

][
V1
V2

]
+

[
1

C1
1

C2

]
I (4)

U = UOC − IR0 −V1 −V2 (5)

where UOC denotes the open circle voltage, R0 means the battery ohmic resistance; V1 and
V2 represent the polarization voltage across the R1C1 network and R2C2, respectively.

Figure 2. The structure of second-order ECM.

2.1.2. Parameter Identification

Before the ECM model performs SOE estimation, it is also necessary to identify each
parameter in the ECM model. This step is related to the accuracy of SOC estimation. Many
universities and research institutions have done many experiments on batteries before, such
as NASA [32], the University of Maryland Center for Advanced Life Cycle Engineering
(CALCE) Battery Research Group [33], and the University of Oxford’s Battery Intelligence
Laboratory [34]. Note that these data have been open-sourced, which is helpful for data-
driven research methods. To obtain accurate battery parameters, we designed an experimental
scheme for the pulse discharge of the 18650 lithium battery in an incubator. A stable tempera-
ture discharge test platform is established, as shown in Figure 3. These data, including the
OCV-SOC mapping test and model parameter identification test, can be obtained in our test
platform. Based on this, particle swarm optimization (PSO) algorithms are used to optimize
parameter identification results. The basic parameters of the battery are given in Table 1.

Figure 3. Schematic diagram of the battery experiment platform.
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Table 1. Basic specifications of battery.

Type Nominal Voltage Nominal Capacity Upper/Lower Cut-Off Voltage

18650 3.6 V 2.54 Ah 4.2 V/2.5 V

The velocity update equation of the PSO algorithm is shown in Equation (6); the
content distribution on the right side has the following physical meanings: inertial velocity,
moving to the individual historical optimal solution and moving to the group optimal
solution. The position update equation of the PSO algorithm is shown in Equation (7):

vk+1 = ωivk + b1m1

[
popt,k − xk

]
+ b2m2

[
gopt,k − xk

]
(6)

xk+1 = xk + vk (7)

where v is the velocity; x denotes the position of the particle; k is the current iteration
number; ωi represents the inertia weight; b1 and b2 mean the learning rate factors; m1 and
m2 are the random numbers between 0 and 1; popt and gopt denote the optimal solution of
the particle itself and the global optimal untie, respectively.

The incremental current and open-circuit voltage (OCV) data at 25 ◦C are analyzed
based on the PSO method. The parameters identification results and OCV-SOE are pre-
sented in Figures 4 and 5. It can be seen from Figure 4 that the results of PSO optimization
basically coincide with the experimental data, which proves the rationality of the PSO algo-
rithm. The fitting data curve of battery SOE and OCV is given in Figure 5. Moreover, this
paper uses the polyfit function that comes with Matlab software to fit the experimental data.
Among them, polyfit is a polynomial fitting function based on the least square method; the
specific curve fitting equation is shown in Equation (8):

y = 8.86x5 − 27.74x4 + 33.68x3 − 19.41x2 + 5.83x + 2.94 (8)

where y denotes the battery voltage, and x means the battery SOE.

Figure 4. Pulse discharge test and parameter fitting.
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Figure 5. OCV-SOE curve.

2.2. Neural Network for SOE and SOH Estimation

Neural networks have good mapping ability for nonlinear systems and have the
advantages of model independence and parameter self-learning. Due to the cloud platform
having good computing power, neural networks are used in the cloud to build lithium-ion
battery models.

2.2.1. Recurrent Neural Network

Compared with BP and CNN, RNN considers the input of the last moment and gives
the network the memory function of the previous content. The network will memorize the
previous information, and the nodes between the hidden layers are connected. Furthermore,
the hidden layer’s input is not only determined by the output of the input layer but also by
the output of the hidden layer from the previous moment. As shown in Figure 6, the RNN
hierarchical structure mainly consists of the input layer, hidden layer, and output layer,
which can be represented as follows:

St = f (UXt + WSt−1 + b) (9)

Ot = g(VSt + c) (10)

where Xt, St and Ot denote the value of input layer, hidden layer, and output layer,
respectively; f and g are the activation functions, while b and c mean the biases value; U,
W, and V represent the weight matrices.

Figure 6. The structure of RNN.

2.2.2. Long Short-Term Memory

Typically, LSTM is an improved RNN that outperforms traditional RNNs in dealing
with long-term sequence problems. It adds a state-memory cell to carry information across
multiple time steps. LSTM achieves the protection and control of information through
three primary structures: the input gate, forget gate, and output gate, respectively. It can
be shown in Figure 7. Specifically, the forget gate can decide what information to discard
from the cell state, as shown in Equation (11). The input gate can determine the amount of
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new information added to the cell state and can be presented as Equations (12) and (13).
Furthermore, the output value can be defined by the output gate as Equations (14) and (15).

ft = σg

(
W f xt + W f ht−1 + b f

)
(11)

it = σg(Wixt + Wiht−1 + bi) (12)

ct = ft · ct−1 + it · σc(Wcxt + Wcht−1 + bc) (13)

ot = σ(Wxoxt + Whoht−1 + bo) (14)

ht = ot · σg(ct) (15)

where ft, it, and ot denote the forget gate, input gate and output gate, respectively; ht and
ct are the hidden state and cell state, respectively.

Figure 7. The hierarchical structure of LSTM.

2.2.3. Bi-Directional Long Short-Term Memory

The Bi-LSTM network was proposed to access the information of the input sequence
in both forward and backward. The forward LSTM and backward LSTM are combined
with Bi-LSTM; they can offer extra context information and has strong learning ability. The
structure of Bi-LSTM is given in Figure 8. This module uses Bi-LSTM to learn the capsule
layer’s output, which can improve the network features’ fitting effect and the generalization
ability on the new data set.

Figure 8. The schematic of Bi-LSTM.

The softmax function is often used as the last activation function of a neural network
to normalize the output of a network to a probability distribution over predicted output
classes, based on Luce’s choice axiom. Therefore, as to the output of Bi-LSTM, the softmax
activation function is used for classification, as shown in Equation (16).

P = so f tmax(Wcs + bc) (16)
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2.2.4. Convolutional Neural Network

CNN has made significant progress in many fields, such as face recognition and au-
tonomous driving. As the data have inherent dependencies between adjacent dimensions,
CNN can utilize the share convolving filters to extract the local features; As an artificial
neural network, the structure of CNN can be divided into three layers: the convolutional
layers, pooling layer, and fully Connected Layer, given in Figure 9. Among them, the
convolution layer includes the convolution kernel, convolution layer parameters, and
convolution kernel. The convolutional layer, called data features, extracts the input infor-
mation, such as battery current, voltage, and temperature. Each data reflect these features
in a combined or independent way. The primary role of the pooling layer is to downsample
without damaging the recognition results. The fully connected layer is mainly used for
classification. The features obtained through the convolution and pooling layers above
are classified at the fully connected layer. The weight of each neuron feedback is different
according to the weight; then, the classification result is obtained by adjusting the weight
and the network.

Figure 9. The structure diagram of CNN.

2.2.5. Bayesian Optimization

One critical aspect of our design is the selection of the configuration parameters of
the proposed network (Bayes-Bi-LSTM). Instead of applying the traditional manual-based
tuning of the model parameters, this paper adopts a probabilistic Bayesian framework
through which the model configuration parameters are optimally tuned.

Bayesian optimization is used to find the best hyperparameters for the Bi-LSTM
network. Specifically, Bayesian optimization generates a set of hyperparameters that
produce the lowest loss function (in our case, RMSE) by evaluating the previous results. The
possibility of finding the best hyperparameters increases with the number of optimization
iterations. Hyper-parameter optimization problem can be given as follows:

X∗ = arg max
X∈U

f (X) (17)

where X∗ denotes the set of optimal parameters, U means the candidate sets, f (x) is the
lowest loss function. The Bayes’ theorem used in the Bayesian optimization process is given as
follows [35]:

P( f | D) =
P(D | f )P( f )

P(D)
(18)

where D means the set of observations, f denotes the unknown objective function, P( f ) is
the prior of the marginalized f . Besides, D = {(x1, y1), (x2, y2) · · · (xn, yn)}.

2.2.6. Joint Estimation for SOE and SOH

Kim et al. [36] propose a CNN-LSTM neural network that can effectively extract spatial
and temporal features to predict energy consumption. Motivated by the above method, this
paper combines the advantage of Bayes-Bi-LSTM and CNN-LSTM to estimate SOH and SOE
jointly. Specifically, the framework of the joint estimation method proposed in this paper is
shown in Figure 10. First, the vehicle-end power battery communicates with the cloud platform
in real-time to obtain the battery’s current, voltage, and temperature data at the present moment.
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In this case, the value of SOE is roughly estimated by the CNN-LSTM method. Then, the
Bayes-Bi-LSTM algorithm calculates the SOH according to the battery charge and discharge
times recorded in the cloud. Finally, the estimated value of SOH is used as the input value of
CNN-LSTM to correct the SOE.

Figure 10. The schematic of joint estimation approach.

3. Datasets and Methodology for Battery Estimation

After analyzing the neural network algorithm, we need to select an open-source
dataset to analyze the aging characteristics of the lithium-ion battery. Therefore, this section
mainly introduces the datasets used in deep learning, and then test schemes are proposed.
In addition, a dynamic stress test (DST) is processed in our battery test platform to prove
the effectiveness of the proposed method.

3.1. Description of Datasets

In order to make this study more general, the Battery Data Set collected by the National
Aeronautics and Space Administration (NASA) Ames Prognostics Center of Excellence
(PCoE) [37,38] is chosen for the constructed model’s training and validation. The NASA
battery set contains multiple sets of data, and this paper selects the Battery Aging ARC-
FY08Q4 data set, including B0005, B0006, B0007, and B0018 four battery life test cycles. In
the experiment, the battery type is 18650 Li-cobalt cells; room temperature is set at 24 ◦C.
During battery charging, the battery is charged in constant current mode at 1.5 A until
the battery voltage reaches 4.2 V. Then charge in constant voltage mode until the charge
current drops to 20 mA. During the battery discharge process, the battery is discharged
in a constant current mode of 2 A until the voltages of the batteries B0005, B0006, B0007,
and B0018 drop to 2.7 V, 2.5 V, 2.2 V, and 2.5 V, respectively, and then stop discharging.
The condition for stopping the experiment was a 30% drop in the cell SOH of the battery.
The detailed battery parameters can be found in Table 2. Moreover, to further verify the
reliability of the proposed deep learning algorithm, we conducted a DST test based on the
battery test platform. The DST test is applied to simulate the actual operating condition for
EVs, controlled by discharge power instead of a constant discharge rate. This makes the
testing procedure more complicated and closer to real operational situations.

Table 2. The battery-specific parameters of the experiment.

Battery Number Temperature/◦C Rated Capacity/Ahr Termination Voltage/V Cycles

#5 24 2 2.7 168
#6 24 2 2.5 168
#7 24 2 2.2 168

#18 24 2 2.5 132
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3.2. Methodology

First, we extract the B0005, B0006, B0007, and B0018 four-cycle datasets from the NASA
open-source dataset. For battery SOH, the first three cycles are taken as the training set, and
the B0018 is considered the test set to predict the accuracy of battery SOH. We first predict
the battery SOH based on the battery historical data information on the cloud platform. Due
to the previous and future information that Bi-LSTM can make good use of, we establish
a Bi-LSTM model for SOH prediction. As the model parameters largely determine the
algorithm’s quality, we use the probabilistic Bayesian framework to optimize and adjust
the model configuration parameters. In the case of getting the SOH prediction result, we
take the current, voltage, and temperature as the input of deep learning, take the SOE as
the output and test them in B0005, B0006, and B0007, respectively, to verify the validity of
the model. Specifically, the CNN-LSTM is implemented to provide direct and nonlinear
mapping models for SOE. These direct mapping models avoid parameter identification
and updating, which are applicable in cases with complex operating conditions. It is worth
noting that in this process, SOH is also considered as the input of CNN-LSTM. Finally,
we consider the SOH as the Influencing factor and compare the SOE accuracy in SOH
predicted or without SOH.

The accuracy of predicting value is evaluated by mean absolute error (MAE) and root
means square error (RMSE), which are defined as:

MAE =
1
n

n

∑
i=1
| fi − yi| (19)

RMSE =

√
1
n

n

∑
i=1

( fi − yi)
2 (20)

where n denotes the number of charging and discharging cycles, fi and yi means the actual
value and predicted value, respectively.

4. Tests and Results
4.1. SOH Estimation Results and Discussion

In order to find the optimal solution for Bi-LSTM parameters, this paper uses the
Bayesian optimization algorithm to build an effective Bi-LSTM model. The battery cycling
discharge (B0005, B0006, and B0007 of NASA) data are used as the training data set, and
the B0007 discharge data are used as the testing data set. This paper sets the Bayesian
optimization total iter count ten times. The hyperparameter setting and Bi-LSTM model
parameter optimization can be seen in Tables 3 and 4, respectively. The steps adopted in
this study are shown in Figure 11. The optimization of hyperparameters in deep learning
can be expressed in Equation (17), which is to find the combination of hyperparameters that
minimizes the model’s generalization error. Bayesian optimization can evaluate the next
hyperparameter based on known hyperparameters and model errors. Therefore, Bayesian
optimization can fully use known information, search for hyperparameter combinations
more efficiently, and make it easier to achieve global optimum. First, we need to process
the battery data to avoid the impact of random errors on the experiment. Then analyze the
error between the test data and the Bi-LSTM prediction, and iterate through the Bayesian
optimization algorithm until the error reaches the expected value. Finally, the structure
of Bi-LSTM is adjusted according to the parameters optimized by the Bayes algorithm.
The minimum target value between an observed value and the estimated value is given in
Figure 12. It can be seen that the minimum target declines with the function count increase,
and the observed value, as well as the estimated value, reaches the minimum value in the
eighth operation. The relationship between the target value and the predicted value can
be seen in Figure 13. The dotted line represents the fitted straight line of the predicted
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data, and the pink line represents the actual data. We can obtain that the fitted line of the
predicted data is basically consistent with the actual value.

Figure 11. Flowchart of the proposed Bayes-Bi-LSTM.

Figure 12. The minumum target value between observed value and estimated value.

Figure 13. The regression line of output and real value.
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Table 3. Hyperparameter setting based on Bayes-Bi-LSTM algorithm.

Hyperparameter Value

Maximum epochs 10
Minimum batch size 16

Dropout value 0.7
Max itration number 10

Table 4. Bayesian optimization.

Iter Number of Layer Number of Units Initial Learn Rate L2 Regularization

1 2 174 0.02042 2.958× 10−9

2 2 200 0.066371 1.456× 10−6

3 3 64 0.054394 2.3297× 10−8

4 1 68 0.44111 8.3725× 10−5

5 3 197 0.9156 3.3127× 10−3

6 1 87 0.095566 8.8124× 10−7

7 1 54 0.0322 1.0002× 10−10

8 1 62 0.01005 3.8664× 10−3

9 4 113 0.010022 2.7007× 10−5

10 1 61 0.25309 6.6029× 10−7

It can be concluded that the error is controlled within the desired range; the distribution
area of error is mainly in 3%, of which the proportion within 2% reaches 90%, the error
distribution histogram as detailed in Figure 14. The SOH estimation results for B0007 in the
whole cycle is illustrated in Figure 15; also, the SOH prediction error is given in Figure 16.
The proposed SOH prediction method provides accurate SOH estimates compared to
the actual SOH curve. Indeed, the most significant estimation error among the result is
about 0.06. Near 90% of the error of these points is within 0.02, which further proves that
the proposed Bayes-Bi-LSTM prediction method can deal with the dynamic discharging
process, which also illustrates the robustness of the proposed method.

Figure 14. The error distribution histogram.
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Figure 15. SOH prediction error.

Figure 16. SOH prediction result.

4.2. SOE Estimation Results and Discussion

In order to verify the accuracy and reliability of the model, we estimate SOE in B0005,
B0006, and B0007, respectively. Based on B0005 of the NASA date set, the comparison result
of CNN-LSTM and LSTM is given in Figure 17; the tenth cycle sample points B0005 are
used for the evaluation. It can be seen that the proposed CNN-LSTM method has a good
prediction effect, and the RSME reaches 1.61%, while the RSME of the LSTM approach is
2.46%. The error of CNN-LSTM and LSTM is shown in Figure 18. We can obtain that the
proposed CNN-LSTM approach stays within a reasonable error range over time; the LSTM
method tends to diverge, which will face challenges in practical application.



Sensors 2022, 22, 9474 15 of 21

Figure 17. Battery SOE prediction result of B0005.

Figure 18. Battery SOE prediction error of B0005.

Besides, we designed the parameters of the CNN-LSTM, as shown in Table 5. For the
other two lithium-ion battery cells, the same experiments were conducted. AS to B0006 of the
NASA date set, the comparison result of CNN-LSTM and LSTM is given in Figure 19; the error
of CNN-LSTM and LSTM is shown in Figure 20. Furthermore, based on B0007 of the NASA
date set, the comparison result of CNN-LSTM and LSTM is given in Figure 21; the error of
CNN-LSTM and LSTM is shown in Figure 22. The specific comparison data can be found in
Table 6. According to the previous statement, the CNN-LSTM scheme proposed in this paper
can improve the shortcomings of LSTM and achieve better prediction results. These results
prove that the proposed CNN-LSTM SOE estimation method can achieve high accuracy and
robustness for different lithium-ion battery cells. The DST scheme test was carried out to prove
further the proposed scheme’s accuracy based on the built battery test platform. The voltage and
current change curves under DST conditions are shown in Figure 23, and the duration of the
whole cycle is about 4000 s. Likewise, we adopt the proposed CNN-LSTM and LSTM methods
for battery SOE prediction. As shown in Figure 24, the battery continues to discharge under DST
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conditions until the SOE drops to 20%. Among them, the proposed CNN-LSTM method has a
better prediction effect, and its RMSE reaches 1.10%, while the LSTM method is only 2.04%.

Table 5. The proposed CNN-LSTM architecture.

Type Filter Kernel Size Stride Value

Convolution 32 (10,1) 1 -
Activation (eLu) - - - -

Pooling - (10,1) 2 -
Convolution 32 (10,1) 1 -

Activation (eLu) - - - -
Pooling - (10,1) 2 -

Learning rate - - - 0.001
Minimum Batch Size - - - 30

Maximum Epochs - - - 60
Learning rate drop factor - - - 0.8

Gradient threshold - - - 1

Figure 19. Battery SOE prediction result of B0006.

Figure 20. Battery SOE prediction error of B0006.
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Figure 21. Battery SOE prediction result of B0007.

Figure 22. Battery SOE prediction error of B0007.

Figure 23. Battery current and voltage changes in the DST condition.
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Table 6. RSME comparison results.

Method B0005 B0006 B0007 Battery Test

LSTM 0.0246 0.0118 0.03721 0.0204
CNN-LSTM 0.0161 0.0102 0.0164 0.0110

Version November 24, 2022 submitted to Journal Not Specified 18 of 21

Figure 24. Battery SOE prediction results in the DST condition.

Table 6. RSME comparison results.

Method B0005 B0006 B0007 Battery test
LSTM 0.0246 0.0118 0.03721 0.0204
CNN-LSTM 0.0161 0.0102 0.0164 0.0110
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Figure 24. Battery SOE prediction results in the DST condition.

4.3. Comparation

Finally, to compare the impact of SOH prediction on the accuracy of SOE estimation.
Consider B0005 as the research object, and take the SOH prediction result as the input of
CNN-LSTM. Then comparing the SOH unknown result, the total number of cycles is 180,
as shown in Figure 25. It can be seen that in the first 20 cycles, the value of SOE of those
estimates with and without SOH correction are almost the same. As the number of battery
charges and discharges increases, the estimation accuracy of SOE drops sharply when the
SOH is unknown. During the process, the SOE estimation accuracy with SOH prediction
results has been maintained well. As the battery SOH is a long process, the change is not
evident in the short term. After the battery is used for a long time, the battery SOH will
decrease, and the change curve of battery SOE will also change. The original algorithm
cannot adapt to the change in SOE. Therefore, it is necessary to predict the SOH to judge
the change curve of SOE under a certain SOH.

Figure 25. RMSE in B0005.
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The drawback in SOE estimation without SOH correction is obvious. Suppose the
battery’s capacity cannot be updated, particularly when the battery degrades close to the
end of life. In that case, the SOE estimation results may be higher than 10%, which is not
usable. Therefore, it is critical to consider the battery SOH or degradation states for SOE
estimation. In this case, the accuracy of SOE estimation can be improved dramatically by
combining the correction of SOH.

5. Conclusions

A vehicle-cloud collaboration strategy that integrates machine learning is proposed for
joint battery estimation of SOE and SOH to avoid the degradation of the information island
by a single model for state estimation. This paper takes SOH as a time series prediction
problem, using a Bayesian approach to optimize the Bi-LSTM model. Then, CNN-LSTM
is implemented to provide direct and nonlinear mapping models for SOE. In the training
process, the voltage, current, and temperature are considered as input, and SOE is severed
as the output to learn the estimation model. During the testing phase, the SOE is estimated
based on the model learned during the training, taking the real-time current, voltage, and
temperature as input. In addition, to verify the influence of SOH on battery SOE estimation,
we take the predicted value of SOH with current, voltage, and temperature as input and
compare it with the model without SOH information. The simulation result shows the
proposed Bayes-Bi-LSTM and CNN-LSTM models’ effectiveness. The relative error of SOE
and SOH is within the expected accuracy range. Furthermore, it can be concluded from the
comparison result that the SOH prediction is critical for the SOE estimation. Overall, this
study strengthens the idea that vehicle-cloud collaboration is promising in future battery
management. The CNN-LSTM parameters proposed in this paper can be further optimized,
and the corresponding conclusions will be given in the subsequent work. In addition,
the algorithm of device-cloud fusion depends mainly on the communication signal. The
follow-up work will also design the control strategy for the communication problem to
optimize the proposed vehicle-cloud collaboration strategy.
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