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Abstract: In this paper, we propose a novel technique for the inspection of high-density polyethylene
(HDPE) pipes using ultrasonic sensors, signal processing, and deep neural networks (DNNs). Specifi-
cally, we propose a technique that detects whether there is a diversion on a pipe or not. The proposed
model transmits ultrasound signals through a pipe using a custom-designed array of piezoelectric
transmitters and receivers. We propose to use the Zadoff–Chu sequence to modulate the input
signals, then utilize its correlation properties to estimate the pipe channel response. The processed
signal is then fed to a DNN that extracts the features and decides whether there is a diversion or
not. The proposed technique demonstrates an average classification accuracy of 90.3% (when one
sensor is used) and 99.6% (when two sensors are used) on 3

4 inch pipes. The technique can be readily
generalized for pipes of different diameters and materials.

Keywords: high-density polyethylene (HDPE); ultrasonic-guided waves (UGWs); Zadoff–Chu
sequence; deep neural network (DNN); convolutional neural network (CNN); recurrent neural
network (RNN); long-short term memory (LSTM); piezoelectric; structural health monitoring (SHM)

1. Introduction

Pipelines are extensively utilized for oil and natural gas transfer. However, one of the
main concerns with pipelines is leakage, with incidents occurring on a regular basis [1].
In addition to human errors, many other factors contribute to pipeline leakage, including
external impacts, material faults during manufacturing time, environmental corrosion,
internal erosion, ground surface movements, and inappropriate maintenance [2]. Early
detection of structural degradation due to such factors is required to maintain structural
safety and integrity to lower the likelihood of a catastrophic failure. Thus, the development
of robust and cost-effective diagnosis techniques to ensure the structural safety of pipes
has long been of great importance [1].

Many works in the literature have studied diagnosis methods (nondestructive testing)
for steel pipes, such as radiography, conventional ultrasonic testing, acoustic emission,
visual inspection (including thermal imaging and laser scanning)and ground penetrating
radar [2–7]. However, less work has been conducted on the diagnosis of high-density
polyethylene (HDPE), which is commonly used in residential natural gas service lines.
Nonetheless, the diagnosis of HDPE pipes is important for several reasons including leak
detection and pipe integrity monitoring [8].

Gas diversions are carried out illegally by using methods to obstruct the flow of natural
gas through the pipe and installing a T-fitting that redirects natural gas to an unmetered
location for unmeasured consumption. This tampering with the pipe poses many risks
since it is unrecorded, violates pipeline quality standards, and can lead to potential leaks
and possibly explosions, consequently posing significant risk to public safety, property, and
the environment in the vicinity of altered gas lines. Such diversions have been discovered
in the past through word of mouth, leaks, or unexpected encounters with an unrecorded
natural gas pipe in a construction site [9–13].

Therefore, effective and timely techniques for diversion detection are required to avoid
such risks. Given the concealed nature of below-grade pipes, it is very challenging to inspect
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them. Existing solutions include ground penetrating radar and endoscope cameras [14,15],
which are both invasive and expose inspectors to potential risk from the suspects. As a
result, it is better to use noninvasive methods to inspect pipes.

In this paper, we investigate the possibility of using ultrasonic-guided waves (UGW)
to inspect HDPE pipes. UGW sensing offers fast screening, which enables the inspection of
buried, insulated, and underwater pipelines using ultrasonic sensors, while providing a
larger range of inspection than traditional ultrasonic testing because it uses the structure
of the pipe itself as a waveguide [16]. In UGW, signals are generated using ultrasonic
transducers that are coupled to the surface of the pipe so that waves propagate through the
pipe. UGW sensing has gotten a lot of attention from the industry because of its long-range
inspection capabilities from a single test location e.g., they can inspect more than 100 m of
pipelines from a single test location [5]. Although many works have studied the inspection
of metallic structures using UGWs techniques [6,7,17], the use of UGW sensing to inspect
nonmetallic structures such as HDPE pipelines is still in its early stages [18].

The transmission and reception of ultrasonic guided-waves is commonly realized
using piezoelectric or magnetoresistive sensors. Due to the low cost of piezoelectric trans-
ducers and their wide availability, they have attracted most attention [19]. Such sensors
are commonly arranged in an array which generate desired wave modes for sensing ap-
plications [6]. The reflected signals are then received and processed to reveal potential
structural defects [6,7]. In many cases, such defects are very difficult to detect using clas-
sical techniques and/or visual inspection of the received signal [20], which is especially
the case with bent pipes and when using simple transducers (both of which are relevant
when inspecting residential HDPE pipes). To tackle this issue, machine learning (ML) and
deep neural networks (DNN) have been proposed and utilized to extract hidden useful
information from the received signals, leading to improved detection accuracy with low
computational complexity [21,22].

A recent review article [17] addressed the use of UGW and ML for defect detection.
Some examples include structural health monitoring using piezoelectric sensors and ensem-
ble learning by consensus using support vector machines [23] and using DNNs [24], defect
sizing in pipes using ML algorithms and simulated and experimental data [25], estimating
transducer-to-defect distance using the convolutional neural network (CNN) [26], assessing
the degree of damage to a thin metal plate using wave-field measurements and DNN [27],
and estimating the impact site of a steel ball on an aluminum plate using ML [28], among
others. These works showed that high accuracy sensing is possible using their proposed
methods. Recently, Sun et al. [29] studied a technique to evaluate plate damage using UGW
and DL methods, including CNN, recurrent neural networks (RNN), and residual neural
network called GFresNet, showing up to 95% accuracy using GFresNet.

The objectives of this paper are as follows:

• To propose, design, and test piezoelectric transducer arrays, electronic circuits, signal
designing and processing, and DNN models required to develop a DNN-based UGW
detection scheme.

• To implement and evaluate a DNN-based UGW detection scheme, for detecting
diversions in HDPE pipes.

To this end, we design two clamps containing an array of piezoelectric transmitters and
receivers to enable transmitting waves through the HDPE pipes. To develop the transmitter
and receiver signal processing, we employ Zadoff–Chu sequences (due to their desired
correlation properties [30]) at the transmitter side and correlation methods at the receiver
side to estimate the pipe’s impulse response. These signals are designed in a computer,
which is interfaced with the transmitters and receivers through a waveform generator, an
oscilloscope, and the necessary driving circuits. To classify the received correlation signals,
we develop a DNN architecture that extracts features from the correlation signal and use
these features to detect a diversion. The DNN consists of a CNN that extracts features
from segments of the correlation signal, followed by a long short-term memory (LSTM)
network that extract features from temporal correlations between segments, followed by
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a multi-layer perceptron that makes a decision. We train and test the DNN using signals
from experiments on control pipes and pipes with diversions, and show that the developed
method is able to classify control and diversion samples with an accuracy of 90.3% when
one receiving sensor is used, and 99.6% when two sensors are used.

The details of the proposed method are described in the rest of the paper. Section 2
presents the system specifications and problem statement. The signal design and processing
techniques are presented in Section 3. Empirical data collection is described in Section 4,
and the proposed DNN architecture is illustrated in Section 5. The results are presented in
Section 6, and the paper is concluded in Section 7.

2. System Specifications

We consider HDPE pipes with an outer circumference of 26.7 mm and a wall thickness
of 2 mm ( 3

4 inch pipe), which are commonly used for transporting and distributing natural
gas to households. For the purpose of diversion detection, we consider two types of pipes
as shown in Figure 1: a control pipe without a diversion, and a pipe with a diversion,
i.e., a tee-fitting installed along the pipe. The lengths of the considered pipes are 1, 2, 3,
and 5 m, with a diversion installed at 0.6, 1.2, 1.5, and 3 m from one end of the pipe for
diversion samples, and with nothing installed on the control samples. The length of the
pipe extending from the tee-fitting is 30 cm.

Figure 1. Pipe samples: the pipe on the right has a diversion (tee-fitting), whereas the one on the left
does not (control pipe).

The goal is to detect the diversion using UGW and machine learning. To this end,
piezoelectric transducers are used to transmit/receive ultrasonic waves. For UGW testing,
a range of the operation frequency between 20 kHz and 100 kHz is widely used [31], which
was considered when selecting the transducers. We opted for transducers with 40 KHz
frequency due to its availability in the market with proper dimensions. Moreover, utilizing
40 KHz can help in mitigating the attenuation effect, which increases the detection range
in return [32]. These transducers generate an electrical signal in response to a sensed
mechanical signal (propagating through the pipe), which is known as the piezoelectric
effect, or generate a mechanical signal (to be sent through the pipe) in response to a driving
electrical signal, which is known as the reverse piezoelectric effect.
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The transmitters and receivers are placed in two clamps (Figure 2) which are designed
to fit the pipe and to hold the transducers. Placing multiple transducers in each clamp
can aid in improving signal generation (transmitted power and modes) as well as signal
detection. For the purpose of this paper, the transmitter clamp was equipped with six
transmitters, while the receiver clamp was equipped with two receivers, distributed evenly
around the circumference of the pipe.

Figure 2. Clamp design: The clamp has a total of eight slots, six of which form a ring where
transducers can be placed 60 degrees apart, and two additional slots which are 180 degrees apart for
deploying additional transducers. This clamp was modified from the original design in [33].

To sense the pipe for a diversion, we use the system shown in Figure 3. First, the
signal to be transmitted is designed in Matlab. Then it is sent to an arbitrary waveform
generator (AWG, Siglent Technologies SDG2042X), which is interfaced with an Op-Amp
driving circuit (2 KΩ and 10 KΩ resistors and a 741 Op-Amp), powered by a DC-power
supply (Siglent Technologies SPD3303X-E), which in turn drives the ultrasonic transmitters
(Murata Electronics MA40S4S). The transmitters generate a wave that propagates along
the pipe’s circumference. The reflected signal is captured using the receivers (Murata
Electronics MA40S4R) which are interfaced with an oscilloscope (Siglent Technologies
SDS1104X-E) that records the signal. Finally, the recorded signal is sent to a PC for signal
processing and analysis.

Due to the dispersion effect that takes place whenever an ultrasound signal travels
through a solid object (in this case, the pipe), the wave will be decomposed into three
distinct modes: flexural, torsional, and longitudinal modes [17]. These modes travel
through the pipe at varying speeds depending on the mode. As a result, analyzing the
received signal can be challenging, as the signal is likely to be a mix of these modes. Mode
filtering/isolation is often used to improve the received signal quality [34]. However, to
keep the process simple and to use all modes combined for diversion detection, we replace
the classical signal processing techniques with a machine learning technique applied after
correlating the received signal with the Zadoff–Chu sequence as explained next.
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Figure 2. Clamp Design: The clamp has a total of eight slots, six of which form a ring where
transducers can be placed 60 degrees apart, and two additional slots which are 180 degrees apart for
deploying additional transducers. This clamp was modified from the original design in [34].
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Figure 3. Experimental setup: The designed signal is transmitted via ultrasonic transmitters with
the aid of an AWG (arbitrary waveform generator), a DC-power supply, and a driving circuit, and
received using ultrasonic receivers with the aid of an oscilloscope. Signal processing takes place in a
computer.

effect, or generate a mechanical signal (to be sent through the pipe) in response to a driving 121

electrical signal which is known as the reverse piezoelectric effect. 122

The transmitters and receivers are placed in two clamps (Fig. 2) which are designed to 123

fit the pipe and to hold the transducers. Placing multiple transducers in each clamp can aid 124

in improving signal generation (transmitted power and modes) as well as signal detection. 125

For the purpose of this paper, the transmitter clamp was equipped with six transmitters, 126

while the receiver clamp was equipped with two receivers, distributed evenly around the 127

circumference of the pipe. 128

To sense the pipe for a diversion, we use the system shown in Fig. 3. First, the signal 129

to be transmitted is designed in Matlab. Then it is sent to an arbitrary waveform generator 130

(AWG, Siglent Technologies SDG2042X) which is interfaced with an Op-Amp driving 131

circuit (2 KΩ and 10 KΩ resistors and a 741 Op-Amp), powered by a DC-power supply 132

(Siglent Technologies SPD3303X-E) which in turn drives the ultrasonic transmitters (Murata 133

Electronics MA40S4S). The transmitters generate a wave that propagates along the pipe’s 134

circumference. The reflected signal is captured using the receivers Murata Electronics 135

MA40S4R) which are interfaced with an oscilloscope (Siglent Technologies SDS1104X-E) 136

that records the signal. Finally, the recorded signal is sent to a PC for signal processing and 137

analysis. 138

Due to the dispersion effect that takes place whenever an ultrasound signal travels 139

through a solid object (in this case the pipe), the wave will be decomposed into three distinct 140

modes: flexural, torsional, and longitudinal modes [23]. These modes travel through the 141

Figure 3. Experimental setup: The designed signal is transmitted via ultrasonic transmitters with
the aid of an AWG (arbitrary waveform generator), a DC power supply, and a driving circuit, and
received using ultrasonic receivers with the aid of an oscilloscope. Signal processing takes place in a
computer.

3. Signal Design and Processing

This section discusses the design of the transmitted signal and its benefits, in addition
to the signal processing of the received signal, which is applied before feeding the signal
into the DNN for classification. We provide a generic description of the scheme first, and
then we specify the utilized parameters afterwards.

3.1. Transmitted Signal Design

To sense the pipe, we interpret the pipe as a channel whose impulse response can
be used as a signature to determine the presence of a diversion or the absence thereof.
Following this interpretation, we propose to transmit a training signal with good cor-
relation properties in line with signals used for channel estimation, rather than a pulse
as in [18,19,35]. There are several signals that can be used for this purpose, including
maximum-length pseudo-noise sequences [36] and Zadoff–Chu sequences [30], which are
known to aid in channel estimation as well as providing immunity against disturbances,
such as noise and interference. These sequences have good auto-correlation properties,
namely, their autocorrelation resembles a Dirac impulse. As such, when such a sequence
is transmitted, correlating the received signal with the sequence itself yields the channel
impulse response (within some distortion due to noise).

We opt for using a Zadoff–Chu sequence due to its desirable auto-correlation proper-
ties. A Zadoff–Chu sequence (named after Solomon A. Zadoff and D.C. Chu [30,37]) is a
complex valued poly-phase sequence with constant amplitude and zero auto-correlation
(CAZAC). A length N Zadoff–Chu sequence s[k], k = 0, 1, . . . , N − 1, can be expressed as

s[k] = eiαk , k = 0, 1, . . . , N − 1, (1)

where αk is given by

αk =

{
Mπk2

N if N is even,
Mπk(k+1)

N if N is odd,
(2)

and M is coprime with N. To convert this to a time-domain signal that can be transmitted
using the transducers, we use pulse shaping using a sinc function sin(πt/Tc)

πt/Tc
, where Tc is the

pulse duration, sampled at a sampling rate of fs to obtain the signal

s̃[n] =
N−1

∑
k=0

s[k]
sin
(

π
(

n
fsTc
− k
))

π
(

n
fsTc
− k
) , (3)

where n = 0, 1, . . . , NTc fs − 1.



Sensors 2022, 22, 9586 6 of 20

The signal s̃[n] is then modulated using a fc = 40 KHz carrier (the frequency of the
transducer) to obtain the transmitted signal

x[n] = s̃[n]ej2π fcn/ fs ,

n = 0, 1, . . . , NTc fs − 1 (note that we require fs > 2 fc to avoid aliasing).

3.2. Received Signal Processing

The received signal of each receiver is first sampled at a sampling rate of fs, and band-
pass filtered using an infinite-impulse-response (IIR) bandpass filter centered at 40 KHz
with a 3 dB bandwidth of 10 KHz to eliminate out-of-band noise and interference. The
resulting signal can be modeled as

y[n] = h[n]~ x[n] + w[n], (4)

where n is the time index, h[n] is the impulse response of the pipe, ~ is the convolution
operator, and w[n] is noise. A general K-tap impulse response can generally be represented
as h[n] = ∑K−1

k=0 βkδ[n− dk] for some K, where δ[n] is the Dirac delta pulse which equals 1
when n = 0 and 0 otherwise, and βk ∈ R and dk ∈ N are the attenuation coefficient and the
time delay of the k-th tap.

To estimate the channel response, we cross-correlate the received signal y[n] with the
reference signal x[n] to obtain the following signal

r[n] = y[n]~ x∗[−n] (5)

= h[n]~ x[n]~ x∗[−n] + w̃[n], (6)

where w̃[n] = w[n]~ x∗[−n] is the filtered noise. Due to the properties of the Zadoff–Chu
sequence, where s[k]~ s∗[−k] ≈ Nδ[k] [37], we have the following (note that while the
circular correlation of the Zadoff–Chu sequence coincides with a Dirac pulse, the linear
correlation is very close (but not equal) to a Dirac pulse):

x[n]~ x∗[−n] = N
sin
(

π
(

n
fsTc

))
π
(

n
fsTc

) ej2π fcn/ fs

where we replace the approximation by an equality for simplicity. This yields

r[n] ≈
K−1

∑
k=0

βkδ[n− dk]~ N
sin
(

π
(

n
fsTc

))
π
(

n
fsTc

) ej2π fcn/ fs + w̃[n] (7)

=
K−1

∑
k=0

βk N
sin
(

π
(

n−dk
fsTc

))
π
(

n−dk
fsTc

) ej2π fc(n−dk)/ fs + w̃[n] (8)

To eliminate the carrier, we then apply a Hilbert transformer and compute its magni-
tude to obtain the envelope of r[n] [38]. The resulting signal will have prominent peaks at
time instants dk (as can be observed in (8)), which can be interpreted as a ’signature’ of the
channel h[n]. It is expected that the signal transmitted through a control pipe will produce
a signature that is different from the one produced from a diversion sample. This can be
used to classify the pipes accordingly.

In this work, we use N = 512 and M = 1 to generate a Zadoff–Chu sequence, and
we use Tc = 300 µs and fs = 1 MHz. As seen in Figure 4, the resulting signal has a
central frequency of 40 KHz and a 3-dB bandwidth of 3 KHz which can be transmitted
using the selected transducers that have a bandwidth of 3.3 KHz. Figure 5 depicts the
received signal y[n] in (4) and the envelope of the correlation signal in (8). Due to the
low-frequency characteristics of this envelope, we down-sample it to 10 KHz. The resulting



Sensors 2022, 22, 9586 7 of 20

signal envelope, which has a total of 320 time samples, is used as an input for the proposed
DNN.
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Figure 4. Power spectral density of transmitted Zadoff–Chu sequence (x[n]).

Note that a similar process is applied to the signal received from each of the two
sensors. Next, we describe our data collection procedure, which uses the signal processing
explained above.
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Figure 5. Received signal before and after processing. (a) Raw received signal y[n]. (b) Received
signal before and after processing.

4. Data Collection

To train and assess a deep learning algorithm for detecting diversions, we collect a
dataset of correlation envelope signals (similar to Figure 5b) using the experimental setup
described in Section 2 and the signal processing in Section 3. We consider two types of
pipes, namely control and diversion pipes. To diversify the dataset, we use pipes with
lengths of 1, 2, 3, and 5 m, with diversions (in the diversion samples) at distances of 0.6, 1.2,
1.5, and 3 m from one end of the pipe, respectively.

For each pipe, we attach the clamps so that the distance between the transmitting and
receiving clamps is 11 cm. Additionally, to guarantee consistent readings of the received
signals, we make sure the transmitting and receiving clamps are oriented similarly. To do
this, we mark the upper side of each clamp (see Figure 2), and we ensure that a line passing
through the two marks is coplanar with the axis of the pipe.

Initially, the clamps are installed so that the transmitting (respectively receiving) clamp
is 20 cm (respectively 31 cm) away from the beginning of the pipe. To collect a diverse
set of measurements from this clamp position, we rotate the clamps with increments of
120 degrees while maintaining the alignment of the transmitting and receiving clamps.
After collecting data from this position, the clamps are advanced by 4 cm, and the same
process is repeated to collect more data. This process is repeated until the clamps are
20 cm away from the diversion on the diversion pipes, and at a similar position on the
control pipes. For each position and rotation, 2 to 4 samples are collected from each of the
two sensors.
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We collected a dataset of 2292 samples, 1006 of which were from control pipes and
1286 from diversion pipes. Figure 6 shows the correlation envelope of a number of samples
from each class (diversion and control). The figure shows the presence of differences
between the two classes, the most evident of which is the delay spread which is larger
in diversion samples than in control samples. However, the figure also shows that it is
not always reliable to use this difference to classify the pipes. Fortunately, a deep neural
network (DNN) can be used to learn subtle differences between the samples to produce
a more reliable classification. Thus, we train a DNN to classify the pipes based on the
correlation envelope signals, which is detailed in the next section.
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Figure 6. Correlation envelopes of diversion and control samples. Each sub-figure shows a plot of
40 samples selected randomly from the datasets, in addition to the mean of all samples in the datasets.
(a) Diversion samples. (b) Control samples.

5. DNN Architectures

The traditional techniques that are usually employed in the area of non-destructive
testing (NDT) to categorize flaws are prone to subjective influences, such as a person’s
opinion [39]. In addition, since the received signals are one-dimensional, it is difficult to use
them to precisely detect diversions by visual inspection. This challenge can be addressed by
using an automated detection system based on a DNN to provide high-accuracy detection
and avoid the manual detection drawbacks.

The first step in the proposed DNN is to learn features from the data. Various methods
have been used in the literature to extract or learn features using time and frequency domain
features [23,25], using wavelets and a CNN [26,40], or using pre-established standard
time-series classification networks, such as long short-term memory recurrent networks
(LSTMs) [41]. In this paper, we use CNN and LSTM layers to learn features from the
correlation envelope signals. We investigate three types of DNN models, namely CNN-
based models, LSTM-based models and CNN-LSTM-based models, all implemented in
TensorFlow. These models were chosen based on their ability to extract shape features
(CNN-based models), analyzing time-series signals (LSTM-based models) or combining
both (CNN-LSTM-based models). In the following, we explain these models in details.

5.1. CNN Based Model

It can be seen from Figure 6 that the correlation envelope signals of the control sample
have different shapes than those of the diversion samples. Therefore, we can use the signal
shape to classify the pipe. Since our data consist of correlation envelop signals, and since
a CNN is known for its accuracy when identifying shapes, it can also be used to extract
shape features from a 1D signal as in the correlation envelope signal.

A CNN-based model can contain one or multiple stacked CNN layers. In this paper,
we consider one and two CNN layer models (CNN model and two stacked CNN model)
with 64 filters in each layer as shown in Figure 7 (since it was noticed that increasing
the number of layers/filters further does not improve accuracy). We describe the 2-layer
architecture, noting that the 1-layer architecture can be described in an analogous way.
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(a)

(b)

Figure 7. CNN-based models’ architectures. (a) CNN Model. (b) 2 Stacked CNN model.

We use the correlation envelope signals, represented as vectors with dimension
320 × 1, as inputs to the first CNN layer which uses 64 filters (kernels) each with size
3× 1. Each filter learns to extract only one feature from the input sequence. By applying
this filter to the whole input (which is 320× 1), this results in an output of size 318× 1
for each filter. Since 64 filters are used, this process yields a 318× 64 array of features
as an output. This output is then fed to a rectified linear unit (ReLU) activation layer,
which is commonly used in many neural networks, and it is known for its fast training and
superior results.

The output of the first CNN layer is further processed by feeding it to another CNN
layer. The propose of using a second layer is to extract composite features (features of
features). As a result, the two layers combined extract features with complex patterns from
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the input signal. The second CNN layer operates similar to the first one, where 64 distinct
filters of size 3× 64 and a ReLU activation layer are used to obtain a 316× 64 output array.

A dropout layer is used at the output of the second CNN as a regularization technique
to prevent over-fitting. It randomly ’drops’ some neurons from the CNN (by setting their
output to zero), which prevents the model from relying on specific features or neurons. In
the training stage, the dropout layer randomly chooses a number of neurons to drop in
each training iteration. The number of neurons is calculated based on a parameter called
the drop out ratio, which varies from 0 (no dropout) to 1 (full dropout). We choose a ratio
of 0.5 which means that 50 percent of the neurons are dropped at random (chosen since it
led to the highest accuracy among a set of examined ratios). Note that, as this layer is a
regularization layer, it is deactivated after the model is trained. This layer does not change
the size of its input and thus its output is a 316× 64 array.

A max pooling layer is often employed after a CNN to reduce the complexity through
downsampling and to avoid data over-fitting. This is implemented by pooling a number
of outputs into one output through choosing their maximum value. We used a pooling
size of 2 and a stride of 2, which means that the output is the maximum value in non-
overlapping windows of size 2 for each filter and segment. As a result, the output becomes
a 158× 64 array.

After the features are extracted using the previous steps, we need to convert these
features into a one feature vector to prepare it for classification. This is achieved using
a flatten layer that reshapes features of shape 158× 64 into a vector of shape 1× 10,112.
These features are then fed to the multilayer-perceptron layer, which will be explained in
Section 5.4.

5.2. LSTM Based Models

An LSTM is a type of RNN which is used to extract features from sequential data.
Unlike feed-forward neural networks, LSTMs include feedback connections to enable them
to learn dependencies between time-correlated data points. In this paper, we examine
two LSTM-based models, i.e., the LSTM model and 2 stacked LSTM model, as shown in
Figure 8.

(a) (b)

Figure 8. LSTM-based models’ architectures. (a) LSTM model. (b) 2 Stacked LSTM model.

As shown in Figure 9, a typical LSTM cell consists of three gates: a forget gate, an
input gate, and an output gate. It has an input vector xt, a cell state ct, and a hidden state ht.
The hidden state is computed from ct, which is used as feedback. The output of the LSTM
cell is the hidden state obtained after processing the whole sequence {xt}319

t=0.
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Figure 9. LSTM cell.

The gates in the LSTM cell regulate the flow of information from one time step to the
other. The forget gate uses the current input xt and previous hidden state ht−1 to gate the
previous cell state ct−1. The input gate uses xt and ht−1 to determine their contribution to
the current cell state ct. The output gate uses xt and ht−1 to determine if the current cell
state ct contributes to the current hidden state ht which will be fed back to the LSTM cell in
the next time step. This mechanism enables the LSTM cell to extract one feature from the
time series {xt}319

t=0 while considering the temporal dependencies between the time steps.
We utilize an LSTM layer that consists of 100 LSTM cells to extract 100 features from

the input time series {xt}319
t=0 of dimension 320× 1. This leads to an output of dimension

1× 100.
To regularize the LSTM layers, we use a dropout layer with a dropout ratio of 0.5. This

is only used while training and removed afterwards. It remains to use this information to
produce a classification outcome, 0 for control and 1 for diversion, which is done using a
multi-layer perceptron.

5.3. CNN-LSTM Based Models

To exploit both the shape and the time dependencies of the input signal, models with
CNN and LSTM layers were examined. Theoretically, CNN can be used to extract shape
features, which can be then fed to the LSTM layer to combine the temporal information
with shape features to produce global features. For those reasons, we considered three
CNN-LSTM based models: CNN-LSTM, CNN-(2-LSTM), and (2-CNN)-LSTM) models.
The proposed DNNs take the processed correlation signals obtained from the previous
stage as an input and classifies the pipe into control or diversion based on this input. As
shown in Figure 10, the proposed neural networks consists of three main blocks, namely, a
CNN block, an LSTM block block, and a multi-layer perceptron block. In this model, we
are using a time-distributed layer on top of the CNN block in order to preserve the time
dependencies of the extracted features from CNN block, which are then fed to the LSTM
block as explained next.
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(a)

(b)

(c)

Figure 10. CNN-LSTM based models’ architectures. (a) CNN-LSTM model. (b) CNN-(2-LSTM)
model. (c) (2-CNN)-LSTM model.

In the proposed method, we use a two-step procedure to learn features from the
obtained correlation envelope signal. The first is to learn short time-scale features from seg-
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ments of the correlation envelope signal using a CNN. The second is to learn long time-scale
correlations between segments of the correlation envelope signal using a LSTM network.

To learn short time-scale features using a CNN while preserving longer time-scale infor-
mation related to the temporal variations of the signal, the correlation signal, a 320× 1 vec-
tor, is split into multiple segments. Each segment is fed into a CNN in parallel (using a
time-distributed layer). Then the outputs of the CNNs are downsampled and converted
into a time-sequence of feature vectors.

As explained in Section 3, the input of the DNN is a vector with 320 dimensions.
This vector is then segmented into Ns non-overlapping vectors, each of size Ts × 1, where
Ts =

320
Ns

and Ns is a divisor of 320. This process helps in capturing the temporal information
in the signal, while decreasing the computational complexity of the model. Note that
features will be extracted from each segment separately instead of the whole 320 samples,
as we explain next. The final input size after segmentation is Ns × Ts × 1. In this work, we
select Ns = 4 and Ts = 80. These values are selected after trying different values of Ns and
selecting the one that leads to the highest accuracy.

Two 1D CNN layers are used as follows. For the first layer, 64 filters (kernels) of
size 3× 1 are utilized. By applying these filters to the input (4× 80× 1), an output of
size 4× 78× 1 is produced for each filter. This procedure generates a 4× 78× 64 array of
features as a result of utilizing 64 filters. This output is then fed to a rectified linear unit
(ReLU) activation layer.

The output of the first CNN layer is further processed by feeding it to another CNN
layer. The second CNN layer operates similar to the first one. We use 64 distinct filters of
size 3× 64 and a ReLU activation layer to obtain a 4× 76× 64 output array. The output is
then passed to a dropout layer (ratio of 0.5), maxpooling layer (of size 2 and stride 2) and
flatten layer. The output of the flatten layer is with a shape of 4× 2432, which is then used
as an input to the LSTM block.

Note that increasing the number of segments Ns leads to increasing the length of this
sequence, in return for shorter segments and less features. For instance, for Ns = 8, the
length of each segment will be 40, and the result after the flatten layer will be a sequence of
8 vectors with 1152 features each. In general, one should examine different choices for a
given application, and select the one that produces the desired accuracy.

In order to extract 100 features from a 4× 2432 dimensional input time-series, we em-
ploy an LSTM layer composed of 100 LSTM cells. The resulting output has the dimension of
1× 100. A dropout layer with a 0.5 dropout ratio is used to regularize the LSTM. The output
of the LSTM is then fed into multilayer perceptron networks, which is explained next.

5.4. Multilayer Perceptron

The multilayer perceptron is a fully connected dense layer followed by a classification
layer. We use multilayer perceptron with 100 inputs, 100 hidden units with ReLU activation
functions, and 1 output with a sigmoid activation function. The advantage of a dense layer
is that it learns combinations of features from the 100 inputs produced by the LSTM layer.
The output of this layer is a probability value between 0 and 1, representing the class of the
input sample. This probability is used to determine a class by thresholding at 0.5.

6. Experimental Protocol and Results Discussion

In this section, we first provide the experimental protocols, discussing the models’ eval-
uation metrics. Then we examine and discuss the performance of the proposed algorithms
according to the performance metrics presented in Section 6.1.

6.1. Experimental Protocols

To evaluate the proposed deep learning models, we compare the performance of the
LSTM, 2-LSTM, CNN, 2-CNN, CNN-LSTM, CNN-(2-LSTM), and (2-CNN)-LSTM models
(cf. Section 5). We consider different performance metrics to examine the performance of
the considered deep learning models. In particular, the considered DNNs are all evaluated
using the following metrics:
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• Accuracy: The accuracy is the percentage of data points that are classified correctly by
the algorithm over the total number of data points. Mathematically, the accuracy can
be expressed as

Accuracy =
TP + TN

TP + FP + TN + FN
, (9)

where TP is the number of the correctly classified positive points (diversions), FP is
the number of misclassified negative points (control), TN is the number of correctly
classified positive points, and FN is the number of misclassified negative points.

• AUC: The area under the receiver operating characteristic (ROC) curve (AUC) is a
metric that measures the ability of a classifier to distinguish between classes across all
possible classification thresholds. Therefore, it measures the performance of a model
irrespective of the classification threshold.

• Precision: If it is required to evaluate a model only on classifying the positive samples,
precision is used. Precision is the ratio of positive samples classified correctly to total
positive samples, which can be expressed as

Precision =
TP

TP + FP
, (10)

• Recall: The recall describes the ratio of correctly classified positive samples over the
total number of the positive samples, which is given by

Recall =
TP

TP + FN
, (11)

• F1-score: F1-score is the harmonic mean of the precision and the recall values, which
can be expressed as

F1-score = 2× Recall× Precision
Recall + Precision

(12)

We calculated these metrics to evaluate the models and specify the model that achieves
the highest performance. Furthermore, we studied these models in terms of their conver-
gence rate (see Section 6.2).

Using the aforementioned data-collection procedures, we collect 2292 samples and
split them into training, validation, and testing sets, where the splitting ratios are selected
as 70%, 10%, and 20%, respectively. We shuffle the samples of the dataset before splitting
to guarantee that each subset represents the true distribution of the whole dataset. A full
description of the dataset is presented in Table 1. The dataset includes measurements from
two sensors. To evaluate the performance of the proposed models, we trained each model
with a single sensor reading and then again with both sensors’ readings. Thus, we can
evaluate the robustness and performance of each model under a variety of circumstances.

Table 1. Training, validation and testing sets description.

Dataset Control Diversion Total

Training 718 886 1604
Validation 104 125 229

Testing 184 275 459

We used Python supported by TensorFlow, a machine learning library, to build and
train the considered DNNs. We adopted the categorical cross-entropy as a cost function,
and used the ADAM optimizer (a first-order gradient-based approach) to tune the network
parameters. To speed up the training process, we used the mini-batch learning approach,
where the training dataset was divided into sub-sets (mini-batches) of 64 and fed into
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the DNN models in an iterative manner. The number of times the training iterates over
all the mini-batches is the number of epochs which we set to be 25. Note that these
hyperparameters are selected based on trying various values and selecting the ones that
lead to the best performance on the validation set. The performance metrics of the DNNs
were calculated using the testing set by training the model 25 times (folds) with random
initialization and then taking the average and the standard deviation of each metric.

6.2. Discussion of the Results

The results in Table 2 and Figure 11a,b show that the LSTM-based models (LSTM and
2-LSTM models) perform poorly in diversion classification compared to the other models.
This is due to the nature of the input signal, which contains long-term time dependencies
that the LSTM layer cannot capture due to its limited memory, despite the fact that LSTM
networks have superior memory to RNN networks.

In general, Table 2 reveals that the performance of the CNN-based models is better
than the performance of the LSTM-based models. Figure 11c,d depict the learning curves of
the CNN-based models. The figures shows a steady improvement in both loss and accuracy
with increasing the number of epochs. This indicates that the CNN layers are able to extract
features from the correlation signal that can distinguish between the diversion and control
samples with an average classification accuracy of 83%.

Table 2. Performance metrics of the tested models (using one sensors’ readings).

Model
Performance Metrics

Accuracy Recall Precision F1-Score AUC

LSTM 0.655 (±0.021) 0.845 (±0.036) 0.708 (±0.017) 0.767 (±0.004) 0.637 (±0.001)

2-LSTM 0.638 (±0.0242) 0.909 (±0.04) 0.627 (±0.025) 0.74 (±0.003) 0.627 (±0.048)

CNN 0.821 (±0.04) 0.921 (±0.04) 0.79 (±0.064) 0.85 (±0.026) 0.915 (±0.02)

2-CNN 0.837 (±0.0167) 0.89 (±0.036) 0.83 (±0.038) 0.85 (±0.01) 0.92 (±0.009)

CNN-LSTM 0.801 (±0.03) 0.822 (±0.13) 0.82 (±0.061) 0.81 (±0.05) 0.890 (±0.01)

CNN-(2-LSTM) 0.822 (±0.04) 0.77 (±0.12) 0.91 (±0.05) 0.82 (±0.06) 0.920 (±0.006)

(2-CNN)-LSTM 0.903 (±0.02) 0.9014 (±0.06) 0.905 (±0.04) 0.921 (±0.025) 0.926 (±0.006)

Table 2 also shows that adding the LSTM layer to CNN-based models does not neces-
sarily improve the classification performance when two sensors are considered. However,
the table shows that the model (2-CNN)-LSTM model reports the best performance over
all the other models. Figure 11g confirms the superiority of the (2-CNN)-LSTM model by
showing its fast convergence compared to the other models. These results indicates that an
appropriate combination of CNN and LSTM layers may provide a DNN model that can
significantly outperform the LSTM- and the CNN-based models.

In Table 2, results show that the highest accuracy reported among all the proposed
models is 90.3%. This is because using only one sensor to read the data might not be
enough to detect the diversions due to the fact that the sensor orientation may not be
suitable to capture the reflected signal from the diversion. While this can be be addressed
by considering a more sophisticated DNN architecture, this increases the model complexity,
which is not desired in practice. Instead, adding another sensor can help DNN models in
characterizing the reflected signals with higher confidence while decreasing complexity as
is discussed next.

Table 3 shows the performance of all examined models when two sensors are used,
and their learning curves are shown in Figure 12. It can be observed that the performance
of the LSTM-based models does not improve with adding a sensor to the system due to the
difficulty in extracting long-term time dependencies. On the other hand, CNN- and CNN-
LSTM-based models all report a significant improvement in all the metrics recorded. This
suggests that with enough sensors, the correlation envelope signals become easier to classify,
and high accuracy can be achieved, even with a single CNN layer, which is desirable due
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to its lower complexity. The (2-CNN)-LSTM model shows the best performance, achieving
an accuracy of 99.6% when two sensors readings are used.

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 11. Training and validation loss and accuracy for different trained models (using 1 Sensor
reading. (a) LSTM model. (b) 2 Stacked-LSTM model. (c) CNN model. (d) 2 Stacked-CNN model.
(e) CNN-LSTM model. (f) CNN-(2LSTM) model. (g) (2CNN)-LSTM model.
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Table 3. Performance metrics of the tested models (using two sensors readings).

Model
Performance Metrics

Accuracy Recall Precision F1-Score AUC

LSTM 0.544 (±0.037) 0.817 (±0.291) 0.58 (±0.150) 0.61 (±0.104) 0.562 (±0.067)

2-LSTM 0.58 (±0.0182) 0.891 (±0.197) 0.64 (±0.121) 0.71 (±0.064) 0.6185 (±0.118)

CNN 0.991 (±0.007) 0.9991 (±0.002) 0.995 (±0.004) 0.999 (±0.0002) 0.995 (±0.004)

2-CNN 0.997 (±0.003) 0.997 (±0.003) 0.998 (±0.003) 0.998 (±0.002) 0.997 (±0.0094)

CNN-LSTM 0.996 (±0.00065) 0.992 (±0.007) 0.998 (±0.001) 0.999 (±0.0004) 0.998 (±0.0045)

CNN-(2-LSTM) 0.993 (±0.00130) 0.994 (±0.008) 0.993 (±0.002) 0.992 (±0.00098) 0.994 (±0.0031)

(2-CNN)-LSTM 0.996 (±0.001) 0.998 (±0.006) 0.998 (±0.0023) 0.999 (±0.00003) 0.999 (±0.0023)

The proposed scheme can be utilized to be used with different type of pipes. It can
also be used to classify different types of defects as long as the defect is captured by the
correlation envelop signal.

The limitations of this scheme are as follows. First, the maximum pipe length used
in our experiments was 5 m, which raises a question of whether the proposed methods
can detect a diversion in longer pipes. It is expected that the accuracy might decrease
with increasing the pipe’s length; however, enriching the dataset via using more than two
sensors may improve performance. In addition, the performance of the proposed method
is expected to deteriorate if the pipes are buried below ground. Therefore, in our future
work, we will extend this work to study the diversion detection in buried pipes.

(a) (b)

(c) (d)

Figure 12. Cont.
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Figure 12. Training and validation loss and accuracy for different trained models (Using 2 Sensors’
readings. (a) LSTM model. (b) 2 Stacked-LSTM model. (c) CNN model. (d) 2 Stacked-CNN model.
(e) CNN-LSTM model. (f) CNN-(2-LSTM) model. (g) (2-CNN)-LSTM model.

7. Conclusions

The method proposed in this paper was capable of classifying HDPE pipes into two
control and diversion pipes with an accuracy of 90.3% (when one sensor is used) and 99.6%
(when two sensors are used). The method relies on using Zadoff–Chu sequences which are
well-known for having excellent autocorrelation properties suited for channel estimation
applications. As a result, using signal processing at the receiver combined with a DNN, we
were able to determine whether the pipe has a diversion or is a control pipe. It is possible
to enhance the algorithm further by adding a second step that estimates the location of the
diversion using another DNN, which is left for future work.
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