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Abstract: Environmental changes and human activities have caused serious degradation of murals
around the world. Scratches are one of the most common issues in these damaged murals. We
propose a new method for virtually enhancing and removing scratches from murals; which can
provide an auxiliary reference and support for actual restoration. First, principal component analysis
(PCA) was performed on the hyperspectral data of a mural after reflectance correction, and high-pass
filtering was performed on the selected first principal component image. Principal component fusion
was used to replace the original first principal component with a high-pass filtered first principal
component image, which was then inverse PCA transformed with the other original principal
component images to obtain an enhanced hyperspectral image. The linear information in the mural
was therefore enhanced, and the differences between the scratches and background improved. Second,
the enhanced hyperspectral image of the mural was synthesized as a true colour image and converted
to the HSV colour space. The light brightness component of the image was estimated using the
multi-scale Gaussian function and corrected with a 2D gamma function, thus solving the problem of
localised darkness in the murals. Finally, the enhanced mural images were applied as input to the
triplet domain translation network pretrained model. The local branches in the translation network
perform overall noise smoothing and colour recovery of the mural, while the partial nonlocal block is
used to extract the information from the scratches. The mapping process was learned in the hidden
space for virtual removal of the scratches. In addition, we added a Butterworth high-pass filter
at the end of the network to generate the final restoration result of the mural with a clearer visual
effect and richer high-frequency information. We verified and validated these methods for murals in
the Baoguang Hall of Qutan Temple. The results show that the proposed method outperforms the
restoration results of the total variation (TV) model, curvature-driven diffusion (CDD) model, and
Criminisi algorithm. Moreover, the proposed combined method produces better recovery results and
improves the visual richness, readability, and artistic expression of the murals compared with direct
recovery using a triple domain translation network.

Keywords: murals; scratches; enhancement; restoration; principal component transformation; 2D
gamma function; triplet domain translation network pretrained model

1. Introduction

Murals are a precious part of the world’s cultural heritage and have enormous his-
torical and research value. They are the spiritual home of modern man and a symbol of
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world civilisation, reflecting the social, political, economic, religious, cultural, and artistic
development of countries around the world [1]. However, they are not long-lasting and
only a few exist as they have been subjected to long-term natural erosion and man-made
deterioration, in addition to a slew of other issues. Scratches have emerged on several
murals, significantly reducing their aesthetic value and appreciation.

Virtual restoration has attracted research attention in the field of cultural heritage
conservation in recent years because of advancements in computer vision technology.
New technologies such as computer image processing, graphics, virtual reality, and hy-
perspectroscopy are gradually being applied to the field of cultural relic protection and
restoration [2]. For example, Pei et al. [3] proposed a virtual restoration algorithm for an-
cient paintings, based on colour contrast enhancement, missing texture synthesis, and the
Markov random field model to repair the stains and cracks in ancient paintings and murals.
Baatz et al. [4] proposed a binary image restoration method based on the Cahn–Hilliard
equation to restore the binary structure of paintings and derived a general grey-scale image
restoration method to repair the paintings. Cornelis et al. [5] extracted information on
cracks from oil paintings using three methods: filters, top-hat transform, and K-SVD; these
methods improved pre-existing patch-based repair techniques to eliminate the detected
cracks. Hou et al. [6] proposed a new virtual restoration method for stains based on the max-
imum noise fraction (MNF) transformation with hyperspectral imaging. This method can
fade or eliminate speckles in the image and restore the style of ancient paintings to a large
extent without resulting in large data losses. Purkait et al. [7] proposed a semi-automatic
mural restoration system based on coherent texture synthesis and high-frequency enhanced
diffusion, which realised the restoration of colour murals in Indian temples. Mol et al. [8]
proposed an integrated texture and structure reconstruction technique for ancient wall
paintings. The method outperformed other reconstruction techniques in terms of image
quality and computational efficiency. Wang et al. [9] used the structural information col-
lected from the guidance of painters and line drawings to study mural image restoration
and proposed a structure-guided global and local feature weighting method to repair the
murals. Cao et al. [10] proposed a method of restoring sooty murals based on the dark
channel a priori and the Retinex hyperspectral imaging technique. This approach can
effectively reduce the effects of soot on the frescoes, provide additional details that reveal
the original appearances of the frescoes, and improve their visual quality.

With the development of artificial intelligence, deep learning is gradually being ap-
plied in the field of digital preservation of cultural heritage. Deepak Pathak et al. [11]
first proposed an unsupervised visual feature learning method based on contextual pixel
prediction using a neural network (NN) approach, which laid the foundation for many
subsequent approaches. Alberto Nogales et al. [12] developed a deep-learning model
based on GANs for the automatic digital reconstruction of Greek temples. The method
automatically repairs Greek temples based on a rendering of the ruins obtained from
the 3D model. Gupta et al. [13] proposed a hybrid model that employs R-CNN-based
automatic mask generation and image inpainting with partial convolution and automatic
mask update using U-Net architecture. The results show that the proposed method is quite
effective in the virtual restoration of digitized artworks. Huang et al. [14] solved the mural
degradation detection problem with a multi-path convolutional neural network (CNN)
and designed an eight-path CNN. The effectiveness and efficiency of the method were
verified by extensive experiments. Wang et al. [15] proposed a Thangka mural restoration
method based on multi-scale adaptive partial convolution and stroke-like masks for Tibetan
Thangka murals. Li et al. [16] proposed a generative-discriminator network model based
on artificial intelligence algorithms for digital image restoration of damaged ancient wall
paintings; in adversarial learning. The discriminator network model was optimised in
this study, and the proposed algorithm effectively restored wall paintings with point-like
damage and complex texture structures.

Scratches are different from small defects such as cracks, as they punctate losses, are
often seen in large areas of structural damage, and are irregular in shape. This poses
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difficulties for the restoration of wall paintings. The majority of existing literature has
focused on the restoration of punctate loss, fading, cracks, and other defects in the mural
images. However, to date, there are few methods for recovering large areas of scratch
damage in mural images. We observed that the scratches in the mural were similar to
the creases in the old photograph. The scratches in the mural and the folds in the old
photograph are both large, elongated, and white in appearance. In our study, we used
pretrained models [17] of old photographs to remove scratches from the murals. However,
there are still differences between the murals and the old photographs, and through
extensive experiments, we found that direct scratch removal using the triplet domain
translation network pretrained model did not produce the best results.

Therefore, we opted to use spectral information for line enhancement, a 2D gamma
function to enhance local dark information, and a triplet domain translation network
pretrained model and a Butterworth filter to virtually restore scratches. After radiation
correction, the mural’s hyperspectral data were subjected to principal component analysis
(PCA) and high-pass filtering, producing improved hyperspectral images, and thereby
improving the linear information and contrast between scratches and the backdrop of
the mural. Second, the mural’s improved hyperspectral picture was synthesised to a true
colour image that was converted to the HSV colour space. A multi-scale Gaussian function
was used to estimate the image’s lighting component. Thereafter, a 2D gamma function
was used to correct the brightness and overcome the problem of poor light in murals.
Finally, the triplet domain translation network pretrained model received the augmented
mural images. The local branch of the network performs overall image quality restoration
to address fading and noise in the image. A partial nonlocal block was used to recover
structured defects in the image to resolve scratches, and a Butterworth filter was applied to
make the final result clearer. This methodological approach will help us gain a sharper and
more comprehensive understanding of murals.

In this study, we have used the murals of the Baoguang Hall at Qutan Temple as
an example of virtual restoration of large scratch lesions on their surfaces. The main
contributions of this study are summarized as follows.

(1) A method combining linear information enhancement and triplet domain translation
network pretrained model is proposed to recover the scratch lesions in the mural
images, which includes using hyperspectral data for principal component analysis and
enhancing the first principal component with high-pass filtering, replacing the original
first principal component with the enhanced first principal component by principal
component fusion, and recovering the data dimension with principal component
inversion to produce an improved hyperspectral mural image. Then, a triplet domain
translation network pretrained model was used to complete the repair of the scratch
lesions. In addition, we added a Butterworth high-pass filter after the pretrained
model restoration to produce sharper and higher visual quality mural restoration
results. As such, this study fills a gap in the existing literature on the virtual restoration
of mural scratches.

(2) The 2D gamma function light uneven image correction algorithm is applied to the
mural to solve the problem of local low luminance, enhance the information in the
dark areas, and provide more accurate restoration results.

(3) The proposed method can provide auxiliary reference and support for the actual
restoration of murals. It is helpful to provide conservators with a scratch-free appear-
ance of the murals before the restoration process begins. In addition, the work in
this study is an attempt to provide novel ideas for the digital conservation of wall
paintings for World Heritage sites.

The rest of the paper is organized as follows. Section 2 describes the experiments
designed for the enhancement and restoration of scratched murals, including the experi-
mental materials and acquisition techniques used and the workflow of the experiments.
Section 3 describes our experimental results and visual comparisons of the murals before
and after restoration. In Section 4, the results of restoration by omitting one of the steps
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proposed in this paper are discussed in detail, and the comparison of this method with
other existing virtual restoration techniques is presented. Section 5 presents the conclusions
of this study.

2. Materials and Methods
2.1. Materials
2.1.1. Murals

A scratch is a mark produced by an external force that damages mural patterns [18].
Mural patterns are frequently ruined by scratches, lowering their creative value significantly.
The mural data used in this study were from the murals on the east wall of Baoguang
Hall, Qutan Temple, Ledu District, Haidong City, Qinghai Province, China. According to
historical records, Qutan Temple is a Tibetan Buddhist monastery founded in 1392. The
large colourful murals in the temple were created by the court painters of the Ming and
Qing dynasties, as shown in Figure 1a. Owing to their refined painting techniques and
striking ideas, these murals are considered to be some of the best works of art ever produced.
However, several of these works have been extensively damaged, their magnificent patterns
have gone unfinished, and their aesthetic and decorative values have diminished. The
hyperspectral data of the murals were collected and analysed to eliminate the influence of
scratches and restore the original appearance. In this study, two experimental areas were
selected, as shown in Figure 1b,c. The images were all true colour images synthesized from
hyperspectral images based on wavelengths of 460.20, 549.79, and 640.31 nm.
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Figure 1. Mural images and two scratch study areas: (a) Buddha 2 and 3 from the southeast wall of
the Baoguang Hall at Qutan Temple, (b) image of the first study area, and (c) image of the second
study area.

2.1.2. Data Acquisition

Data from the experimental area were collected with the hyperspectral image analysis
system THEMIS-VNIR/400H from Themis Vision System, USA, with a spatial resolution
of 1392 × 1000 pixels and a sampling interval of 0.6 nm. The spectral resolution was
2.8 nm, and the images were collected in 1040 bands ranging from 377.45 (visible light)
to 1033.10 nm (near-infrared). During the data collection process, the distance between
the hyperspectral camera and the mural was about 1 m. Two halogen lamps were used as
light sources.

2.2. Methods

Figure 2 shows the overall framework of the enhancement and restoration method for
the scratched murals, which includes four main steps:

(1) Data denoising using radiometric correction;
(2) Mural line information enhancement based on principal component transformation,

high-pass filtering, and principal component fusion;
(3) Enhancement of local dark information in the mural using multiscale Gaussian and

2D gamma functions;
(4) Extraction and repair of scratched murals using a triplet domain translation pretrained

network model and Butterworth high-pass filter.

2.2.1. Data Preprocessing

Hyperspectral techniques allow extraction of the maximum amount of information
from murals without damaging them owing to their non-contact, non-destructive detection
characteristics [19]. Hyperspectral images generally have many bands, a wide spectral
range, spectral resolution of the order of nanometres, and a wealth of spectral information.
Thus, they can help in the restoration of murals.

During data acquisition with hyperspectral imaging systems, data can be affected by
ambient light and the instrument’s dark current noise. Reflectance correction can be used
to reduce this type of noise with the following correction formula:

R =
Rraw − Rdark

Rwhite − Rdark
× 99%, (1)

where R is the reflectance, Rraw is the collected hyperspectral data, Rdark is the dark current
data, and Rwhite is the standard reflector data; the reflectance of a standard reflector is 99%.
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2.2.2. Line Information Enhancement

We synthesized true colour images in the red, green, and blue bands at wavelengths of
640.31, 549.79, and 460.20 nm, respectively, to meet the memory requirements of the network
restoration model and maintain the integrity of the scratched murals, as a direct restoration
would be inaccurate and cause the lines in the murals to fade. Before restoring the network,
we used the hyperspectral data from the murals to improve the line information and
produce better restoration outcomes. A PCA of the hyperspectral images of the murals to
be restored was carried out to compress or combine image information from multiple bands
into one image [20]; the contribution from the information in each band was maximised
in the new image. The first principal component was selected, as it contained most of the
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information for all of the bands, and high-pass filtering was performed. High-pass filtering
is generally used to reduce blur in an image by enhancing the high-frequency components
and eliminating the low-frequency components of the image while maintaining the high-
frequency information; it is often used to enhance the information of textures and edges [21].
The high frequencies extracted by the default high-pass filtering in the ENVI 5.3 software
from Exelis Visual Information Solutions, USA, were added back to the first principal
component image of the original mural to obtain a clearer image. High-pass filtering is
normally carried out by applying a transform kernel with a high central value, usually
surrounded by negative weights. Using a 3 × 3 template, we calculated the following
equation:

H(x, y) =

−1 −1 −1
−1 8 −1
−1 −1 −1

, (2)

where H(x, y) is the high-pass filtering convolution template.
Principal component fusion is a PCA transformation of the n-band spectral images to

obtain the n principal components based on the vector eigenvalues. The high-resolution
panchromatic image is histogram-matched to the first principal component to ensure the
grey mean and variance of the panchromatic image agree with those of the first principal
component image; the matched panchromatic image is then directly replaced by the first
principal component image. Finally, the high-resolution spectral fusion image is obtained
by PCA inverse transform processing; this image retains the high-frequency information
of the original image. Through this processing, the detailed features of the target are
more clearly defined, and spectrally richer images are obtained [22]. The first principal
component map after high-pass filtering is used as the panchromatic image to replace the
original first principal component image. They are inversely transformed by PCA to recover
the dimensionality of the original hyperspectral images with enhanced line information,
thus enhancing the identification of scratched areas.

2.2.3. Enhancement of Local Darkness

A 2D gamma function, light inhomogeneity image correction algorithm was applied to
the murals to solve the problem of localised low brightness in their images [23]. According
to Retinex theory, the brightness component of a real scene is mainly present in the low-
frequency part of the image with smooth overall changes, while the reflection component
is mainly present in the high-frequency parts of the image such as edges and textures, with
more intense changes [24].

As the multiscale Gaussian function could effectively compress the dynamic range
and accurately estimate the brightness component of the scene [25,26], it was applied to
extract the brightness component of the image before performing luminance correction,
with the following mathematical expression:

G(x, y) = λexp
(
− x2 + y2

c2

)
, (3)

where c is the scale factor and λ is the normalisation constant; this equation satisfiess
G(x, y)dxdy = 1.

The convolution of the Gaussian function with the original image yielded an estimate
of the light component with the following mathematical expression:

I(x, y) =
N

∑
i=1

ωi [F(x, y) ∗ Gi (x, y)], (4)

where I(x, y) is the light component value extracted and weighted by Gaussian functions
at different scales at the point (x, y); F(x, y) is the input image; Gi (x, y) is the Gaussian



Sensors 2022, 22, 9780 8 of 19

function; ∗ denotes the convolution; ωi denotes the weight; and i = 1, 2, . . . , N is the
number of scales used, where N = 1 for single scale and N > 1 for multiple scales.

The 2D gamma function can effectively correct the brightness of an image without
changing its overall magnitude [27]. It converts an image from the RGB space to the HSV
colour space and changes the brightness of its V luminance component according to the
distribution of the image’s light component. This function is used to enhance the light
values in dark regions and reduce the light values in bright regions.

Images in HSV space are converted to RGB (red, green, blue) colour space to correct
for the brightness of localised darkness in the murals. The mathematical expression is
as follows:

O(x, y) = 255
(

F(x, y)
255

)γ

, γ =

(
1
2

)m−I(x,y)
m

, (5)

where O(x, y) is the light value of the corrected image, γ is the exponential value used for
luminance enhancement, and m is the mean value of the luminance of the light component.

2.2.4. The Pretrained Model and Butterworth High-Pass Filter for Recovery

As described above, the scratches in the mural were more similar to the creases in
the old photograph. We therefore applied the pretrained model of the triplet state domain
translation network [17] used to restore the old photographs to the mural restoration work.
The network is described as follows.

The triplet domain translation network model consists of two variational autoencoders
(VAEs) and a mapping network T , each of which can be considered as a separate module.
In Figure 3. the mural hyperspectral data are denoted as r, the synthetic data as x, and
the truth data corresponding to the synthetic data as y. Of these, the network model
synthesized data are broken photos formed by degradation of intact photos and the true
value data are intact photos. The real mural hyperspectral data, the synthetic data, and the
true value data corresponding to the synthetic data are placed in three different domains;
these domains were interconverted in this network model. The real mural’s hyperspectral
data domain is denoted as R, the synthetic data domain as X, and the truth data domain
corresponding to the synthetic data as Y. The scratches in the mural hyperspectral data
are recovered by interconversion and learning between the three domains. ZX, ZY, and
ZR are the latent spaces corresponding to the mural hyperspectral data, the synthetic data,
and the truth data corresponding to the synthetic data, respectively. ER,X and EY are the
encoders and GR,X and DY are the decoders that form the VAE. The images from the three
different domains are mapped to the corresponding hidden spaces by the VAE; the hidden
spaces of the mural hyperspectral data and synthetic data are aligned as closely as possible.
The recovery of the mural hyperspectral data r is achieved by learning a mapping process
from the hidden space ZX of the synthetic data x to the hidden space ZY of the synthetic
data corresponding to the real value data y. A local branch in the network performs global
noise removal and colour restoration for non-structural defect problems such as noise and
fading. Another branch consists of partial nonlocal block and several residual blocks. It is
primarily aimed at structural defects such as scratches. It uses a mask as input to pre-empt
pixels in damaged areas of the mural image from being used to repair diseased areas, and
this mask prediction network is a U-net.
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Here, VAE1 consists of an encoder ER,X and a decoder GR,X , which encodes the mural
r and the synthetic image x into their corresponding hidden spaces ZR and ZX , respectively,
and then recovers them afterwards, and causes the potential encodings both conform to a
Gaussian distribution. VAE2 is used to train the true value data y. The expression for the
objective function of the mural r to be restored is as follows:

LVAE1(r) = KL(ER,X(Zr|r )N (0, I)) + αEZr∼ER,X(Zr |r)[‖ GR,X(rR→R|zr )− r ‖1] + LVAE1,GAN(r) , (6)

where the first term is the KL regular term to constrain the distribution of the potential
encoding to be close to a Gaussian distribution, and ER,X(Zr|r ) denotes the prior probability
distribution obeyed by Zr obtained through ER,X at input r. The second term denotes the
loss between the recovered result by VAE encoding and the input data r, constraining the
main information of the image captured by the hidden encoding; the third term is the least
squares generative adversarial network loss rate constraining the VAE generated result to
be more detailed. As the mural data r share a VAE with the synthetic data x, the inclusion
of an adversarial network is used to further approximate the latent space of both, whose
loss is defined as

Llatent
VAE1,GAN(r, x) = Ex∼X [DR,X(ER,X(x))2]+Ex∼R[(1− DR,X(ER,X(r)))2], (7)

Combined with the latent adversarial loss, the total objective function for VAE1 be-
comes

min
ER,X,GR,X

max
DR,X
LVAE1(r) + LVAE1(x) + Llatent

VAE1,GAN(r, x), (8)

As the mural data to be recovered and the synthetic data are already well domain
aligned in the hidden space, the mapping from the hidden space ZX to the hidden space
ZY learned through the paired data (x, y) can also be well generalised to the recovered
mural. At this stage, the two VAEs are fixed and then the mapping network T of the two
hidden spaces is learned. The expression of the loss function of this mapping network T is
as follows:

LT (x, y) = λ1LT ,
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1
+ LT ,GAN + λ2LFM , (9)

In Equation (9), The first item is the latent space loss, LT ,
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1
= E ‖ T (Zx − Zy)‖1 ;

the second item is the adversarial loss LT ,GAN , to encourage the ultimate translated
synthetic image to look real; and the third term is the perceptual loss derived using the
VGG network [28].
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One of the triplet domain translation network datasets is from the Pascal VOC
dataset [29] and the other dataset is a collection of old photographs. The network adopts
the Adam solver [30] with β1 = 0.5 and β2 = 0.999. The learning rate is set to 0.0002 for the
first 100 epochs, with linear decay to zero thereafter. Here, α = 10, λ1 = 60, and λ2 = 10 in
Equations (6) and (9).

To produce clearer results of the mural restoration, we apply the Butterworth high-
pass filter to the restored results of the network to produce visually clearer and sharper
restoration results of the mural images. The transfer function of the Butterworth high-pass
filter is shown in Equation (10):

H(u, v) = 1/
{

1 + [D0/D(u, v)]2n
}

, (10)

where D0 is the cut-off frequency, D(u, v) =
√

u2 + v2 is the distance from the point (u, v)
to the origin of the frequency plane, and n is the order of the filter.

3. Results
3.1. Enhancement of Mural Line Information

As shown in Figure 4a, the mural is badly damaged by scratches. Figure 4b shows
the high-pass filtered first principal component image of experimental region 1. As seen in
Figure 4c, this image is replaced by the original principal component image using principal
component fusion; the remaining principal component images are inverted to obtain a
mural image with enhanced line information. Using linear information enhancement
prevents the distortion of the mural colours and enhances the information of the lines and
details in the background. Observed from the enlarged views Figure 4d–g, the enhanced
background black lines are clearer and the colours are more realistic, thus improving
the distinction between the scratches and background. These enhancements help the
subsequent network pretrained model to identify scratches and improve the problem of
ambiguous results owing to direct recovery using the network pretrained model.
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Figure 4. Area 1 mural enhancement results: (a) Area 1 true colour image; (b) region 1 first prin-
cipal component filtering; (c) results of linear information enhancement; (d–g) the results of local
magnification before and after enhancement of study areas 1 and 2.

3.2. Enhancement of Local Darkness Information for Murals

As shown in Figure 5a,d, the surrounding corners of the murals are dark, and their
original fine patterns and colours cannot be seen. Localised darkness in the mural was
enhanced before the virtual restoration of the scratches to achieve the best post-restoration
visual effect. The light components of the mural were first extracted using a multi-scale
Gaussian function with the number of scales i chosen to be 3, where the scale factor c was
chosen to be 15, 80, and 250 and the weight factor of the light components extracted at
each scale was set to 1/3. The results are shown in Figure 5b,e. Based on the distribution
characteristics of the extracted light components, a 2D gamma function was used for
correction. The results are shown in Figure 5c,f. Visually, the correction cleared the
otherwise unreadable patterns around the perimeter, restoring the dark parts of the mural.
This enhances the overall visual impact of the restored mural.
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(b) Area 1 light component extraction, and (c) Area 1 dark enhancement result; (d) Area 2 after linear
enhancement, (e) Area 2 light component extraction, and (f) Area 2 dark enhancement result. (The
yellow box is the more obvious area of change).

3.3. Restoration of Mural Scratches

We use Python to provide the experimental environment needed to build the pre-
trained model. In this case, the images of the mural to be restored were fed into the
pretrained model as a test set. The details of the experimental environment are shown in
Table 1.

Table 1. Experimental environment.

Environment Parameters

Systems Windows 10 (Microsoft, Redmond, WA, USA)

GPU NVIDIA RTX 2080
(NVIDIA, Santa Clara, CA, USA)

CPU i7-9700 k, CPU @3.60 GHz (8 CPUs)
(Intel, Santa Clara, CA, USA)

RAM 16 GB

The enhanced mural images obtained in the previous step were fed into the network
model as test sets to repair the scratches. The first step was the full recovery of the
unstructured degradation of the murals using local branches. Thereafter, for scratches,
the image was segmented using the U-net network [31] in the partial non-local block; the
detected scratch points were set to 1 and the others to 0. The mask file was generated and
the trained triplet domain translation network restoration model was invoked to restore the
image as a whole and process the mask. The repair model was invoked where there were
scratches. The scratches were filled by bilinear interpolation and a global wide-area search.
Finally, the Butterworth high-pass filter was used to make the resulting high-frequency
detail richer and the content clearer in the mural images; the order n = 2, and the cut-off
frequency D0 = 30 are chosen as parameters for the filter. n = 2 has no significant ringing
effect and produces a blurring effect at higher values of n. The higher the cut-off frequency
D0, the lower the frequency components that are filtered out and the higher the frequency
components that are lost. The higher the cut-off frequency D0, the more low-frequency
components are filtered out, and the more high-frequency components are lost. Therefore,
we choose the middle value of 30 as the value of D0. Figure 6 shows the scratch extraction
and repair results for Area 1 and 2.

3.4. Visual Comparison

Figure 7 shows the visual comparison of the scratched murals before and after en-
hancement and restoration. The results showed that the proposed method enhanced the
line information of the mural using principal component transformation and high-pass fil-
tering. It also restored the partial darkness of the mural using optical component extraction
and 2D gamma function correction. Further, it achieved the automatic restoration of the
scratch damage of the mural by combining the triplet domain translation network model
and Butterworth high-pass filter. We successfully restored the pattern information of the
scratched murals and provided a reference for the subsequent conservation and restoration
of other ancient painted murals.
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4. Discussion
4.1. Combination of Different Steps

To illustrate that the direct use of pretrained models to recover scratch lesions is not
ideal, we chose to omit the enhancement of mural line information, local dark enhancement,
and Butterworth high-pass filtering steps, while keeping the other processes unchanged to
verify the feasibility of the combined enhancement and restoration method proposed in
this work. Considering Area 1 as an illustrative example, the results are shown in Figure 8.
As can be seen in Figure 8, the omission of the enhancement of mural line information and
Butterworth high-pass filtering reduced the accuracy of the network model in detecting
scratches and fill effects, resulting in parts of the mural that were not scratched being
incorrectly restored. After restoration, the image clarity suffered a loss. Dark enhancement
of some of the paintings and Butterworth high-pass filtering has been neglected, leaving
their darker areas unclear even after restoration, and the overall viewing of the mural
compromised. Similarly, the Butterworth high-pass filter was omitted and some pixels in
the restoration result of the mural looked less clear than in the original image. In order to
validate the significance of the methods presented in this paper, we introduced the image
evaluation metrics of mean gradient, edge strength, and space frequency to evaluate the
effectiveness of the restoration process in this paper more objectively. Considering objective
quality evaluations, the results in Table 2 show that the average gradient, edge strength,
and space frequency of the proposed complete process method were greater than those of
the other steps of the truncated process.
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Table 2. Objective evaluations of different step combinations.

Study Area Evaluation Indicators

No Linear Information
Enhancement and

Butterworth High-Pass
Filtering

No Local Dark
Enhancement Recovery
Effect and Butterworth

High-Pass Filtering

No Butterworth
High-Pass
Filtering

Complete
Method

Area 1
Average gradient 10.1506 10.8247 14.1354 28.0683

Edge strength 96.8508 99.6460 131.4485 168.5789
Space frequency 23.3682 37.0902 53.5409 56.3064

Area 2
Average gradient 7.9620 10.5215 17.4626 30.0952

Edge strength 75.4469 94.9784 157.6848 179.4221
Space frequency 16.6812 43.2561 44.5785 48.2505

4.2. Comparison of Scratched Mural Repair Methods

The total variation (TV) model, curvature-driven diffusion (CDD) model, and Criminisi
algorithm are all commonly used approaches for image restoration and can be used for the
virtual restoration of scratched murals. A comparative analysis of the methods in this study
was carried out. The TV model [32] and CDD model [33] are based on partial differential
equations. The pixel diffusion principle was mainly used to find the structural information
near the scratched area and rely on the shortest straight line to connect this information to
achieve image restoration. The Criminisi algorithm is based on priority order sample filling
restoration to drive sampling based on the iso-illumination line process and achieve image
restoration by searching for the best similar matching blocks for texture replication [34].
In this study, the enhanced and corrected scratched murals were restored by applying the
methods described above, and all of the traditional methods used for comparison used
the same enhancement steps as the proposed methods, to ensure that this comparison was
fair. The subjective visual effects of the different restoration methods for Areas 1 and 2 are
shown in Figure 9.
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are the TV restoration result, CDD restoration result, Criminisi restoration result, and restoration
result of the proposed method of study areas 1 and 2.

As shown in Figure 9, the TV and CDD models are diffusion models. The information
of the intact area is diffused to the area to be repaired, making it easier to produce blurring
and leave repair marks when repairing areas with severe scratches. The Criminisi algorithm
is better at repairing small defective areas but cannot completely repair areas affected by
larger and longer scratches because it uses the concept of fast matching replication of the
texture structure. When there are several random missing pixels, it is impossible to form an
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effective block match, resulting in unsatisfactory repairs. The proposed method gives the
most satisfactory results considering the subjective virtual restoration of scratch-damaged
murals, which appear better after repair. To better illustrate the subjective quality, we use
a scoring method to compare the proposed method with other methods. We collected
the subjective opinions of 15 researchers, experts and students from the fields of heritage
conservation and image processing. The researchers were asked to rate the results of the
different methods according to the quality of the mural restoration. The full score is 10
points, and the restoration results are scored according to the degree of satisfaction, and
then the average score is calculated as the final score. The results are shown in Table 3. The
results show that the average score of our method is higher than those of other methods,
which indicates the obvious advantage of our method.

Table 3. The average scoring results of the subjective evaluation of the repair effect.

Method Average Score of Area 1 Average Score of Area 2

TV 7.01 6.89
CDD 7.54 7.27

Criminisi 5.23 5.03
Proposed Method 9.12 9.07

4.3. Applicability of the Proposed Method

To demonstrate the generality of the method in this paper, we selected other wall
images with scratches from the Baoguang Hall of Qutan Temple (a1, b1, c1, d1, e1, and f1).
In addition, we also restored two scratched murals on the west wall of Guanyin Hall in
Heilongmiao Village, using data collected during July 2017 (g1 and h1). The results of their
recovery are shown in Figure 10.
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5. Conclusions

In historical conservation applications, repairing scratched murals is a challenging task.
We applied the pretrained model of old photographs to the restoration of fresco scratches.
However, there are some differences between mural images and old photographs, and the
direct use of this model for mural restoration could cause some of the restoration results to
be overly smoothed, resulting in slight blurring or even incorrect restoration of some areas.
In response, we proposed a combination of enhancement and restoration that goes some
way to improving the outcome of the mural restoration. Linear information enhancement
was used to improve the discrimination between scratches and the background in murals.
Furthermore, a combination of optical component extraction and 2D gamma function
correction was used to enhance local dark information in the mural. The triplet domain
translation network pretrained model and Butterworth high-pass filter were used to restore
the scratches on the murals. The results produced good aesthetic outcomes, and the repair
of scratched murals using different methods was evaluated objectively. In addition, because
of the non-reproducible nature of murals as cultural artefacts, scratched murals do not
have their intact counterparts as real values to use as a reference. This will be considered
in our further work to create some mockups of the murals as true values and artificially
carve some scratches on them as synthetic murals. In this way, enough mural images can
be collected to create a mural dataset, and a network model can be trained specifically for
mural recovery, which helps develop more appropriate restoration techniques to produce
better virtual restorations of scratched murals.
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