
Citation: Moraliyage, H.;

Dahanayake, S.; De Silva, D.; Mills,

N.; Rathnayaka, P.; Nguyen, S.;

Alahakoon, D.; Jennings, A. A Robust

Artificial Intelligence Approach with

Explainability for Measurement and

Verification of Energy Efficient

Infrastructure for Net Zero Carbon

Emissions. Sensors 2022, 22, 9503.

https://doi.org/10.3390/s22239503

Academic Editor: Hossam A. Gabbar

Received: 19 October 2022

Accepted: 1 December 2022

Published: 5 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Robust Artificial Intelligence Approach with Explainability
for Measurement and Verification of Energy Efficient
Infrastructure for Net Zero Carbon Emissions
Harsha Moraliyage, Sanoshi Dahanayake, Daswin De Silva * , Nishan Mills , Prabod Rathnayaka ,
Su Nguyen, Damminda Alahakoon and Andrew Jennings

Centre for Data Analytics and Cognition, La Trobe University, Melbourne, VIC 3086, Australia
* Correspondence: d.desilva@latrobe.edu.au

Abstract: Rapid urbanization across the world has led to an exponential increase in demand for
utilities, electricity, gas and water. The building infrastructure sector is one of the largest global
consumers of electricity and thereby one of the largest emitters of greenhouse gas emissions. Reducing
building energy consumption directly contributes to achieving energy sustainability, emissions
reduction, and addressing the challenges of a warming planet, while also supporting the rapid
urbanization of human society. Energy Conservation Measures (ECM) that are digitalized using
advanced sensor technologies are a formal approach that is widely adopted to reduce the energy
consumption of building infrastructure. Measurement and Verification (M&V) protocols are a
repeatable and transparent methodology to evaluate and formally report on energy savings. As
savings cannot be directly measured, they are determined by comparing pre-retrofit and post-retrofit
usage of an ECM initiative. Given the computational nature of M&V, artificial intelligence (AI)
algorithms can be leveraged to improve the accuracy, efficiency, and consistency of M&V protocols.
However, AI has been limited to a singular performance metric based on default parameters in
recent M&V research. In this paper, we address this gap by proposing a comprehensive AI approach
for M&V protocols in energy-efficient infrastructure. The novelty of the framework lies in its use
of all relevant data (pre and post-ECM) to build robust and explainable predictive AI models for
energy savings estimation. The framework was implemented and evaluated in a multi-campus
tertiary education institution setting, comprising 200 buildings of diverse sensor technologies and
operational functions. The results of this empirical evaluation confirm the validity and contribution of
the proposed framework for robust and explainable M&V for energy-efficient building infrastructure
and net zero carbon emissions.

Keywords: artificial intelligence; Energy Conservation Measures (ECM); Measurement and Verifica-
tion (M&V); explainability AI (XAI); energy efficiency; baseline modeling

1. Introduction

A global transition into net zero carbon emissions has been accepted, and in some
cases mandated, by governments, organizations, and concerned communities as the critical
and pragmatic solution to climate change. An increase in renewables generation and a
decrease in energy consumption delivers climate action, as well as energy sustainability
and reduced operational costs. Governmental policies on energy efficiency are aimed at
supporting climate action, such as the Energy Policy Act (EPA), an executive order passed
by the US government to improve the energy efficiency in 15% of the buildings by 2015
with respect to the 2003 baseline and the US Climate Bill 2022 proposed investment worth
nearly $370 billion towards energy efficiency and climate change reduction efforts [1,2].
The Energy Efficiency Directive by the European Parliament has the objective of reducing
greenhouse gas emissions by 55% compared to 1990 levels to achieve climate neutrality in
2050 and improve energy efficiency across all industries by 9% compared to 2020 levels [3].
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Building infrastructure is a large contributor to carbon emissions, at more than 30% of the
energy consumption demand and 25% of global greenhouse gas emissions [4]. Energy Con-
servation Measures (ECM) are a formal approach to reducing the energy consumption of
building infrastructure. ECM leverages advanced sensor technologies and instrumentation
to measure, record, and validate consumption in real time. These sensor technologies must
be consolidated with computational methods for effective analysis and interpretation that
drives insight generation and decision-making capabilities. Some examples of ECM initia-
tives on building infrastructure are retrofitting heating, ventilation, and air conditioning
(HVAC) units, LED lighting replacement, and behavior modification of human operators
and users of the building spaces [5].

Measurement and Verification (M&V) protocols are a repeatable and transparent
methodology to evaluate such ECM initiatives. M&V can be simplified as the calculation
of the energy saved (or not consumed) due to the efficiency of the ECM initiative [5–7].
As savings cannot be directly measured, it is determined indirectly as the difference be-
tween pre-retrofit and post-retrofit consumption, while controlling for all other variables
that may influence consumption [8,9]. International Performance Measurement and Vit-
rification Protocol (IPMVP) [10] and the American Society of Heating, Refrigerating and
Air-Conditioning Engineers (ASHRAE) Guidelines 14 [11] are established methodologies
for quantifying the M&V of ECMs [12,13]. These guidelines estimate the savings of ECM
using a baseline energy usage model built on pre-ECM data and then compare this with
post-ECM usage [14]. IPMVP provides four methods (known as options A, B, C, and D) for
M&V analysis and reporting. Options A and B are prescribed for reporting on a specific
isolated ECM, while C and D are prescribed for M&V reporting at the building level. The
latter is more common as ECM initiatives are focused on building infrastructure and their
impact on emissions and costs. However, both options require energy usage data for the
entire building for more than one year to build reliable regression models that can estimate
savings of more than 10% [10,15,16]. This requirement of one year of data is a significant
limitation impacting the adoption of IPMVP, primarily because buildings undergo multiple
ECM initiatives within a period of one year, and while in operation, buildings can be shut
down for routine maintenance and/or unexpected events, such as working-from-home
measures enacted during the COVID-19 pandemic. Further motivation for M&V report-
ing in short-time intervals is the need for quick cycles of informed decision-making that
evaluate the cost-efficiency and performance of M&V projects for future ECM initiatives
and the early identification of underperforming projects [17]. To the best of our knowledge,
the only related work in this space is Effinger et al. [18], who proposed and demonstrated
the use of two separate baseline models for pre-ECM and post-ECM, where the post-ECM
model was developed using 3, 6, 9 and 12 months, and then both models were projected
over a common base such as TMY temperature data of one year to estimate annual savings.
However, this approach leads to a high degree of variability in the ECM calculation. In
this paper, we address this limitation by proposing an artificial intelligence (AI) approach
that is robust to this variability and incorporates explainability of the predictive outcome
for effective M&V of ECM initiatives. This approach is more robust than the method of
two separate models proposed by Effinger et al. [18] because we build a single model for
both pre- and post-ECM energy consumption that is then applied over a common base,
such as TMY temperature data, to estimate annual savings. This ensures the predictive
model takes the maximum benefit of shorter time interval data to detect granular pre- and
post-ECM energy consumption patterns of buildings in a single model as well as captures
the impact of the seasonality. Our proposed approach contributes to the recent algorithmic
and analytical advancements of AI in several application domains, including savings es-
timation, energy forecasting, grid optimization, renewal energy, demand prediction, and
system planning [19–22].
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2. Materials and Methods

The proposed AI approach is illustrated in Figure 1. It is composed of five vertical
layers, they are, the input layer, data Lake layer, artificial intelligence (AI) layer, ECM
quantification layer, and finally, the explainability layer. The input layer receives data
streams from the building management systems (BMS), solar photovoltaic (PV) systems,
smart meters, sensors, climate systems, and ECM project management database. These
data streams are extracted, transformed, and loaded into a data lake which forms the
second vertical layer. This data lake is accessed by the AI layer which pre-processes and
formulates relevant attributes to build the baseline consumption model and finetune its
hyperparameters. The AI layer ensures robustness to the variability of the ECM calculations
by using a single predictive model to detect pre- and post-ECM energy consumption
patterns, which are then used to estimate annual savings. This single model approach
can be applied to short time intervals so that granular ECM patterns and the impact of
seasonality is determined using low volumes of data. XGBoost, the supervised learning
algorithm used to build the predictive model, adds a further level of robustness through its
boosting and meta-learning properties. The fourth layer for ECM Quantification evaluates
the performance of the model, and then computes and quantifies the ECM savings. Finally,
the fifth layer applies Shapley Additive exPlanations (SHAP) game theoretic approaches
to explain and interpret the model and its M&V outcomes and communicates the data-
driven decision-making insights on M&V of ECM initiatives using interactive analytics
dashboards. The following subsections delineate each of the post-input verticals, in terms
of their constituents and functionality.
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Figure 1. Proposed AI M&V savings estimation framework.

2.1. Data Lake Layer

The data lake layer is formally defined as a repository for “all” types of data gener-
ated by multiple systems and functions within an organization [23–25]. Data lakes are
advantageous primarily due to the separation of data produced by systems (processes or
entities) from data consumed by humans and systems, as well as their adaptable structure
in providing a storage layer for analytics/AI insights and data-driven decision-making [26].
It receives internal and external data from databases, data warehouses, raw data streams,
and conventional repositories, such as flat files and spreadsheets. Data formats are not
defined until the point of utility, which ensures the data can be stored, managed, and
leveraged in an adaptable manner, typically using the key-value pairs format. The data
lake is updated regularly with timestamps for when the data was received, in addition to
the timestamps for when the data was created and/or modified in the source pipelines and
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storage. The data lake can also be used directly for data visualization and search functions
that are required by ECM audits and management activities.

2.2. Artificial Intelligence (AI) Layer

The AI layer retrieves relevant data from the data lake and begins with a data wran-
gling phase that evaluates data quality. This is an important first phase because energy
data streams contain missing and erroneous due to reasons such as sensor failures, network
failures, and data transmission issues. Descriptive statistical analysis and visualization
techniques, such as histograms and boxplots can be used to identify these issues. For
identified issues, we have used the mean value imputation method to remove variables
with more than 5% of missing values and impute the values of variables with less than 5%
missing values. Following this preprocessing phase, we identify appropriate variables to
build the AI models. Correlation analysis between independent variables and dependent
variables is used to identify highly correlated variables, while we also assess correlation
among independent variables to detect and avoid multicollinearity.

The AI algorithms and models we have leveraged in this approach align with the
guidelines specified in IPMVP and ASHRAE. Firstly, we have introduced a parameter
to represent ECM activity between the pre-retrofit period and post-retrofit periods. This
ensures the AI model learns the change in energy consumption before and after the ECM
project. For the learning task, we used the XGBoost algorithm. Boosting is an established
machine learning concept with algorithms, such as adaptive boosting (AdaBoost), boosting
tree, gradient boosting (GB), Extreme gradient boosting (XGBoost) and Light gradient
boosting machine (lightGBM). XGBoost is a formally established supervised learning
algorithm for predictive model development due to its accuracy and performance as
evidenced by several studies in the energy domain itself [12,15,27,28]. A comparative
analysis conducted by Cabrera et al. [29] showed that XGBoost has the highest accuracy
in terms of CV(RMSE) compared to linear and symbolic regression models. Boosting
focuses on predictions with high error in the initial training step by adjusting the sample
distribution for the next training step. This process continues for multiple iterations
until the number of learners reaches a stopping criterion. Boosting models build a set of
weak learners to obtain strong learner with better performance compared to individual
weak learners.

Most machine learning models with high accuracies are subject to over-fitting where
the model becomes optimized for the training data, thereby performing poorly in testing
data and live applications. K-fold cross-validation is an effective method to detect and
measure over-fitting in machine learning models; this method randomly splits the training
dataset into k subsets, which are called folds, with the same sizes. Since limited data is
used in our approach with shorter pre- and post-ECM periods, we have applied 10-fold
cross-validation. A further optimization of the machine learning model that improves
performance is to finetune the hyperparameters of the learning algorithm. In XGBoost,
the relevant hyperparameters are: (1) learning rate which provides the shrinkage at each
time step, (2) estimators that provide the number of weak learners or the regression trees
in the model and (3) tree depth for the number of splits during training [30]. The broad
range of values that each hyperparameter takes and the number of such parameters that
can be finetuned increases the computational complexity of the model development phase.
This is typically addressed using the grid search method, which train models per all the
hyperparameter combinations to find the most effective configuration or randomized
search, which randomly select hyperparameter combination [31].

The robust evaluation of baseline accuracy is critical for M&V use cases as they aim to
capture the quality of each ECM initiative [32]. Therefore, in our framework, we utilize
the large volumes of smart meter data accumulated in most ECM settings to evaluate the
performance of the XGBoost models built in the previous layer. Given the disposition of
the performance evaluation task, the following metrics are the most effective; Normalized
Mean Bias Error (NMBE), the Coefficient of Variation of the Root Mean Squared Error
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(CV(RMSE)), Coefficient of Determination (R2) and Mean Absolute Percent Error (MAPE).
The mathematical formulations of NMBE, CV(RMSE), R2, and MAPE are presented in
Equations (1)–(4), where ŷi is the predicted value, yi is the actual meter reading, y is the
average of yi and n is the total number of data points.

NMBE =
1
n ∑n

i (yi − ŷi)

y
∗ 100 (1)

CV(RMSE) =

√
1
n ∑n

i (yi − ŷi)
2

y
∗ 100 (2)

R2 = 1− ∑n
i (yi − ŷi)

2

∑n
i (yi − y)2 (3)

MAPE =
1
n

n

∑
i

|yi − ŷi|
yi

(4)

According to the ASHRAE Guideline 14 uncertainty analysis of the M&V predictive
model provides a degree of confidence in the actual value when measurement procedures
are applied. CV(RMSE) measure is a prominent metric in ASHRAE Guideline 14 and
IPMVP where the requirement is a prediction model with a CV(RMSE) value of less than
30, while IPMVP requires a value less than 20 CV(RMSE) [10,11].

2.3. ECM Quantification

The fourth vertical focuses on the savings quantification of the ECM initiative. Most
quantification approaches follow the standard method defined in the IPMVP guidelines
(Equation (5)), which includes an adjustment factor along with the baseline and post-retrofit
energy usage. We propose a robust quantification method that is facilitated by the design
of the predictive model in the AI layer. The binary ECM indicators introduced into the
predictive model are used to estimate the impact of the ECM project by revising the values
of the introduced features. For example, if the predictive model is built using consumption
data and weather data from 2019, then the introduced binary ECM indicator ‘is_ecm’ is
used to reflect the impact of ECM installation. During the model training time, this feature
value will be set based on the ECM installation date to feed the pre and post-retrofit energy
consumption behavior of the building to the model. Then, to evaluate the yearly savings
with estimated weather data from a future or current year (noting that annual weather data
typically lies within a narrow range across adjacent years), we set the introduced binary
feature ‘is_ecm’ value to True and estimate energy consumption for the year assuming
ECM event in place for the entire year. Next, we set the value to False, to which the model
provides the estimated annual consumption without any ECM project for the entire year.

As noted in Equation (6), the difference between the sum of the energy consumption
without the event and the sum of the energy consumption with the event over the year
provides the annual energy savings for that ECM project. The savings percentage can be
calculated using Equation (7) to estimate the overall energy savings percentage of the ECM
project. The details of the savings quantification process are shown in Algorithm 1.

Savings = Baseline Energy Use− PostRetro f it Energy Use ± Adjustments (5)

Savings = Sum o f Consumption Without Event− Sum o f Consumption With Event (6)

Savings Percentage =
Consumption Without Event− Consumption With Event

Consumption Without Event
∗ 100 (7)
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Algorithm 1: Savings Quantification

Input:

X: Training Data
features: Selected set of features
Y: Training Energy Consumption
E: ECM Projects
R: Reporting Period Data

Output: Z: Savings dictionary
1: model← XGBoost()
2: H← initialize hyperparameters dictionary
3: Z = {}
4: for each ECM Ei ∈ E do

5:
X[Ei [‘name’]]← Add new feature per ECM project and set

default value to 0
R[Ei[‘name’]]← Add new feature per ECM project

6: for all data points Xj ∈ X do
7: If Xj[‘date’] > Ei[‘date_start’] then

8:
Xj[Ei

[‘name]] = 1
end if

9: end for
10: features.add (Ei[‘name’])
11: end for
12: optimized_model = GridSearchCV (model, params = H, scoring = ‘rmse’)
13: optimized_model.fit(X[features], Y)
14: for each ECM Ei∈ Edo
15: R[Ei[‘name’]]← Set feature value to 0 for all data points

16:
consumption_no_ecm =

optimized_model.predict(R[features])
17: R[Ei[‘name’]]← Set feature value to 1 for all data points

18:
consumption_with_ecm =

optimized_model.predict(R[features])

19:
savings = SUM

(consumption_no_ecm-consumption_with_ecm)
20: Z[Ei[‘name’]] = savings
21: end for
22: return Z

2.4. Explainability Layer

The explainability layer consists of two key functions, (1) using explainable AI (XAI)
methods to interpret the predictive models for M&V and (2) interactive dashboards and re-
porting of the prediction and XAI outcomes. For the XAI function, the binary ECM indicator
features drive the interpretation of the most contributing features in the model. The most
widely used XAI method is the SHapley Additive exPlanations (SHAP) framework which
is based on the concept of game theory and determines the contribution (or importance)
of features and groups of features towards the output of the predictive model [33]. In
addition, complex machine learning models such as neural networks and gradient boosting
are yet to be adopted widely for M&V estimations despite their high accuracy because
of the lack of interpretability [34]. The framework component that explores the model
interpretability is a major need for uncovering the model internal behaviors with respect to
input features [35]. The second function of the interactive dashboard and reporting aims to
unpack the predictive model and its XAI output for further analysis and synthesis. This
becomes important in the context of multiple buildings or large organizations where the
buildings and the ECM projects need to be evaluated individually and in comparison to
other similar projects.
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3. Empirical Evaluation

We conducted several experiments using the UNICON [36] dataset, which is drawn
from the La Trobe Energy AI/Analytics Platform (LEAP), the flagship AI initiative of
La Trobe University’s commitment towards achieving Net Zero Carbon Emissions in all
campuses by 2029 [37]. There are over 100 buildings from multiple campuses that are
classified as academic, accommodation, or administrative. The consumption data is from
smart meters and contains 15-min interval energy usage from 2018, 2019, and 2020, where
2020 includes the COVID-19 shutdown period. Weather data is also recorded in 5-min
granularity, which includes apparent temperature, dew point temperature, and relative
humidity. University buildings reflect similar energy consumption patterns as commercial
buildings where energy consumption is higher during afternoons and lower during nights
and weekends. The full set of features used in the model is shown in Table 1. The dates of
the ECM projects carried out at each of the buildings are shown in Table 2.

Table 1. Input variables on ECM projects reported in the UNICON dataset.

Feature Description

ApparentTemperature Apparent temperature measured by the weather station
HDD Heating Degree Days
CDD Cooling Degree Days
RelativeHumidity Relative humidity measured by the weather station
Weekday Binary variable to indicate whether it is a weekday
Hour24 Hour of the day
Minute Minute of the day
IsHoliday Binary variable to indicate whether the day is a holiday or not
IsWeekend Binary variable to indicate whether it is a weekend or not

Table 2. ECM projects and installation dates of the university buildings.

Building Ids Date
No-CEM B1, B2, B3, B4, B5

BMS Upgrade

B6 23 April 2019
B7 10 May 2019
B8 15 May 2019
B9, B10, B11, B12, B13, B14 17 May 2019
B15, B16, B17, B18, B19 23 May 2019
B20 29 May 2019
B21 30 May 2019
B22 2 June 2019
B23 7 June 2019
B24 15 June 2019

LED Installation

B13 21 October 2019
B25 30 October 2019
B15 25 November 2019
B16 23 December 2019
B9, B26 9 December 2019

3.1. Evaluation of AI Model Performance

In this section, we evaluate the performance of the models on the selected features
from Table 1. For evaluation, we used k-fold cross validation where the dataset is split into
k equal segments and for each k-th segment, the model is trained on all other segments,
followed by testing on the k-th segment. This repeats k-times and the k results are averaged
to produce a single performance metric. This approach is more effective than a singular
train-test split because of the multiple runs through which the model is exposed to all
the data records instead a single, fixed subset. The results in Figure 2 show the results
of 10-fold cross-validation CV(RMSE), R2, MAPE, and NMBE mean scores of the models
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for the buildings. There were no ECM projects for these buildings in the year 2018. We
have used yearly 15-min energy consumption data in 2018 to validate the models with
cross-validation. As illustrated in Figure 2, cross-validated CV(RMSE) values are within the
recommended range specified in IPVMP and ASHRAE, which are 20 and 30, respectively.
The R2 values in Figure 2 are closer to 1 with majority of the MAPE values are below 10%,
while NMBE values are below 0.06 for all the buildings confirms that the variables and
dataset used in this experiment are effective at demonstrating the proposed robust and
explainable AI approach for ECM calculation.
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and (d) NMBE.

The predictive AI models are built using 2018 data and the performance is evaluated
using the complete 12 months of 2019 data. The objective of this experiment is to evaluate
the impact of using smaller training time durations as existing research studies found that
the use of shorter energy interval data provides similar performance measures over longer
training periods [15,38]. This will verify the impact of using smaller training durations
to build accurate baseline models with our selected set of features. Figure 3 shows the
CV(RMSE) values of the models that are trained for 3 months, 6 months, 9 months, and
12 months and evaluated the performance against 12-month training data in 2019. We
have only selected buildings that do not have any ECM project during 2019. As noted in
Figure 3, models trained on 3 months data performed equally well to the models trained on
6 months, 9 months and 12 months training time periods. This demonstrates the robustness
of the proposed approach, where using 3 months’ training data is sufficient for the model
to learn energy consumption behavior of the building.
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In this dataset, buildings can be categorized into three groups, (1) buildings where
the ECM project is a BMS upgrade only, (2) buildings where the ECM project is an LED
lighting upgrade only, and (3) buildings with both ECMs. In our proposed method, we
have added a binary feature to represent the time periods of before and after the installation
date of ECM which is then projected across 2019 to evaluate the energy savings as shown
in Figure 3 where the percentage savings is calculated using Equation (7).

3.2. Buildings with BMS Upgrade ECM

We first evaluated the buildings that underwent the BMS upgrade. Model performance
is shown in Figure 4 where all CV(RMSE) values are below 15 for all of the buildings, which
is within the IPMVP guidelines. Table 3 shows the percentage of savings for the same BMS
upgrade measured during different time spans, ranging from 12-, 9-, 6-, and 3-months data
prior to the event with 3- and 6-month data after the ECM installation.
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Table 3. Estimated savings percentage for buildings with BMS upgrade only.

Building 3 Months (Post) 6 Months (Post) 12 Months (Post)
3 mths 6 mths 9 mths 12 mths 3 mths 6 mths 9 mths 12 mths 3 mths 6 mths

B9 6.66 11.43 15.43 13.5 3.33 5.62 6.18 5.75 26.41 22.39
B6 7.23 6.07 5.94 6.36 8.52 8.98 6.88 7.11 18.67 21.46
B7 8.05 9.26 9.42 6.89 4.48 4.09 3.26 3.44 −0.69 −4.29

B10 7.38 6.38 6.67 5.6 15.95 13.22 12.44 12.67 8.75 15.59
B13 5.47 7.56 6.9 5.98 3.73 0.72 0.48 1.87 13.85 9.92
B14 11.75 12.89 11.82 11.62 11.58 13.49 12.3 11.6 13.78 15.57
B16 9.25 4.12 2.28 3.49 8.38 2.71 0.72 0.43 0.65 3.75
B17 1.87 0.8 0.36 0.82 0.75 −0.22 −0.26 −0.29 2.23 1.75
B20 5.85 6.14 7.65 8.46 1.48 1.43 2.23 2.04 9.56 4.22
B21 15.67 19.01 18.05 23.04 18.06 16.81 16.03 16.23 29.84 27.28
B22 9.71 8.59 8.8 7.79 2.45 1.34 1.85 1.41 8.92 3.41
B23 12.57 11.2 9.34 7.72 9.87 7.05 6.24 6.66 15.85 12.33
B24 7.07 6.71 7.87 6.82 4.99 4.98 5.4 4.66 11.7 9.06

Mean 8.35 8.47 8.50 8.31 7.20 6.17 5.67 5.66 12.27 10.96

We conducted further on-site analysis of the results presented in Table 3. It was
noteworthy that some buildings have lower percentage savings after switching from a
3-month post-event period to a 6-month post-event period. Our on-site analysis revealed
that the impact of the BMS upgrade on energy savings reduced over time which is the
reason for the reduction of the savings percentage. The percentage savings in the 12 months
(post) column is the standard one-year approach of estimating ECM savings where we
built a baseline model using a 12-month pre-ECM period and estimate the energy savings
percentage compared to actual and adjusted baseline consumption. According to the results,
energy savings estimated by the standard approach are higher compared to the proposed
method. This is because of the saving percentage estimated by the standard approach
is not yearly basis as it is not possible to capture data for 1 year period after the ECM
installation due to overlapping ECM projects. The savings calculated using the standard
approach also indicates a drop going from 3 months savings to 6 months savings. Hence,
the annual savings estimated by our approach is less than the standard method estimation.
This indicates the robustness of our approach where it captures the energy savings pattern
over time and projects it across the entire year. Using the standard approach, it is not
possible to get an estimation of this latent behavior. Figure 5 shows the projection of energy
consumption over a year with and without the ECM project. It shows that our approach
captures the energy consumption behavior according to the introduced binary feature to
reflect the ECM project.

In the explainability layer, we studied the models used in the experiments that are
based on a 9-month pre-ECM installation period followed by a 3-month post-training
period. The variable importance plot in Figure 6 shows the impact of the features based on
SHAP values respective to feature values towards the target prediction with descending
feature importance. According to the variable importance plot, the ‘is_bms’ binary variable
which is related to the BMS upgrade ECM has the second most impact on the target
predictions of the model for building B26. SHAP values in the variable impact plot in
Figure 6 provide the distribution of the impact of each feature has on the model output.
The color represents the feature value where their value goes from low to high from blue
to red. As expected, the binary variable ‘is_bms’ has an inverse effect. When the binary
value is set to 1, it reduces the energy consumption, while a variable, such as temperature,
has a positive impact towards the energy consumption. This indicates that the model has
properly captured the impact of the ECM project based on the feature value.
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Waterfall graphs shown in Figure 7 are used to analyze the value contribution towards
target prediction based on each feature of a given data point. Red color bars indicate an
increase while blue color bars indicate a decrease in energy consumption and the length of
the bar is proportional to the impact of the feature. When no-ECM is in place that indicates
the value zero of the binary variable, the energy consumption increases while it decreases
when the value is set to 1. According to the plots, they further verify the model behavior in
the present and the absence of the ECM project.

3.3. Buildings with LED Retrofit ECM

LED retrofit ECM shows consistent energy savings compared to the BMS upgrade.
The consistent cross-validated CV(RMSE) results across different pre-retrofit periods shown
in Figure 8 are within the acceptable levels of IPMVP guidelines and further validate the
consistent impact of LED retrofit ECM. The energy consumption patterns of buildings
varied over time and the impact of the BMS upgrade was not consistent across time. This
behavior is already observed in our dataset. However, the LED retrofit ECM project has a
consistent impact on energy savings. Table 4 shows the percentage of savings for the LED
retrofit ECM project that contains only 3 months of data.
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Figure 8. The cross-validated CV(RMSE) values of buildings containing LED retrofit ECM only.

Table 4. Estimated percentage savings for the LED retrofit project.

3 Months (Post) Standard
Model 3 Mths 6 Mths 9 Mths 12 Mths 3 Mths

B26 24.93103 26.19834 27.32977 27.96718 26.53
B15 9.4123 9.99353 10.05227 9.29150 10.49
B25 13.63631 13.9096 12.08431 10.82881 11.53

LED ECM saving percentage results in Table 4 show consistent behavior across differ-
ent selections of pre-retrofit data periods. This indicates that the proposed AI approach
identifies consistent energy-saving patterns from the LED retrofit project. Figure 9 shows a
consistent gap between the energy consumption of building B16 in the presence and the
absence of the LED retrofit project.
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Figure 9. Predicted baselines with and without BMS upgrade event of building B25.

The explainability plots in Figures 10 and 11, indicate a similar behavior as in BMS
upgrade ECM on the introduced ‘is_led’ binary feature to represent the LED retrofit.
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3.4. Buildings with BMS Upgrade and LED Retrofit ECM

In this dataset, there are several buildings that were subjected to both BMS upgrade
and LED retrofit ECM projects. The performance results of the models trained using the
post-retrofit data till the COVID-19 shutdown are shown in Figure 12, which is also within
the acceptable level under the standard guidelines. Results of Table 5 were obtained from
the buildings that are subjected to both ECM projects. We have evaluated the savings
percentage using 3, 6, 9, and 12 months of data prior to the BMS upgrade project.
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Figure 12. The cross-validated CV(RMSE) values of buildings containing LED retrofit and BMS
upgrade ECM.

Table 5. Estimated percentage savings for LED and BMS upgrade projects.

Building BMS Upgrade LED Installation
−3 m/3 m −6 m/3 m −9 m/3 m −12 m/3 m −3 m/3 m −6 m/3 m −9 m/3 m −12 m/3 m

B9 4.77 6.60 8.04 7.78 18.06 15.61 15.54 14.97
B16 10.26 6.42 3.72 3.81 25.11 26.81 27.68 29.96
B13 1.27 1.28 0.60 0.35 0.87 1.43 2.20 2.22

We further validated our results with those from the ECM solution provider based
on 3000 operational hours, 57.69 per week for buildings B15 and B16. According to the
results shown in Figure 13, the estimated savings from our method is similar to the total
estimated savings data provided by the vendor. Our method calculates the savings with
building operation characteristics, which is more aligned with the proper M&V savings
calculation approach.

When a building contains two ECM installations, the introduced two binary variables
(is_led, is_bms) show two levels of impact. For building B9, the binary variable, which
reflects the LED-retrofit has more impact compared to the binary variable, which reflects
the BMS upgrade. We have performed a manual evaluation of the energy consumption
behavior after the BMS upgrade and LED retrofit. Our analysis confirmed that the impact of
LED retrofit in building B9 has a greater impact compared to the BMS upgrade. Interestingly,
when two ECMs projects present in building B9 have a clear inverse impact on both binary
variables, which can be observed by the symmetrical separation of colors in the (b) plot of
Figure 14. However, the impact of the ‘is_bms’ variable on building B16, which is shown
in (c) plot of Figure 14 indicates both positive and negative correlations towards target
predictions, while the ‘is_led’ binary feature has a complete inverse relationship. This
could indicate that the impact of BMS upgrade degrades over time, while LED retrofit
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has a complete inverse correlation for energy consumption, which is a permanent event.
Figure 15 shows the impact of the introduced features on the model prediction for selected
data points.
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Figure 13. Estimated annual savings vs. calculated annual savings (B15, B16 combined).

Sensors 2022, 22, x FOR PEER REVIEW 16 of 19 
 

 

When a building contains two ECM installations, the introduced two binary variables 
(is_led, is_bms) show two levels of impact. For building B9, the binary variable, which 
reflects the LED-retrofit has more impact compared to the binary variable, which reflects 
the BMS upgrade. We have performed a manual evaluation of the energy consumption 
behavior after the BMS upgrade and LED retrofit. Our analysis confirmed that the impact 
of LED retrofit in building B9 has a greater impact compared to the BMS upgrade. Inter-
estingly, when two ECMs projects present in building B9 have a clear inverse impact on 
both binary variables, which can be observed by the symmetrical separation of colors in 
the (b) plot of Figure 14. However, the impact of the ‘is_bms’ variable on building B16, 
which is shown in (c) plot of Figure 14 indicates both positive and negative correlations 
towards target predictions, while the ‘is_led’ binary feature has a complete inverse rela-
tionship. This could indicate that the impact of BMS upgrade degrades over time, while 
LED retrofit has a complete inverse correlation for energy consumption, which is a per-
manent event. Figure 15 shows the impact of the introduced features on the model pre-
diction for selected data points. 

 
Figure 14. SHAP explainability plots of buildings B9 and B16 (a) Variable Importance plot of build-
ing B9 (b) Variable Impact plot of building B9 (c) Variable Impact plot of building B16. 

 
Figure 15. SHAP Waterfall plots of building B9 (a) Energy consumption prediction assuming LED 
retrofit ECM present (b) Energy consumption prediction assuming LED retrofit ECM absent. 

3.5. Impact of ECM Installation Date 
Here, we evaluate the selection of the ECM installation date and its impact on the 

annual savings. Figure 16 shows the impact of percentage savings by selecting 7 days be-
fore and after the ECM completion date for the BMS upgrade ECM project. According to 

Figure 14. SHAP explainability plots of buildings B9 and B16 (a) Variable Importance plot of building
B9 (b) Variable Impact plot of building B9 (c) Variable Impact plot of building B16.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 19 
 

 

When a building contains two ECM installations, the introduced two binary variables 
(is_led, is_bms) show two levels of impact. For building B9, the binary variable, which 
reflects the LED-retrofit has more impact compared to the binary variable, which reflects 
the BMS upgrade. We have performed a manual evaluation of the energy consumption 
behavior after the BMS upgrade and LED retrofit. Our analysis confirmed that the impact 
of LED retrofit in building B9 has a greater impact compared to the BMS upgrade. Inter-
estingly, when two ECMs projects present in building B9 have a clear inverse impact on 
both binary variables, which can be observed by the symmetrical separation of colors in 
the (b) plot of Figure 14. However, the impact of the ‘is_bms’ variable on building B16, 
which is shown in (c) plot of Figure 14 indicates both positive and negative correlations 
towards target predictions, while the ‘is_led’ binary feature has a complete inverse rela-
tionship. This could indicate that the impact of BMS upgrade degrades over time, while 
LED retrofit has a complete inverse correlation for energy consumption, which is a per-
manent event. Figure 15 shows the impact of the introduced features on the model pre-
diction for selected data points. 

 
Figure 14. SHAP explainability plots of buildings B9 and B16 (a) Variable Importance plot of build-
ing B9 (b) Variable Impact plot of building B9 (c) Variable Impact plot of building B16. 

 
Figure 15. SHAP Waterfall plots of building B9 (a) Energy consumption prediction assuming LED 
retrofit ECM present (b) Energy consumption prediction assuming LED retrofit ECM absent. 

3.5. Impact of ECM Installation Date 
Here, we evaluate the selection of the ECM installation date and its impact on the 

annual savings. Figure 16 shows the impact of percentage savings by selecting 7 days be-
fore and after the ECM completion date for the BMS upgrade ECM project. According to 

Figure 15. SHAP Waterfall plots of building B9 (a) Energy consumption prediction assuming LED
retrofit ECM present (b) Energy consumption prediction assuming LED retrofit ECM absent.



Sensors 2022, 22, 9503 16 of 18

3.5. Impact of ECM Installation Date

Here, we evaluate the selection of the ECM installation date and its impact on the
annual savings. Figure 16 shows the impact of percentage savings by selecting 7 days
before and after the ECM completion date for the BMS upgrade ECM project. According to
Figure 16, several buildings follow a similar decreasing function, but the savings percentage
remains mostly consistent across many buildings. The reason for this behavior is that the
predictive model observes the reduction of energy savings differently, which changes the
impact of the binary feature towards the prediction. Peak percentage savings were observed
mostly near the ECM project completion date, which accurately represents the behavior of
the building before and after the ECM project.
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4. Conclusions

In this paper, we have proposed a robust and explainable AI approach for M&V
protocols of energy-efficient infrastructure, leading up to a net zero carbon emissions
strategy. The proposed approach is novel in its use of small volumes of energy consumption
data streams to build effective predictive models for energy savings estimation, as well as
its interpretation of the predictive outcome in terms of the variables of the dataset using
XAI techniques. The approach consists of five layers: input layer, data lake layer, AI layer,
ECM quantification layer, and the explainability layer. We have empirically evaluated the
proposed approach on a large real-world dataset of energy consumption data and ECM
projects within the multi-campus multi-building setting of La Trobe University. The results
representing robustness and explainability of the predictive output and savings estimation
confirm the validity and practical value of this AI approach for M&V of ECM projects. As
future work, the following limitations of the framework should be addressed; the short time
interval for ECM monitoring could contain biased consumption data relating to an event of
significance or an outlier, this needs to be factored in as the time interval is incrementally
expanded, and the prediction horizon and prediction uncertainty should be incorporated
into the model development as further parameters to be finetuned. Experimentation with
sophisticated AI models for prediction and further evaluation of the proposed framework
across diverse ECM projects in different organizational settings are also recommended. In
conclusion, drawing on the proposed framework and its demonstration, it is now timely
for policymakers and regulators of energy markets and energy operations to consider the
formal adoption of the robust and explainable capabilities of AI for measurement and
verification of energy efficient infrastructure for net zero carbon emissions.
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