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Abstract: The elastic optical network (EON) adopting virtual network function (VNF) is a new type of
network, in which the routing, spectrum, and data center allocation are key and challenging problems,
and solving these three problems simultaneously can not only improve the network efficiency for
network providers, but also let users obtain better service. However, few existing works handle these
three problems simultaneously. To tackle the three problems simultaneously, given a set of network
function chains (i.e., a set of tasks), we set up a new multi-objective optimization model in which the
total length of paths for all tasks is minimized, the totally occupied spectrums are minimized, and
the loads on all data centers are most balanced, simultaneously. To solve the model, we design two
new evolutionary algorithms. The experiments are conducted on 16 cases of 4 widely used types of
networks, and the results indicate that the proposed model and algorithms are effective.

Keywords: elastic optical networks; data center allocation; routing; spectrum allocation; virtual
network function; multi-objective optimization; evolutionary algorithm

1. Introduction

With the development of internet and network technology, a wavelength division
multiplexing (WDM) network can not satisfy the requirement of real world problems due
to its spectrum allocation mode of fixed grid and low spectrum utilization. Elastic optical
network (EON) is a potential direction for developing the future network due to flexible
spectrum allocation and high spectrum utilization. However, the routing and spectrum
allocation (RSA) problem in EON is more complex. RSA has become one of the hottest
and key problems in EON [1]. It needs to handle multiple issues simultaneously (e.g.,
select the best route, use the least spectrum resource, make the communication efficient,
etc.). Although many researchers have studied these kinds of problems, most of them only
can handle one or two issues simultaneously. For example, Ref. [2] proposed an adaptive
scheme which only tackles the routing and spectrum allocation problems based on reducing
the relative cost of network flow and the probability of communication block. Ref. [3]
proposed a RSA strategy which only improves the quality of transmission (QoT) based on
both the link state advertisement (LSA) and the risk reduction of quality of transmission
(QoT). To improve the communication quality by tackling unbalanced distribution of
network flows in EON, Ref. [4] proposed two algorithms based on the OTTM model to
improve bandwidth efficiency. To handle routing and spectrum issues, Ref. [5] proposed
an adaptive RSA algorithm which tried to select the routing of the lowest relative cost
and design the efficient spectrum scheme by estimating both the transient effect of call
admission on a given set of routing/spectrum and the relative cost of reaching the forward
destination of the calls. To handle the spectrum problem, Ref. [6] set up an integer linear
programming model for spectrum allocation problems by analyzing the characteristic
of network data flow of three kinds of elastic optical networks, and proposed two meta
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heuristic algorithms based on particle swarm optimization and tabu search. However, these
works did not consider how to tackle more than two issues simultaneously and cannot
complete a series of function service chains (FSC).

In addition, with the fast increase of the number of network users, it becomes more
difficult to handle multiple issues simultaneously, and it is required to continuously update
the network hardware with the increase of tasks and users. However, the hardware
update speed can not catch the speed of increase of tasks and users. Therefore, it is
impossible to solve this problem by only updating the hardware. The virtual network
function (VNF) is to realize the function of special hardware by using software without the
need for updating hardware. VNF can increase the number of tasks/users and enhance
the network resource utilization without increasing network hardware. Thus, VNF is a
potential technique in the environment of fast increase of users/tasks for elastic optical
networks. Moreover, the elastic optical network with VNF provides an efficient tool to
possibly handle multiple issues simultaneously in the RSA problem and complete a series
of function service chains (FSC). Each FSC (can be seen as a task) consists of a sequential
functions (e.g., data encryption, data decryption, deep packet inspection, data monitoring,
etc.) to be successively completed. However, this flexibility and adaptability will result in
more complexity for setting up models and designing algorithms. The existing models and
algorithms for elastic optical networks can only handle one or two issues simultaneously,
and cannot tackle multiple (more than two) issues simultaneously. In fact, the current
models and algorithms for elastic optical networks face many challenges. One of the most
difficult challenges is how to tackle the following four problems on EON simultaneously:

(1) How to reasonably make the routing (select reasonable path for each task/FSC)
such that data can be quickly transmitted; (2) how to efficiently allocate spectrums such
that the spectrum resource is conserved the most; (3) how to make the loads most balanced
among the data centers such that the network communication is more efficient and stable;
and (4) how to deploy VNF efficiently.

2. Related Works

Currently, there have been some research works in this field. For example, in order
to handle two problems (i.e., reduce the cost and improve the quality of service (QoS)),
Ref. [7] proposed an integrated algorithm based on VNF migration strategy, which aims
at reducing the income loss of network service provider due to both data lost during the
transmission and decreasing of quality of service (QoS), but it did not consider how to
balance the loads among the data centers. To solve VNF and physical function allocation
problems in network and cloud environments, Ref. [8] proposed a heuristic algorithm
based on a self-defined greedy strategy to improve the performance and ability of feature
decomposition method, but it did not consider the spectrum allocation and load balance.
Ref. [9] surveyed the current research progress on VNF allocation problems. Ref. [10]
proposed a new virtualization method on network functions, but it did not consider the
load balance and routing. In order to balance the load of the data center nodes, Ref. [11]
proposed a highly efficient switch migration (HESM) method for controlling load balance
via minimizing migration cost, but it did not consider the routing and spectrum allocation.
To increase spectral efficiency for the routing and spectrum assignment (RSA) in elastic
optical networks (EON), Ref. [12] proposed a novel technique for resource planning and
consumption estimation by the optimal utilization of already existing resources, but it
did not consider the load balance. In order to enhance the efficiency of routing and
resource allocation, Ref. [13] proposed a prediction-based dynamic slicing mechanism
(PDSM) for heterogeneous elastic fiber wireless networks, but it also did not consider the
load balance. To obtain a better resource allocation scheme, Ref. [14] proposed a novel
constrained deep reinforcement learning algorithm for the resource allocation problem.
Aiming at improving the efficiency of both wireless resource management and computation
resource management within network slices in edge computing systems, Ref. [15] proposed
an efficient approximation algorithm based on the game theory, which minimizes the
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completion time of task execution in the system. These algorithms also did not consider the
load balance. Ref. [16] investigated static routing, VNF, and spectrum allocation (RMSTA)
of advanced reservation (AR) requests in elastic optical networks. They formulated a two-
objective optimization model by minimizing the occupied spectrum and time resources,
and proposed a heuristic algorithm based on three sorting strategies. However, this study
focused only on sorting requests and neglected the effect of routing and spectrum allocation
on the model and algorithm. Furthermore, solving the formulated multi-objective problem
by minimizing the weighted sum of two objectives cannot obtain a set of solutions, which
failed to satisfy users with different preferences. Ref. [17] investigated the routing and
content replication placement in elastic optical networks. They built a mixed integer
linear programming model and proposed a heuristic optimization method. However,
this study focused on content replication and neglected the impact of routing policies on
designing algorithms in large-scale networks and short-term re-optimization scenarios.
Ref. [18] proposed an ILP model that takes into account the multicast routing, spectrum, and
transceivers for multicast requests, with the goal of minimizing the spectrum consumption
and transceivers required for the subtree in an elastic optical data center network (EODCNs).
However, this study did not give a method to determine the weight coefficients for each
optimization objective in the ILP model and did not consider the load balance. Ref. [19]
used a physical slicing technique that supports an end-to-end optical path on a combination
of multiple discontinuous spectral slots in order to enhance the spectrum allocation, and
proposed a scheme to determine the splitting position and required number of slots for each
slice component in an EON network. They built a mixed integer linear programming (MILP)
model by making the trade-off among the slicers availability, spectrum utilization, and
bandwidth blocking probability. Although the physical slicing technology has improved
the spectrum utilization rate in EON, this study did not consider the network load balance.
Ref. [20] studied the allocation of data center and spectrum for VNF service chain in inter-
datacenter elastic optical networks. To minimize the total network cost and balance the
utilization of resources, the authors set up a model with three optimization objectives first,
and then transformed it into a single-objective optimization model by using the weight
sum method. Finally, they proposed a heuristic algorithm to reduce the congestion in
both data centers and links. However, this work ignored the communication quality (e.g.,
quality of service). To deploy VNF effectively, Ref. [21] proposed a deep reinforced learning
based algorithm to minimize the spectrum utilization ratio and the number of deployed
VNFs jointly. A trade-off between spectrum utilization ratio and number of deployed VNFs
was made by assigning a weight to each of the objectives. However, this method did not
carefully take into account both routing and load balance of data centers. Instead, it only
used a simple heuristic strategy to make the routing.

By summary, the existing works mainly focus on tackling only one or two issues of
the four aforementioned issues. There have been few works tackling the four problems
above simultaneously. To overcome this shortcoming, the main contributions in this paper
are as follows: (1) We set up a new multi-objective model for solving all these problems
simultaneously, i.e., select reasonable routes for each task such that data can be quickly
transmitted; efficiently allocate spectrums such that the spectrum resource is conserved
the most; make the loads most balanced among the data centers such that the network
communication is more efficient and stable; and deploy VNF efficiently. (2) We propose two
new evolutionary algorithms for solving this model. (3) We conduct a lot of experiments
(including 16 cases of 4 types of widely used networks) to test the effectiveness and
efficiency of the proposed model and algorithms.

The rest of the paper is arranged as follows: In Section 3, we first briefly introduce
the problem considered in this paper, and then set up a new optimization model for the
problem. Finally, we design two new evolutionary algorithms for the model. In Section 4,
we conduct the experiments and conduct the analysis of experimental results. In Section 5,
we make the discussion on the paper and point out the future work. Conclusions are made
in Section 6.
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3. Problem Description, Optimization Model, and Algorithm
3.1. Problem Description

A scheduling problem of the elastic optical network using virtual network functions
can be described as follows: The elastic optical network using virtual network functions
can be represented by an undirected graph G(V, E), where the set V = {v1, v2, · · · , vNv}
of the vertexes in the graph represents the set of nodes of the network, the set of nodes
of data centers is denoted by VD = {v1, v2, · · · , vNd}, and the set E = {Lij|vi, vj ∈ V} of
edges of graphs represents the set of links of networks. The set of tasks is denoted by
FSC = {r1, r2, · · · , rk, · · · , rNR}, where each task is a function service chain (FSC), and the
k-th function service chain (also called the k-th task) is represented as rk = (sk, dk, bk, tk),
where sk is source node, dk is the destination node, tk is the function sequence
tk = {t1

k , t2
k , · · · , ti

k, · · · , tFk
k } required to be realized sequentially by task rk, where ti

k ∈
{1, 2, · · · , NT} is the index of the i-th virtual network function to be realized by the k-th
task rk (for convenience, the virtual network function is briefly called the function in the
following). ti

k are different each other in tk. Fk is the number of the functions contained
in the k-th FSC. NT is the total number of all different functions in all NR tasks. bk is the
number of slots to be occupied by the k-th task rk. NF is the maximal number of slots which
are available in the path.

The problem considered in this paper is to tackle the following issues: (1) how to select
a proper path from the source node to the destination node for each task such that the total
length of all paths is minimized; (2) how to assign the slots in the selected path for each
task such that the slot assumption is minimized; (3) how to make the loads most balanced
among the data centers such that the network communication is more efficient and stable;
and (4) how to deploy VNF efficiently.

3.2. A Multi-Objective Optimization Model
3.2.1. Determining Variables for the Model

A. Path variables:
Let Pk = (sk, x1

k , x2
k , · · · , xlk

k , dk) denote the path to be chosen for the task rk, where
xi

k ∈ {1, 2, · · · , Nv}, x1
k is the first node of the path to reach from the start node sk, and xi

k is

the i-th node of the path to reach from the start node sk for i = 1, 2, · · · , lk. Finally, node xlk
k

directly reaches the destination node dk. That is, path Pk is as follows:

sk → x1
k → x2

k → · · · → xlk
k → dk

and has to pass through at lest one data center node. For example, path Pk = (5, 3, 6, 1, 8, 7, 2)
for task rk means that the source node is node 5; then, the first node to reach from source
node 5 is node 3, and the second node to reach from source node 5 is node 6. Similarly, the
later nodes in the path are sequentially node 1, node 8, node 7, and finally to the destination
node 2.

Let xk = (x1
k , x2

k , · · · , xlk
k ) denote path variables, and let Vvi denote the set of nodes con-

nected to node vi in the network. Then, x1
k ∈ Vsk , x2

k ∈ Vx1
k
, x3

k ∈ Vx2
k
, · · · , xlk

k ∈ V
x

lk−1
k

, dk ∈

V
x

lk
k

, and Dc ∩ {sk, x1
k , x2

k , · · · , xlk
k , dk} 6= ∅, where Dc is the set of nodes of data centers.

In the following, we shall design the following Algorithm 1 to look for such a path

Pk = (sk, x1
k , · · · , xlk

k , dk)

in which at least one node is a data center node, and to determine the path variables.
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Algorithm 1 Path search algorithm

Step 1: Select x1
k . For sk, if Vsk contains any data center node, randomly select one data

center node as x1
k ; otherwise, randomly select a node in Vsk as x1

k , and let i = 1.

Step 2: Select xi+1
k in Vi

k/{sk, x1
k , · · · , xi

k} according to the following two cases, where Vi
k

represents Vxi
k

for notation convenience:

Case I: {sk, x1
k , · · · , xi

k} contains a data center node. If dk ∈ Vi
k , select dk as xi+1

k ; otherwise,
randomly select a node in Vi

k as xi+1
k .

Case II: {sk, x1
k , · · · , xi

k} does not contain any data center node. If Vi
k contains any data

center node, randomly select one data center node in Vi
k as xi+1

k , let i = i + 1, go to step 2;
otherwise, randomly select one node in Vi

k as xi+1
k , go to step 3.

Step 3: If xi+1
k 6= dk, let i = i + 1, go to step 2 (the current path neither contains any data

center node nor reaches dk), otherwise, go to step 4 (the current path does not contain
any data center node but reaches dk. This is not a feasible path, and we have to select
another path).

Step 4: Re-select the nodes after node xi
k until selecting node dk by using the previous

steps. If the new path is still an infeasible path (containing no data center node), re-select
nodes after xi−1

k until selecting dk. Repeat this process until one feasible path is found.

B. Slot variables:
Let yk = (y1

k , y2
k , · · · , yNF

k ) denote the slot assignment on path Pk for task rk, where
each yi

k is a boolean variable. yi
k = 1 represents that task rk uses the i-th slot of each edge of

path Pk, and yi
k = 0 means that task rk does not use the i-th slot on path Pk. Let Uk represent

the set of tasks whose paths share a common link with path yk, i.e.,

Uk = {v | Pk ∩ Pv 6= ∅, ∀1 ≤ v ≤ NR}.

yk must satisfy the following conditions: (1) The number of slots used in slot assignment yk
should be equal to the number of slots required by task rk; (2) For the same slot, it should
be used by at most one task. That is,∑NF

i=1 yi
k = bk, k = 1, 2, · · · , NR

∑
v∈Uk

yi
v ≤ 1, i = 1, 2, · · · , NF

(1)

C. Function variables:
Suppose the data center nodes passed successively through by Pk are:

Vk1 , Vk2 , · · · , Vkik

The numbers of functions in rk assigned to data center nodes Vk1 , Vk2 , · · · , Vkik
on path

Pk are
zk = (z1

k , z2
k , · · · , zik

k ),

respectively, where zj
k is the number of functions assigned to data center Vkj

to be realized,
and the sequence of these functions assigned to the data center nodes is the same as that in
rk. We call zk the function variables, which should satisfy the following conditions: The
total number of assigned functions should be equal to the number of functions required to
be realized in rk, i.e.,

ik

∑
j=1

zj
k = Fk, k = 1, · · · , NR
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where Fk is the number of functions required to be realized by rk.

3.2.2. Objective Function Determination

A. Minimize the total length of all paths:
Note that path Pk corresponding to task rk has (lk + 1) edges, and its length is (lk + 1).

Then, the total length of all paths is ∑NR
k=1(lk + 1).

Thus, the first objective is to minimize the following total length:

f1(x1, · · · , xNR) =
NR

∑
k=1

(lk + 1)

Denote x = (x1, · · · , xNR). Then, we have f1(x) = ∑NR
k=1(lk + 1).

B. Minimize the total number of slots used:
The number of slots in each link of path Pk for task rk is bk, and the number of links of

path Pk is l
′
k (excluding the shared common links and the shared links are not computed

repeatedly). Thus, the total number of slots used by all tasks is

f2(x, y1, y2, · · · , yNR) =
NR

∑
k=1

bk ∗ l
′
k

Denote y = (y1, · · · , yNR). Then, the second objective is to minimize the following
function f2(x, y) = ∑NR

k=1 bk ∗ l
′
k.

C. Optimize the balance of loads on all data center nodes:
To optimize the balance of loads on all data center nodes, the number of functions of

all NR tasks should be assigned to these data center nodes as equally as possible. The index
set of the data center nodes passed through by path Pk is denoted by {k1, k2, · · · , kik}. Let

D̃c =
NR⋃
k=1

{k1, k2, · · · , kik}

denote the index set of data center nodes used by all tasks.
For ∀c ∈ D̃c, the number of functions handled by data center node c is

qc(z1, · · · , zNR) = ∑
k∈D̃c

zc
k

The standard deviation of the numbers of functions handled by all data center nodes is

f3(x, y, z1, z2, · · · , zNR) =

√√√√ 1

|D̃c|
∑

c∈D̃c

[qc(z1, · · · , zNR)−
NT

|D̃c|
]2

Denote z = (z1, · · · , zNR). Then, optimizing the balance of load of data centers is equal
to minimizing the following objective:

f3(x, y, z) =

√√√√ 1

|D̃c|
∑

c∈D̃c

[qc(z)−
NT

|D̃c|
]2

Now our goal is to minimize the above three objectives simultaneously, i.e.,

min { f1(x), f2(x, y), f3(x, y, z)}
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3.2.3. Constraints

A. The path variable constraints:
Path Pk selected for task rk should pass through at least one data center node, i.e.,

Dc
⋂
{sk, x1

k , x2
k , · · · , xlk

k , dk} 6= ∅, k = 1, · · · , NR

B. Slot constraints:
NF

∑
i=1

yi
k = bk, k = 1, · · · , NR

∑
v∈Uk

yi
v ≤ 1, i = 1, 2, · · · , NF

C. Function assignment constraints:

ik

∑
j=1

zj
k = Fk, k = 1, · · · , NR

3.2.4. Multi-Objective Optimization Model

By summary, we can set up the following multi-objective optimization model:

min { f1(x), f2(x, y), f3(x, y, z)}
s.t.
(1)Dc

⋂ {sk, x1
k , x2

k , · · · , xlk
k , dk} 6= ∅, k = 1, · · · , NR

(2)∑NF
i=1 yi

k = bk, k = 1, · · · , NR

(3) ∑
v∈Uk

yi
v ≤ 1, i = 1, 2, · · · , NF

(4)∑ik
j=1 zj

k = Fk, k = 1, · · · , NR

(2)

3.3. Two Evolutionary Algorithms for Solving the Model

Note that the above model is a nonlinear integer multi-objective optimization model.
There is no existing algorithm for this model. We shall design two evolutionary algorithms
to solve this model in this section.

The framework of the first algorithm is as follows: First, design a strategy to generate
the initial population. Second, design a mutation operator. Finally, evolve the population
iteratively and obtain a set of the approximate solutions. In the following, we shall introduce
each part of the algorithm, respectively.

3.3.1. A Strategy for Generating the Initial Population

Given the population size Npop, any individual (x, y, z) in the initial population POP0

is generated by the following Algorithm 2:

Algorithm 2 A strategy for generating the initial population
Step 1: Generate each x by using Algorithm 1.

Step 2: Generate each y = (y1, y2, · · · , yNR)
T as follows: denote

y =


y1
y2
· · ·
yNR

 =


y1

1 y2
1 · · · yNF

1
y1

2 y2
2 · · · yNF

2
· · · · · · · · · · · ·
y1

NR
y2

NR
· · · yNF

NR





Sensors 2022, 22, 9579 8 of 15

Algorithm 2 Cont.
Set initial matrix y = 0. Let yw1 , yw2 · · · , ywNR

be a random sequence of y1, y2, · · · , yNR

and yw denote the matrix whose rows are yw1 , yw2 · · · , ywNR
, respectively. Set y1

w1
= y2

w1
=

· · · = y
bw1
w1 = 1, and yj

w1 = 0 for j 6= 1, 2, · · · , bw1 . If path Pw2 for task rw2 shares a link

with path Pw1 for task rw1 , set yj
w2 = 1 for bw1 + 1 ≤ j ≤ bw1 + bw2 and yj

w2 = 0 for other

j. Otherwise, set y1
w2

= y2
w2

= · · · = y
bw2
w2 = 1, and yj

w2 = 0 for j 6= 1, 2, · · · , bw2 . Generally,
for each k ∈ {2, 3, · · · , NR}, if path Pwk for task rwk does not share a link with any previous

path Pwj for 1 ≤ j ≤ k− 1, set y1
wk

= y2
wk

= · · · = y
bwk
wk = 1, and yj

wk = 0 for j 6= 1, 2, · · · , bwk .
Otherwise, let Uwk denote the set of tasks whose paths share a link with path Pwk for task
wk. Compute

ȳwk = ∑
v∈Uwk

yv

Let

k0 = min{k′0|
k′0+bwk−1

∑
i=k′0

ȳi
wk

= 0 f or k′0 ∈ {1, 2, · · · , NF − bwk}}

Assign the slots k0, k0 + 1, · · · , k0 + bwk − 1 to path Pwk for task rwk , i.e, let yk0
wk = yk0+1

wk =

· · · = yk0+bwk−1 = 1, and yj
wk = 0 for j 6= k0, k0 + 1, · · · , k0 + bwk − 1.

Then, y satisfies the constraints:

NF

∑
i=1

yi
k = bk, k = 1, · · · , NR

∑
v∈Uk

yi
v ≤ 1, i = 1, 2, · · · , NF

Step 3: Suppose the data center nodes passed successively through by path Pk are:

Vk1 , Vk2 , · · · , Vkik

The numbers of functions in task rk assigned to data center nodes Vk1 , Vk2 , · · · , Vkik
are denoted

by z1
k , z2

k , · · · , zik
k , respectively, where zj

k is the number of functions assigned to data center
Vkj

for j = 1, 2, · · · , ik. Denote

zk = (z1
k , z2

k , · · · , zik
k )

For each task rk, we can generate zk by randomly taking ik non-negative integers
z1

k , z2
k , · · · , zik

k ∈ [0, Fk] such that ∑ik
j=1 zj

k = Fk, k = 1, · · · , NR.

Step 4: Repeat Step 1 to Step 3 for Npop times to obtain POP0.

3.3.2. Mutation Operator

For any individual (x, y, z) in the current population POPt, the mutation operator for
it is as follows:

(1) Scheme of mutation for x:
1. For each xk, generate x̄1

k . For sk, randomly select a node in Vsk /x1
k as x̄1

k .
2. Generate x̄i+1

k in Vi
k/{sk, x̄1

k , · · · , x̄i
k} according to the following two cases:

Case I: {sk, x̄1
k , · · · , x̄i

k} contains a data center node. If

{{x1
k , x2

k , · · · , dk} − {x̄1
k , · · · , x̄i

k}} ∩Vi
k 6= ∅,



Sensors 2022, 22, 9579 9 of 15

select one node
xi
′

k ∈ {{x
1
k , x2

k , · · · , dk} − {x̄1
k , · · · , x̄i

k}} ∩Vi
k ,

and let x̄k = (sk, x̄1
k , · · · , x̄i

k, xi
′

k , · · · , dk). We obtain the mutation offspring x̄k of xk; other-
wise, randomly select a node in Vi

k as x̄i+1
k . Go to step 3.

Case II: {sk, x̄1
k , · · · , x̄i

k} does not contain any data center node. If Vi
k contains any data

center node, randomly select one data center node in Vi
k as x̄i+1

k . Let i = i + 1, go to step 2;
otherwise, randomly select one node in Vi

k as x̄i+1
k , and go to step 3.

3. If x̄i+1
k /∈ {x1

k , x2
k , · · · , dk}, let i = i + 1, and go to step 2; otherwise, go to step 4.

4. Select
i
′ ∈ {v|xv

k = x̄i+1
k , xv

k ∈ {x
1
k , x2

k , · · · , dk}},

and let x̄k = (sk, x̄1
k , · · · , x̄i+1

k , xi
′
+1

k , · · · , dk). If x̄k does not contain any data center node, go
to step 5; otherwise, we obtain the mutation offspring x̄k of xk.

5. Re-select the nodes after node x̄i
k until selecting node dk by using the previous steps.

If the new path is still an infeasible path (containing no data center node), re-select nodes
after xi−1

k until selecting dk. Repeat this process until one feasible path is found.
(2) Scheme of mutation for y: Randomly change two elements of yw1 , yw2 · · · , ywNR

,
and obtain the mutation offspring ȳ of y by step 2 of Algorithm 2.

(3) Scheme of mutation for z: Generate the mutation offspring z̄ of z by step 3 of
Algorithm 2.

Note that the offspring (x̄, ȳ, z̄) of (x, y, z) generated by the above schemes satisfies all
constraints of the model. Let Ot denote the set of offspring of POPt.

3.3.3. Selection Operator

We select the next generation population POPt+1 among POPt ∪Ot by using the
selection operator in NSGA-II [22].

3.3.4. The First Evolutionary Algorithm for the Model

The first proposed algorithm is the following Algorithm 3:

Algorithm 3 An evolutionary algorithm for the model
Step 1: Given the maximum generation number Ngen and population size Npop.

Step 2: Generate initial population POP0 by using Algorithm 2, and set t = 0.

Step 3: Mutation. For each individual (x, y, z) in the current population POPt, execute the
mutation operator on it to generate its offspring (x̄, ȳ, z̄). All offspring (x̄, ȳ, z̄) form an
offspring population Ot.

Step 4: Selection. Select the best Npop individuals among POPt ∪Ot to form the next
generation population POPt+1 by selection operator. Set t = t + 1.

Step 5: If t ≥ Ngen, the non-dominated set of POPt is the approximate Pareto optimal
solution set. Stop. Otherwise, go to Step 2.

3.3.5. The Second Evolutionary Algorithm for the Model

The second proposed algorithm is the following Algorithm 4:



Sensors 2022, 22, 9579 10 of 15

Algorithm 4 Another evolutionary algorithm for the model

The steps of Algorithm 4 are the same as those of Algorithm 3 except for the replacement
of Algorithm 1 in Algorithm 3 by the following Algorithm 5 to generate path variable

The proposed algorithm for generating path variavles in Algorithm 4 is as follows:

Algorithm 5 Strategy for generating path variable x
Step 1: For each task rk, randomly select ik data center nodes, and their random sequence
is denoted by Dk = k

′
1, k

′
2, · · · , k

′
ik

.

Step 2: Use the Dijkstra algorithm [23] to obtain the shortest path from sk to k
′
1, recorded

as Path1 : sk → · · · → k
′
1.

Step 3: Use the Dijkstra algorithm to obtain the shortest path from k
′
ik

to dk, recorded as

Path3 : k
′
ik
→ · · · → dk.

Step 4: Use the Dijkstra algorithm to obtain the shortest path between each pair of two
adjacent data centers k

′
i and k

′
i+1 for i = 1, 2, · · · , ik − 1. This path is denoted by p

(k′i ,k′i+1)

for i = 1, 2, · · · , ik−1. Connect these paths successively to obtain a path through data center
node sequence Dk = k

′
1, k

′
2, · · · , k

′
ik

:

Path2 = {p
(k′1,k′2)

→ p
(k′2,k′3)

, · · · ,→ p
(k′i ,k′i+1)

, · · · ,→ p
(k′ik−1,k′ik

)
}

Step 5: Connect the tail node of Path1 with the head node of Path2, connect the tail node
of Path2 with the head node of Path3, and then obtain the path {Path1 → Path2 →
Path3} of task rk. Denote this path by (sk, x1

k , x2
k , · · · , xnk

k , dk), and briefly denoted as xk =

(x1
k , x2

k , · · · , xnk
k )T by removing start node sk and end node dk. Let x = (x1, x2, · · · , xNR)

T

denote the matrix whose rows are all paths for all tasks.

4. Experiments and Results
4.1. Experimental Environment and Parameters

All experiments are conducted on Windows 11 with 16 GB memory, R7-5800H 8 core
CPU, 3.2 GHz by using Python 3.7. The experimental tool is PyCharm IDE. Four types of
networks are used in the experiments: USANET [10], NSFNET [24], CHNNET [25], and
ARPANET [25]. For the details of network topology and other information, please refer
to [10,24,25]. The parameters are given in Table 1.

Table 1. Parameters for four types of networks.

Network Topology NSFNET CHNNET ARPANET USANET

Number of Nodes 14 15 20 24
Number of links 21 27 32 43

Number of spectrum 358 358 358 358

The experiments are divided into four groups. Each group is for one type network
and contains four cases according to different numbers of tasks denoted by NR and the
number of VNF denoted by NT :

Case 1. The number of tasks NR = 50 and the number of VNF NT = 100.
Case 2. NR = 100 and NT = 100.
Case 3. NR = 150 and NT = 100.
Case 4. NR = 200 and NT = 100.
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To test the stability of the model and algorithms, for each case, the experiments are
conducted 10 times, and the mean results are recorded and compared. In the experiments,
the population size Npop = 50 and the maximum generations Ngen = 100.

4.2. Comparison of Algorithms 3 and 4

Because the proposed model is a novel one, there is no existing algorithms for the
proposed model, we cannot find any suitable existing algorithm as the compared algorithm.
We compare the proposed Algorithms 3 and 4 in the experiments.

4.3. Performance Measures and Results

In the experiments, we adopt two performance measures: U-measure and C-measure.
1) U-measure [26]:
This metric represents the uniformity and wideness of the Pareto front, which is usually

a surface in three-dimensional space. This measure can be calculated by the following
three steps:

(1) Determine the boundary of Pareto front.
(2) Determine the nearest neighbors of each Pareto solution in objective space.
(3) Calculate the standard deviation of the distances among the nearest neighbors.
Note that the smaller the U-measure, the better the solution set. For the detail of

U-measure, please refer to reference [26].
2) C-measure [27]:
This metric compares the convergent quality of two solution sets. It represents the

percentage of solutions in solution set B dominated by solutions in solution set A. Its
definition is as follows:

C(A, B) =
|{u ∈ B|∃v ∈ A : v dominates u}|

|B|

where the numerator represents the number of solutions in B dominated by at least one
solution in A, and the denominator is the number of solutions in B.

C(A, B) = 1 means all solutions in B are dominated by at least one solution in A and
C(A, B) = 0 means no solution in B is dominated by solutions in A. If C(A, B) > C(B, A),
then the solution set A has better convergence than solution set B.

In the C-measure, for notation convenience, we use A to represent the solution set
obtained by Algorithm 3 and B the solution set obtained by Algorithm 4, respectively. In
addition, use CAB and CBA to represent C(A, B) and C(B, A), respectively, where

CAB = C(A, B) =
|{u ∈ B|∃v ∈ A : v dominates u}|

|B|

CBA = C(B, A) =
|{u ∈ A|∃v ∈ B : v dominates u}|

|A|
For each case of one type network, the mean value and standard deviation of each

metric in 10 independent runs are recorded. These results are given in Tables 2 and 3, where
each table records the results for one measure on 16 cases of 4 types of networks.

Table 2. Comparison of U-measure.

Networks (NT , NR) Algorithm 3 Algorithm 4
Umean Ustd Umean Ustd

NSFNET

(100,50) 1.0164 0.0073 1.0147 0.0078
(100,100) 1.0093 0.0030 1.0119 0.0040
(100,150) 1.0118 0.0060 1.0110 0.0029
(100,200) 1.0065 0.0032 1.0079 0.0029
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Table 2. Cont.

Networks (NT , NR) Algorithm 3 Algorithm 4
Umean Ustd Umean Ustd

USANET

(100,50) 1.0168 0.0072 1.0181 0.0077
(100,100) 1.0105 0.0089 1.0119 0.0045
(100,150) 1.0042 0.0011 1.0077 0.0042
(100,200) 1.0047 0.0024 1.0073 0.0029

ARPANET

(100,50) 1.0134 0.0065 1.0158 0.0064
(100,100) 1.0078 0.0056 1.0102 0.0052
(100,150) 1.0069 0.0035 1.0095 0.0043
(100,200) 1.0059 0.0031 1.0072 0.0018

CHNNET

(100,50) 1.0191 0.0085 1.0151 0.0055
(100,100) 1.0110 0.0048 1.0091 0.0042
(100,150) 1.0096 0.0046 1.0080 0.0031
(100,200) 1.0059 0.0022 1.0068 0.0035

Table 3. Comparison of C-measure.

Networks (NT , NR) CAB CBA
Cmean Cstd Cmean Cstd

NSFNET

(100,50) 0.7727 0.1449 0 0
(100,100) 0.4725 0.1760 0 0
(100,150) 0.5260 0.1671 0 0
(100,200) 0.4705 0.1131 0 0

USANET

(100,50) 0.7039 0.2410 0 0
(100,100) 0.6952 0.1279 0.0488 0.0804
(100,150) 0.4216 0.2087 0.0995 0.0832
(100,200) 0.5364 0.1452 0.0083 00264

ARPANET

(100,50) 0.8690 0.0872 0.0287 0.0607
(100,100) 0.6871 0.1356 0.0500 0.1208
(100,150) 0.5837 0.1544 0.0133 0.0422
(100,200) 0.4462 0.1484 0.0214 0.0678

CHNNET

(100,50) 0.9332 0.0737 0 0
(100,100) 0.8553 0.1135 0 0
(100,150) 0.9536 0.0813 0 0
(100,200) 0.9778 0.0703 0 0

For U-measure, it can be seen from Table 2 that Algorithm 3 generally performs
better than Algorithm 4. Among 16 cases of 4 types of networks, Algorithm 3 has the
better performance than Algorithm 4 on 12 cases in which Algorithm 3 obtains the smaller
values of U-measure. For three cases (NT , NR) = (100, 100), (NT , NR) = (100, 150) and
(NT , NR) = (100, 200) of NSFNET, the values of U-measure of Algorithm 3 are 1.0093,
1.0118, and 1.0065, respectively, which are smaller than the values 1.0119, 1.011, and 1.0079
of U-measure of Algorithm 4. For all four cases of USANET, the values of U-measure
of Algorithm 3 are 1.0168, 1.0105, 1.0042, and 1.0047, respectively, while the values of
U-measure of Algorithm 4 are 1.0181, 1.0119, 1.0077, and 1.0073, respectively. Thus, the
values of U-measure of Algorithm 3 are smaller than those of Algorithm 4 for all cases of
USANET. Similarly, it can be seen from Table 2 that, for all four cases of ARPANET, the
values of U-measure of Algorithm 3 are smaller than those of Algorithm 4, which indicates
that Algorithm 3 performs better than Algorithm 4 on U-measure. Only for four cases (one
case of NSFNET and three cases of CHNNET) does Algorithm 4 obtain smaller values
of U-measure. For the case (NT , NR) = (100, 50) of NSFNET, the value of U-measure of
Algorithm 3 is 1.0164 which is larger than that (i.e., 1.0147) of Algorithm 4. For three cases
of CHNNET with a smaller number of tasks, the values of U-measure of Algorithm 3 are a
little bit larger than the corresponding values of U-measure of Algorithm 4, while for the
larger number of tasks (i.e., NR = 200), Algorithm 3 outperforms Algorithm 4. Anyhow,
both algorithms obtain relatively small values of U-measure on all 16 cases of all types of
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networks. This illustrates that both algorithms perform well. In addition, note that the
standard deviation values for two algorithms are relatively small. This indicates that both
algorithms are robust and perform stably.

For C-measure, it can be seen from Table 3 that Algorithm 3 performs completely
better than Algorithm 4 with respect to the convergent ability. For all four cases of NSFNET,
about 77.27%, 47.25%, 52.6%, and 47.05% solutions obtained by Algorithm 4 are domi-
nated by solutions obtained by Algorithm 3, respectively, while no solution obtained by
Algorithm 3 is dominated by solutions obtained by Algorithm 4. For USANET, for case
(NT , NR) = (100, 50), 70.39% solutions obtained by Algorithm 4 are dominated by solu-
tions obtained by Algorithm 3, while no solution obtained by Algorithm 3 is dominated
by solutions obtained by Algorithm 4. For case (NT , NR) = (100, 100), 69.52% solutions
obtained by Algorithm 4 are dominated by solutions obtained by Algorithm 3, while 4.88%
solutions obtained by Algorithm 3 are dominated by solutions obtained by Algorithm 4.
For case (NT , NR) = (100, 150), 42.16% solutions obtained by Algorithm 4 are dominated
by solutions obtained by Algorithm 3, while 9.95% solutions obtained by Algorithm 3
are dominated by solutions obtained by Algorithm 4. For case (NT , NR) = (100, 200),
53.64% solutions obtained by Algorithm 4 are dominated by solutions obtained by Al-
gorithm 3, while 0.83% solutions obtained by Algorithm 3 are dominated by solutions
obtained by Algorithm 4. For ARPANET, for case (NT , NR) = (100, 50), 86.9% solutions
obtained by Algorithm 4 are dominated by solutions obtained by Algorithm 3, while 2.87%
solutions obtained by Algorithm 3 are dominated by solutions obtained by Algorithm 4.
For case (NT , NR) = (100, 100), 68.71% solutions obtained by Algorithm 4 are dominated
by solutions obtained by Algorithm 3, while 5.0% solutions obtained by Algorithm 3 are
dominated by solutions obtained by Algorithm 4. For case (NT , NR) = (100, 150), 58.37%
solutions obtained by Algorithm 4 are dominated by solutions obtained by Algorithm 3,
while 1.33% solutions obtained by Algorithm 3 are dominated by solutions obtained by
Algorithm 4. For case (NT , NR) = (100, 200), 44.62% solutions obtained by Algorithm 4
are dominated by solutions obtained by Algorithm 3, while 2.14% solutions obtained by
Algorithm 3 are dominated by solutions obtained by Algorithm 4. For CHNNET, for case
(NT , NR) = (100, 50), 93.32% solutions obtained by Algorithm 4 are dominated by solu-
tions obtained by Algorithm 3, while no solution obtained by Algorithm 3 is dominated
by solutions obtained by Algorithm 4. For case (NT , NR) = (100, 100), 85.53% solutions
obtained by Algorithm 4 are dominated by solutions obtained by Algorithm 3, while no
solution obtained by Algorithm 3 is dominated by solutions obtained by Algorithm 4. For
case (NT , NR) = (100, 150), 95.36% solutions obtained by Algorithm 4 are dominated by
solutions obtained by Algorithm 3, while no solution obtained by Algorithm 3 is dominated
by solutions obtained by Algorithm 4. For case (NT , NR) = (100, 200), 97.78% solutions
obtained by Algorithm 4 are dominated by solutions obtained by Algorithm 3, while no
solution obtained by Algorithm 3 is dominated by solutions obtained by Algorithm 4.

By summary, Algorithm 3 performs better than Algorithm 4 in most cases for all types
of networks by using two performance metrics. However, both algorithms can obtain well
distributed solution sets.

5. Discussion and Future Works

Task scheduling and resource allocation in an elastic optical network is an important
and challenging problem. Different providers and customers may have different require-
ments. With the increase of numbers of tasks and VNF, the problems will become more
and more difficult. This is very challenging to design efficient algorithm for the model.
However, the proposed multi-objective optimization model in this paper can well satisfy
these multiple requirements of both providers and customers as most as possible, and the
designed algorithms can solve the model well. In addition, it seems that the proposed
algorithm is still effective and efficient with the increase of the numbers of tasks and VNF.
However, the limitation of this work is mainly that, when the links of networks are sparse
and there are too many tasks, the performance of the proposed model and algorithm will
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decrease. In addition, the task scheduling and resource allocation in the elastic optical net-
work involves too many issues except for routing, spectrum allocation, VNF deployment,
and load balance of data centers. In the future work, it is necessary to study how to set
up a new model with more objectives (many objective optimization model) to tackle more
issues and satisfy more requirements for service providers and customers in addition to
how to design more efficient algorithms for the multi-objective optimization model.

6. Conclusions

In this paper, we set up a new multi-objective optimization model for task scheduling
and resource allocation problem in elastic optical networks. By using this model, both the
total length of paths for all tasks and the totally occupied spectrums can be minimized,
which illustrates that the lowest amount of resources are consumed. In addition, the loads
on all data centers can be mostly balanced, which illustrates that the efficiency of the
network is the highest. Thus, the new model is effective and efficient. To solve the model,
we design two new effective evolutionary algorithms. The experiments conducted on up to
16 cases of 4 types of widely used networks have indicated that the proposed algorithms
are effective.
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