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Abstract: Integrity monitoring (IM) is essential if GNSS positioning technologies are to be fully
trusted by future intelligent transport systems. A tighter and conservative stochastic model can
shrink protection levels in the position domain and therefore enhance the user-level integrity. In
this study, the stochastic models for vehicle-based GNSS positioning are refined in three respects:
(1) Gaussian bounds of precise orbit and clock error products from the International GNSS Service
are used; (2) a variable standard deviation to characterize the residual tropospheric delay after model
correction is adopted; and (3) an elevation-dependent model describing the receiver-related errors is
adaptively refined using least-squares variance component estimation. The refined stochastic models
are used for positioning and IM under the Advanced Receiver Autonomous Integrity Monitoring
(ARAIM) framework, which is considered the basis for multi-constellation GNSS navigation to sup-
port air navigation in the future. These refinements are assessed via global simulations and real data
experiments. Different schemes are designed and tested to evaluate the corresponding enhancements
on ARAIM availability for both aviation and ground vehicle-based positioning applications.

Keywords: global navigation satellite system (GNSS); integrity monitoring (IM); stochastic model;
Gaussian overbounding; protection level (PL)

1. Introduction

One prospective application of ground-based global navigation satellite system (GNSS)
positioning is autonomous driving within the context of intelligent transport systems (ITS).
To be a key component in these systems, the accuracy, integrity, continuity and availability
of GNSS positioning must be maintained at appropriate levels. Although high precision
GNSS positioning technologies such as RTK (real time kinematic), PPP (precise point
positioning), and PPP-RTK can achieve centimeter-level positioning accuracy, GNSS still
faces serious challenges when applied to safety-of-life (SoL) applications [1].

Integrity monitoring (IM) should be conducted if GNSS positioning technologies are
to be primarily used, and fully trusted, in ITS SoL applications. IM has two tasks [2]. Firstly,
fault detection and exclusion (FDE) should be conducted to compensate for the positioning
errors caused by significant system and observation faults [3]. Secondly, a warning should
be given to the user within a preset time interval, known as the time-to-alert (TTA), if the
true positioning errors (PEs) after FDE exceed a preset threshold called the alert limit (AL).
Since the true PEs are not known in practice, the protection levels (PLs) are computed and
compared with the AL instead. Theoretically, the PL statistically defines the largest PE that
would happen without raising an alert, with a probability no higher than the permissible
probability of hazardous misleading information (PHMI).

Originating from aviation applications, to satisfy the GNSS positioning accuracy,
integrity, continuity and availability during different phases of flight, airborne-based
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augmentation systems (ABAS), satellite-based augmentation systems (SBAS) and ground-
based augmentation systems (GBAS) have been developed since the mid-1990s [4]. Receiver
autonomous integrity monitoring (RAIM) was initially proposed, as an ABAS technology
solution, to support en route flight by only using GPS L1 pseudorange measurements [5,6].
To further support precise approach operations, SBAS and GBAS technologies have been
developed and gradually standardized by the International Civil Aviation Organization
(ICAO) [7]. These two types of augmentation technology rely on ground-based reference
stations, firstly to monitor different types of threat that may result from large positioning
errors, and secondly generate the integrity support message (ISM) for the airborne GNSS
receivers [8–10]. With multiple next generation GNSSs and augmentation systems, the
concept of advanced RAIM (ARAIM) is under study, where the burden of IM among space-
based and ground-based augmentation systems and aircraft receivers is adjusted [4,11].

In general, IM for aviation is still based on the implementation of the standard GNSS
single point positioning (SPP) mode, a snapshot least-squares (LS) procedure that uses
pseudorange or carrier-smoothed code observations. In the ARAIM baseline algorithm,
broadcast ephemeris, classical tropospheric and ionospheric delay correction/elimination
models/methods are specified. As the operational environments are open sky, a mature and
fixed stochastic model has been established to successfully compensate for the multipath
and pseudorange noises for specific airborne GNSS receivers [4].

However, similar schemes that are used for ground vehicle-based positioning to
maintain the required levels of accuracy, integrity, continuity and availability are lacking.
Carrier phase-based RAIM (CRAIM) algorithms for RTK and PPP positioning using a
Kalman filter have been studied for both float ambiguity or fixed ambiguity positioning
modes [12–14]. El-Diasty [15] investigated the integrity of an autonomous real-time precise
point positioning (PPP)-based GPS positioning system using the international GNSS service
(IGS) real-time service (RTS) for maritime applications and applying the RAIM concept.
More recently, there has been increasing interest in investigating RTK or PPP integrity on the
basis of the ARAIM concept [16–18]. Most of the RTK and PPP integrity investigations have
focused more on the ambiguity resolution process under nominal error conditions [19,20],
and less on the integrity of the position solution under faulty conditions. In general,
for vehicle-based GNSS positioning applications, IM comprehensively considering the
following issues is still an open question:

(1) Precise satellite orbit and clock error products have been widely used;
(2) Advanced atmospheric delay correction models are available;
(3) Receiver noises and environment-dominant multipath effects are quite diverse;
(4) Multiple undetected pseudorange outliers, cycle slips, and uncalibrated system biases

should be monitored in the fault modes;
(5) FDE and PL calculation should be conducted during a Kalman filtering (KF) procedure

instead of a snapshot LS procedure.

At the first stage, it is anticipated that the user-level integrity would be enhanced if
a tighter and conservative stochastic model is applied. In this paper, the authors compre-
hensively refine the stochastic model and evaluate the potential enhancement of user-level
integrity using the ARAIM concept, mainly for vehicle-based GNSS positioning applica-
tions. The rest of the paper is organized as follows. Firstly, an overview of the ARAIM
concept as it was developed for aviation applications are given. Then, the prospective
challenges of IM for vehicle-based GNSS positioning are discussed, with comparisons
to aviation applications. Next, the three refinements of the ARAIM stochastic model for
vehicle-based GNSS positioning are presented. Experiments and analyses to evaluate the
ARAIM performance improvements follow. The concluding remarks of this study are
presented last.

2. Overview of ARAIM Concept for Aviation

The ARAIM concept and its baseline algorithm are outlined in the GPS Evolutionary
Architecture Study (GEAS) in the GEAS phase II report [21], which has been further
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developed within the working group C ARAIM technical subgroup (ARAIM TSG) [22].
Under this framework, a ground system is required to monitor the nominal performance
and fault rates of the GNSS constellations in question. These integrity data are contained in
the ISM that is generated on the ground and broadcast to the airborne users [22]. The target
operational level for ARAIM is LPV-200, which is incompletely specified by ICAO standards
additionally recommended practices (SARPs) [7]. ARAIM adds four main elements to the
basic RAIM concept: multiple constellations, dual frequency, a deeper threat analysis and
the possibility of updating the ISM gained by sufficient data and experience. For all of
these reasons, ARAIM could significantly reduce a large portion of the SBAS operational
budget, and is considered the primary IM method for future aviation [21]. It could also
be a good basis and reference for investigation of IM for ground vehicle-based GNSS
positioning applications.

2.1. ARAIM Algorithm Flowchart

A brief overview of the ARAIM baseline user algorithm proposed in the [22] is given in
this subsection. The ARAIM algorithm flowchart is shown in Figure 1. Firstly, the nominal
functional model and stochastic model are constructed based on the SPP mode. Then, all-in-
view positions are solved using the nominal models, and a group of fault-tolerant positions
is resolved in the monitored fault modes. A specific monitored fault mode assumes that one
or more pseudoranges are faulty and should be excluded to obtain a fault-tolerant solution.
Next, an FDE procedure, consisting of global hypothesis testing and multiple parallel local
hypothesis testing, is used. The former is a Chi-Square test (CST) that depends on the
observation residuals of the all-in-view solution, and the latter is a solution separation
threshold test (SST) that depends on the differences between the all-in-view solution and a
specific fault-tolerant solution. There are three criteria that follow the FDE procedure: (1) a
specific fault mode is identified, and should be excluded from the all-in-view observation
collection; (2) the actual failure is outside the collection of monitored fault modes; and
(3) the current all-in-view observations are fault free. Only at the third decision point are the
integrity-related parameters (PLs) and other accuracy and continuity-related parameters
calculated and compared with the corresponding criteria defined by ICAO SARPs [7], upon
which the availability of the ARAIM algorithm is determined.
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According to Figure 1, the stochastic model that characterizes the nominal error in
each observation would be an important factor influencing the performance of ARAIM
algorithms. A general interpretation of the mathematical models used for positioning and
IM under the ARAIM framework is given in next subsection, and followed by a more
detailed discussion on the stochastic model.

2.2. Interpretation of the ARAIM Mathematical Model

In general, the linearized mathematical model for GNSS positioning contains a func-
tional and a stochastic model

y = Ax + e and e ∼ N(0, Dee) (1)

where y is the m × 1 vector of observed minus computed (OMC) values of pseudorange
observations, x is the t × 1 vector of unknown parameters and A is the m × t design matrix
determined by the satellite-to-receiver geometry. The error vector e contains all unmodeled
errors and is modeled as zero-mean normal distributed random variables with a variance
of Dee.

It is noted that the covariance matrix Dee for IM must be conservative to ensure
integrity. However, an overly conservative variance matrix would exaggerate PLs in the
position domain and therefore reduce the system availability. Under the SPP mode, the
random error vector e generally consists of three types of errors: the satellite-related errors,
the residual atmospheric errors after correction using products or models and the receiver
noises and multipath errors. For this reason, the covariance matrix, Dee, is modeled as a
sum of the three terms.

If dual-frequency observations are available, the ARAIM algorithm will use the
ionosphere-free (IF) combination of pseudorange observations for positioning. For each
pseudorange OMC value, yi, the residual error is represented by a nominal Gaussian
distributed random error, ei, and a maximum bias, bnom,i. The former is characterized by
the stochastic models for positioning and IM and the latter is needed only for integrity, to
compute a conservative and safe PL value, and not for positioning. For each pseudorange
observation, the nominal error, ei, is characterized by two variances: a conservative one
used for integrity purposes, and a less conservative one used for accuracy and continuity
purposes [4].

For advanced positioning modes such as RTK, PPP, or PPP-RTK, the tropospheric
and/or ionospheric-related errors could be considered unknown parameters, and corre-
sponding constraint equations are added to the set of observation equations [23,24]. In this
case, apriority variances of the constraints would affect the performance of positioning
and IM [25]. The stochastic models must adequately describe the uncertainties of the
observations and constraints by being neither overly conservative nor optimistic.

2.3. ARAIM Stochastic Models to Characterize the Nominal Error of Pseudoranges

According to the ARAIM framework, the diagonal (co)variance matrices Dee,int (used
for integrity) and Dee,acc (used for accuracy and continuity) for IF combination pseudorange
observations are given by [4]{

Dee,int(i, i) = σ2
URA,i + σ2

tropo,i + σ2
user,i

Dee,acc(i, i) = σ2
URE,i + σ2

tropo,i + σ2
user,i

(2)

where ‘i’ is the satellite indicator; σURA,i and σURE,i are the satellite-related errors of satellite
i, used for integrity as well as for accuracy and continuity, respectively; σtrop,i represents the
residual tropospheric delay errors after model correction; and σuser,i represents the receiver
noises and multipath errors.

The first terms in Equation (2) should characterize the signal in space (SIS) user range
error (URE), which is dominated by satellite orbits and clock errors [26]. Traditionally, SIS
URE is assumed to follow a zero-mean normal distribution with a standard deviation (STD)
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represented by the broadcast user range accuracy (URA), which is denoted by σURA,i in
Equation (2). The other one, σURE,i, used for accuracy and continuity purposes, is not safety
critical; therefore, it will require a less conservative value and is usually set to be two thirds
of the σURA,i [27].

The second term, σtrop,i, represents the residual tropospheric delay errors after model
correction, and can be modeled as [4]

σtrop,i = σZPD ×
1.001√

0.002001 + sin2(Ei)
(3)

where σZPD is the residual Zenith Path Delay (ZPD) after model correction, and is set to be
0.12 [28]; and Ei is the elevation angle of the satellite i, which projects the zenith σZPD to
the line-of-sight direction.

The third term, σuser,i, is the receiver-dependent error term. For GPS, it can be modeled
as [4]

σ2
user,i =

f 4
L1 + f 4

L5
f 2
L1 − f 2

L5

(
σ2

MP,i + σ2
Noise,i

)
(4)

where fL1 and fL5 denote the frequencies of the GPS signals used to form the IF obser-
vation; and σMP,i and σNoise,i represent the multipath errors and receiver random noises,
respectively. For airborne GPS receivers, these are modeled as{

σMP,i = 0.13 + 0.53× e−
Ei
10

σNoise,i = 0.15 + 0.43× e−
Ei

6.9◦
(5)

In Equations (1) and (2), the all-in-view positions and fault-tolerant positions are obtained
via LS estimation, using which the PDE procedure and PL calculation are then performed.

3. Integrity Monitoring Challenges for Ground-Based GNSS Positioning

Although IM for aviation has been comprehensively investigated and three standard
enhancement technologies have been announced by the ICAO, IM faces big challenges
in ground-based GNSS positioning applications such as ITS. The different issues that IM
should consider are summarized in Table 1. There are three issues to consider.

Firstly, different observations and positioning techniques are used. In aviation, the
baseline IM algorithms are defined based on the assumption that a snapshot weighted
LS position algorithm is implemented. Usually, differential or corrected pseudorange
observations from GPS or GPS/Galileo dual systems are used. On the other hand, for
ground-based positioning applications, multi-frequency and multi-constellation carrier
phase observations are increasingly implemented using the RTK, PPP or PPP-RTK modes,
seeking higher accuracy, integrity, continuity and availability. In such circumstances,
positioning and IM should be based on a KF algorithm, which makes use of observations
from all previous epochs. In theory, rigorous IM based on a KF algorithm, including
the FDE procedure and PL calculation, should consider potential failure threats to both
pseudorange and carrier phase observations.

Secondly, stochastic models for positioning and IM for ground-based positioning
need to be redefined. In aviation, stochastic models only need to characterize the errors of
pseudorange observations. As mentioned above, the total error in a raw or corrected pseu-
dorange observation is the sum of satellite-related, atmospheric-related and receiver-related
errors. The variances of these error terms have been explicitly defined by specifications
under GBAS, SBAS or RAIM/ARAIM frameworks, where broadcast ephemerides, as well
as the specific way to correct tropospheric and ionospheric delays, should be implemented.
The observations are generated by an airborne receiver that satisfies the requirements of
specified accuracy conditions, and should be operated under the assumed interference
environment. Therefore, the receiver-related error term is characterized by a fixed and
well-defined model. In contrast, for ground-based positioning, a variety of augmenta-
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tion approaches can be implemented, i.e., using IGS precise satellite orbit and clock error
products, eliminating or correcting the tropospheric and ionospheric delays by various
advanced models and estimating those residual delays together with the navigation pa-
rameters. In addition, both the receiver manufacturers and the operational environments
are diverse, so a single fixed model cannot characterize the receiver-related error term.

Table 1. Issues that integrity monitoring should consider in both aviation and ground-based position-
ing applications.

Aviation Ground-Based Positioning

System GPS or GPS/Galileo BDS, GPS, Galileo, GLONASS

Frequency Single- or dual- Multiple

Observation Pseudorange Pseudorange, carrier phase

Positioning technology SPP (IF or CPSP) SPP, RTK, PPP, PPP-RTK

Estimation algorithm LS KF

Satellite effects Broadcast satellite
ephemerides and clock errors

IGS precise orbits and clock
products DCB, UPD products

Atmosphere effects

Standard models, i.e.,
MOPS/EGNOS for

troposphere
Klobuchar/SBAS correction

for ionosphere

Advanced models, i.e.,
VMF/local accurate model for

troposphere
IGS GIM/local accurate model

for ionosphere

Receiver effects Standard constant models Vary with hardware,
applications, environments

Fault events
System based, i.e.,

satellite or constellation,
single or dual faults

Observation based, i.e.,
outliers in pseudoranges,

cycle slips in carrier phase

Thirdly, fault events and modes that need to be monitored are more complicated for
ground-based positioning. Within the RAIM/ARAIM framework, the error in a pseudor-
ange OMC value is divided into two parts: the unmonitored maximum nominal bias in
the null hypothesis model for the fault-free mode, and the monitored unknown large bias
in each alternative hypothesis model for the fault mode. Only satellite and constellation
failures that cause the unknown large bias in position solutions are monitored with an
assumed small occurrence rate (i.e., <10−5 for satellite, and <10−4 for constellation). For
ground-based positioning, since both pseudorange and carrier phase observations would
be used by various advanced positioning algorithms, modeling and monitoring the satellite-
related and atmosphere-related errors becomes increasingly complicated. In addition, the
effects caused by different types of receivers and the diversity of near-ground operational
environments complicate matters further [29]. In terms of effects on observations, these
uncertainties could result in data interruption, or larger pseudorange outliers and carrier
phase cycle slips with higher occurrence rates, which in turn reduce the system availability.

4. Three Refinements for ARAIM Stochastic Models

Current stochastic models used in ARAIM baseline algorithms are only specified for
aviation applications and are overly conservative in order to guarantee security. In this
section, the stochastic models for ground vehicle-based GNSS positioning are refined thusly:

(1) Gaussian bounds of IGS RTS products are used to consider the satellite effects delicately;
(2) A variable standard deviation for characterizing the residual tropospheric delay is

adopted to consider the atmosphere effects delicately;
(3) An elevation-dependent model describing the receiver-related errors is adaptively

refined to consider the receiver effects delicately.
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In this study, the authors discuss these issues for the SPP mode. However, these
investigations can also contribute to advanced-mode GNSS positioning, which will be
undertaken in future work.

4.1. Gaussian Bounds to Characterize the Satellited-Related Error Term

For real-time precise positioning and navigation, the satellite precise orbit and clock
error products provided by the IGS RTS can be applied. In this subsection, the variance of
the satellite-related error term, denoted by σURA,i in Equation (2), is estimated for this type
of product. The baseline ARAIM algorithm assumes that σURE,i =

2
3 σURA,i, therefore only

the value of σURA,i that characterizes the SIS UREs of the IGS RTS products is investigated.

4.1.1. Methodology

It would be inappropriate that σURA,i be simply set to be the STD of the error samples,
as the true distribution of the errors could be arbitrary and is usually non-Gaussian. For IM,
the true distribution is usually replaced by a simpler overbounding distribution; σURA,i is
set to be the STD of this overbounding distribution.

By subtracting the RTS orbit and clocks from their post-processing counterparts,
error samples for orbit and clock are obtained; these are denoted as eorb, RTS and eclk,RTS.
Subsequently, a much more conservative estimation of σURA,i can be simply determined by σ2

URA,i =
(

σi
orb,RTS

)2
+
(

σi
clk,RTS

)2

mURE,i =
∣∣∣mi

orb,RTS

∣∣∣+ ∣∣∣mi
clk,RTS

∣∣∣ (6)

where mi
orb,RTS and σi

orb,RTS denote, respectively, the mean and STD values of the Gaussian
overbounding distribution for ei

orb,RTS; and mi
clk,RTS and σi

clk,RTS denote, respectively, the
mean and STD values of the Gaussian overbounding distribution for ẽi

clk,RTS. The mean
value, mURE,i, can be attributed to the bias term, bnom,i, as discussed above.

It is noted that Equation (6) does not follow the stringent definition of URA and
URE in order to ensure the estimation is more conservative. It has been verified that the
integrity risk computed using the convolution of the overbounding distributions described
above is an upper bound of the integrity risk computed using the convolution of the true
distributions. This means the PLs computed by using the overbounding mean and STD
values are still conservative and can satisfy the integrity requirement [30].

4.1.2. Dataset and Results

There are several IGS RTS products that can be received in real time. In this study, the
IGC01 products are used. The IGC01 products are firstly generated by individual real-time
analysis centers (ACs) and combined by the European Space Agency’s Space Operations
Center (ESA/ESOC). In particular, IGC01 is a single-epoch combined product with an
update rate of 5 s for both orbit and clock [31]. The IGS final products, with update rates of
15 min/30 s for orbits/clocks, are used as the reference for the computation of the nominal
accuracy. To avoid the effect of interpolation, a comparison interval of 15 min is used.
The dataset used for evaluating σURA,i corresponds to the period 1 September 2019 to 20
September 2020. Only GPS satellites were considered.

As an example, the eorb, RTS and ẽi
clk,RTS values for satellite G02, obtained by the

preprocessing procedure described above, are shown in Figure 2. These residuals are
then used as inputs for the aforementioned two-step overbounding estimation technique.
Figure 3 shows the corresponding probability distribution function (PDF) and CDF of the
eorb, RTS samples (blue), the symmetric unimodal bounding distribution after the first step
(red), and the final Gaussian overbounding distribution after the second step (green).
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The mean and STD values of eorb, RTS and ẽi
clk,RTS for each GPS satellite, directly

obtained from the green lines in Figure 3, are again plotted in Figure 4, with blue bars and
red line segments indicating the mean and STD values, respectively. Combining the effects
of orbits and clocks using Equation (6), the mean and STD values for SIS URE of each GPS
satellite further contribute to the integrity parameters of bnom,i and Dee(i, i), and are then
used to compute the conservative and safe PLs in the position domain.
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From Figure 4, one can see that the mean and STD values for orbits and clock errors
of different satellites can vary significantly. If a common value for all satellites is to be
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adopted, the most conservative one should be chosen. In this case, the computed PLs in the
position domain will also be overly conservative and, hence, reduce the system availability.

4.2. A Variable Standard Deviation to Characterize the Residual Tropospheric Delay

The current tropospheric delay correction model used in ARAIM is the one recom-
mended by the Radio Technical Committee for Aeronautics (RTCA) and is described in
RTCA’s Minimum Operational Performance Standards (RTCA MOPS). It states that, in
terms of STD, the maximum ZPD residuals after model correction is 0.12 m [28]. How-
ever, this constant value does not consider the accuracy variations of different seasons
and user latitudes. When applying another tropospheric correction model, such as the
GPT2/GPT2w [32], a much smaller STD would be expected. In this subsection, the general
extreme value (GEV) analysis method is used to evaluate the variable σZPD, considering
the geographical and seasonal variations of the ZPD residuals after model correction [33].

4.2.1. Methodology

For integrity, σZPD should characterize the maximum ZPD residuals after model
correction. Variable σZPD for a tropospheric delay correction model can be established via
the following six steps [33].

Step 1: The residual series δ is obtained by subtracting the model estimated ZPDs
from the reference values. Since the hydrostatic and wet components of ZPD usually have
different characteristics, the residual series can be divided into these two components,
denoted by δh and δw.

Step 2: The seasonal variations of δ are extracted by calculating the daily STDs of the
residuals at all grid points for each latitude band of 10◦. Then, a periodic function is used
to fit the daily STD series, σ(DOY), so as to represent this seasonal variation.

σ(DOY) = A0 + A1cos
(

DOY− DOY0

365.25
2π

)
+ A2sin

(
DOY− DOY0

365.25
2π

)
(7)

Step 3: The annual maximum and minimum of the normalized residual series
δ̃ = δ/σ(DOY) are used to fit the GEV distribution, respectively, and the obtained fit-
ted parameters are used to calculate the extreme quantiles. The largest absolute value of
the two quantiles is chosen as the extreme maximum value ∆n,max, with n being the band
indicator.

Step 4: To completely overbound the original residuals δ, an offset parameter ∆0 is
calculated using another GEV distribution which fits the maximum and minimum of
the daily mean value of the residual series δ. Then, the upper bound of the absolute
tropospheric delay residuals is given by

∆max(DOY, band) = ∆0 + σ(DOY)× ∆n,max (8)

which is a periodic function with parameters of ∆0; ∆n,max from a GEV distribution; and
A0, A1, A2, A3 from a periodic fitting function for σ(DOY).

Step 5: A variable standard deviation, σmax(DOY, band) of the original residuals δ is
obtained by converting the value of ∆max(DOY, band) to its STD value

σmax(DOY, band) =
|∆max(DOY, band)|

K
(9)

where K is the right tail quantile of the PDF of a standard normal distribution at the extreme
probability level, corresponding to the preset PHMI.

Step 6: The total σZPD used for positioning and IM combines the hydrostatic and
wet components

σ2
max,ZPD(DOY, band) = σ2

max,h(DOY, band) + σ2
max,w(DOY, band) (10)
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where σmax,h(DOY, band) and σmax,w(DOY, band) are the STDs calculated by Equation (9),
which overbound the hydrostatic (δh) and wet (δw) residuals in each latitude band, respec-
tively. For IM, the variable value of σmax,ZPD(DOY, band) will replace the constant value of
σZPD = 0.12 m in Equation (9).

4.2.2. Dataset and Results

Two commonly used tropospheric delay correction models, UNB3 and GPT2w, were
evaluated. For a worldwide integrity analysis, the grid-wise VMF3 products with a resolu-
tion of 1 × 1 degree between 2000 to 2016 were selected as the reference.

As an example, considering the zenith hydrostatic delays (ZHD) residuals of GPT2w
in the latitude band 41◦ N–50◦ N, the original residual series (blue dots) and its upper
bounds (red periodic curves) are shown in Figure 5. It can be seen that the ZHD residual
series has an obvious seasonal variation. This seasonal variation is preserved by fitting the
daily STD series of the residuals with a periodic function. Consequently, the upper bounds
can successfully overbound the residuals.
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To further investigate the effectiveness of the upper bounds, the Stanford diagrams
of the two models are shown in Figure 6. It can be seen that all points fall above the
corresponding diagonal. By taking the absolute residuals as the horizontal axis and the
corresponding upper bound values as the vertical axis, these results indicate that the
residuals can always be bounded, which verifies the effectiveness of the upper bound
values. Furthermore, one can see that the upper bounds of GPT2w are significantly smaller
than those of the UNB3 model. This is consistent with our knowledge of the accuracies of
the two models.
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The variable STDs for the two models, in each latitude band, are plotted in Figure 7.
This confirms the fact that a constant value of 0.12 m is conservative enough for the UNB3
model. When GPT2w is used, the constant value can be further reduced to 0.08 m. In
general, the values show significant discrepancies at different latitude bands and different
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seasons. The STDs vary between 0.05 m and 0.12 m for the UNB3 model, and between
0.03 m and 0.08 m for the GPT2w model. Therefore, a constant value would lead to
an overly conservative estimation of the PLs in the position domain. The UNB3 model
performs much better in the northern hemisphere, where the STDs are typically smaller
than 0.1 m, and usually increase during summer. In low latitude regions of the southern
hemisphere, the STDs would reduce to 0.06 m during summer. In contrast, the GPT2w
model exhibits better performance in the southern hemisphere, and opposite seasonal
variations are observed in high and low latitude regions. For the GPT2w, the residual STDs
would reach a minimum during winter in high latitude regions, while in equatorial regions,
the STDs during winter are usually much larger than those during other seasons.
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4.3. An Elevation-Dependent Model with Adaptive Coefficients to Characterize the
Receiver-Related Errors

According to the ARAIM framework, the receiver-related error term is characterized
by an elevation-dependent model with constant coefficients, as given in Equation (5), which
can only represent the errors of an airborne GPS receiver when it operates under a specific
interference environment. For ground-based positioning, such a fixed model would be
inadequate, if different types of receivers are used under diverse operational environ-
ments. In this subsection, the elevation-dependent model to describe the receiver-related
errors is adaptively refined using least-squares variance component estimation (LSVCE),
with the variances of satellite-related and atmospheric-related errors being considered as
known parts.

4.3.1. Methodology

There are many elevation-dependent models that can be used to characterize receiver-
related errors with adaptive coefficients. The authors adopt the conventional one [34].

σuser,i =
a

b + sin(Ei)
(11)

where a and b are the model coefficients that need to be estimated. Other variables have
been defined in previous section.

LSVCE is conventionally used to construct a more accurate and adaptive (co)variance
matrix based on the LS criterion. According to LSVCE, the functional and stochastic models
are processed in a unified manner, and the variance matrix can be customized by users to
adapt to different applications.
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The (co)variance matrix of the linear Gauss–Markov model (Equation (1)) can be
represented as [35]

Dee = D0 +
p

∑
k=1

σkDk (12)

where D0 is the known part of the (co)variance matrix, which combines the satellite-related
and atmospheric-related errors as given above; σk is the (co)variance component; and Dk,
k = 1, · · · , p, is the cofactor matrix that determines the position of the (co)variance σk in
the matrix.

Combining Equations (1) and (12), the mathematical model of LSVCE contains two
groups of unknowns: the original parameter vector x and the (co)variance component σk,
k = 1, · · · , p. The LS estimate of x and e is[

x̂
ê

]
=

[
Dx̂x̂ATD−1

ee
RT

]
y (13)

Using the law of error propagation, the expectation and (co)variance of the estimate are

E
{[

x̂
ê

]}
=

[
x
0

]
, D
{[

x̂
ê

]}
=

[
Dx̂x̂ 0

0 RTDeeR

]
(14)

where E{·} and D{·} are the mathematical expectation operator and dispersion oper-
ator, respectively; Dx̂x̂ =

(
ATD−1

ee A
)−1

is the estimated (co)variance matrix of x̂; and
RT = I−ADx̂x̂ATD−1

ee is the idempotent matrix that projects the observation error e onto
its estimate ê.

Substituting Equation (12) into Equation (14)

E
{

êêT −RTD0R
}
= ∑p

k=1 σkRTDkR (15)

By using the vh-operator, the matrix observation equation Equation (15) is transformed
to the familiar vector–matrix form of the linear observation equation

E(yvh) = Avhσ (16)

where yvh = vh
(
êêT −RTD0R

)
; Avh =

[
vh
(
RTD1R

)
, . . . , vh

(
RTDpR

)]
; and σ =

[
σ1, . . . , σp

]T. The
weighted LSVCE estimate of σ is

σ̂ =
(

AT
vhWvhAvh

)−1
AT

vhWvhyvh (17)

with the weight matrix Wvh being defined as

Wvh = DTD−1
ee ⊗D−1

ee D (18)

where ⊗ denotes the Kronecker product; and D is the duplication matrix that satisfies the condition
Dvh(·) = vec(·). For a definition and description of the properties of the vh-operator, vec-operator
and duplication matrix D, the reader can refer to Appendix A [35].

Assuming n observations, their corresponding (co)variance components σk and k = 1, · · · , n
are estimated via Equations (15)–(18). These estimated (co)variances are then substituted into
Equation (11) to fit the model coefficients. To ensure the redundancy of LSVCE, the true coordinates
from the SINEX file provided by IGS were used, and only the receiver clock error was estimated as
the unknown parameter.

Finally, by checking whether a set of samples matches the assumed PDF, the reliability of the
stochastic model can be evaluated [36]. The test statistic T constructed by the estimated unknown
parameter x̂ and its (co)variance matrix Dx̂x̂ is

T = (x̂− x̃)TD−1
x̂x̂ (x̂− x̃) ∼ χ2(t) (19)
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where x̃ is the true value of the parameter vector. If the stochastic model is accurate, the test statistic
T should follow a centralized χ2 distribution with a freedom of t. For GNSS positioning applications,
the authors have only used the 3×1 positioning parameter vector for testing.

4.3.2. Dataset and Results
The GPS dual-frequency IF combination pseudorange observations, from four IGS GNSS

continuously operating receiver stations at different latitudes, were used to fit the coefficients and
to evaluate the reliability of the stochastic model. The time period of the data was between 5th
September 2019 and 4th October 2019.

For each pseudorange observation, the variances of the first two terms at the right side of
Equation (2) are considered the known part D0, using IGC01 products and GPT2w tropospheric delay
corrections. The variances necessary to characterize the receiver-related error term are estimated
with LSVCE and are used to fit the model coefficients of Equation (14). The fitting results are listed
in Table 2, against by the IGS station’s name and latitude. The variation in values of the two model
coefficients for different stations can be seen. The value of coefficient a varies between 0.4 and 0.8,
and the value of coefficient b varies between 0.02 and 0.15. It should be noted that the two coefficients
have the smallest values at the station NYA2, which is located in the Arctic region.

Table 2. Coefficients of elevation-dependent model at four stations.

Station Latitude (Degree) Coefficients
a b

NYA2 78.930 0.484 0.020
DAEJ 36.399 0.635 0.136
REUN −21.208 0.580 0.144
BELE −1.409 0.786 0.141

To evaluate the reliability of the adaptive elevation-dependent model, the test statistic T, as
given in Equation (19), was calculated. The elevation-dependent model with constant coefficients
applied in GAMP [37] was used for a comparison

σuser,i = 3σ0

√
1 +

1
sin2(Ei)

(20)

where σ0 is adopted as 0.3 m for pseudorange observations, and the multiplication factor 3 is
consistent with the IF combination.

Figure 8 shows the probability histograms for the statistic T (blue bars), together with the
PDF of the χ2(3) distribution (red curves) before and after the stochastic model refinement for
the receiver-related error term. Before refinement, Equation (20) with constant coefficients is used
to characterize the third term on the right side of Equation (2). After refinement, Equation (11),
with adaptive coefficients listed in Table 2, is used. As the common parts, the satellite-related and
atmospheric-related terms are defined by Equation (7) and Equation (10) using the IGC01 products
and GPT2w model, respectively.
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The upper panels are plots of the results for the four IGS stations before refinement, and the
lower panels are plots of the corresponding values after refinement. The upper panels show that
the statistics are mainly distributed on the left side of the PDF of χ2(3) distribution, which indicates
that the (co)variance matrix is overly conservative before refinement. The lower panels show that
the distributions of the statistic T in general have better consistency with the centralized χ2(3)
distribution. This confirms that the stochastic models at these four IGS stations have become more
reasonable after refinement.

5. Experiments and Discussion
In this section, the performance enhancements for aviation and ground-based positioning

applications are further investigated. The open-source Matlab Availability Analysis Simulation Tools
(MAAST) released by the GPS Lab, Stanford University, are used for the ARAIM evaluation. Only the
GPS constellation is considered. To ensure consistency with the values estimated in last section, the
broadcast ephemeris and the IGC01 RTS products, over the same time span between 1 September 2019
and 20 September 2020, were used for the integrity analyses. The required integrity is 10−7, and prior
probabilities of a satellite or constellation fault were set to be 10−5 and 10−4, respectively. In both
applications, improvements on ARAIM availability and PLs were analyzed using different options
for stochastic model refinements. As the refinement for the receiver-related error term should rely on
real data, the corresponding performance improvements are evaluated using the actual observations
collected by the aforementioned IGS stations.

5.1. Worldwide ARAIM Performance Prediction
Seven schemes are tested to demonstrate the performance improvements brought about by refining

the stochastic model of the three error terms for the aviation and ground-based positioning applications.
As the fixed model given by Equations (4) and (5) is only specified for avionics receivers,

the receiver-related error term should be redefined. Detailed designs for parameters for the seven
schemes are given in Table 3, where Schemes A–C are designed for aviation and Schemes D–G are
designed for ground-based positioning. The cut-off elevation angle is set to be 5 degrees, and other
constant parameters required for the ARAIM algorithm are the same as those given in [4].

Table 3. Detailed designs for parameters under Scheme A to G (unit: m).

Aviation Ground-Based Positioning

A B C D E F G

σURA,i 1 Equation (6)—σURA,i 1 Equation (6)—σURA,i

bnom,i 0.75 Equation (6)—mURE,i 0.75 Equation (6)—mURE,i

σZPD 0.12 Equation (10)—UNB3 0.12 Equation (10)—UNB3 Equation (10)—GPT2w

σuser,i Equations (4) and (5) Equation (20)

For aviation, the differences among Schemes A–C are:
Scheme A—Original design of the baseline algorithm: σURA,i for all satellites is set to be 1 m,

σtrop,i is defined by Equation (3), with σZPD being a constant value of 0.12 m, and σuser,i is specified
by Equations (4) and (5).

Scheme B—Refinement using IGS RTS products (IGC01): σURA,i for each satellite is defined by
Equation (6), and the other error terms are the same as those in Scheme A.

Scheme C—Refinement using IGS RTS products (IGC01) and spatiotemporal-varying STDs for
residual tropospheric delays: σURA,i for each satellite is determined by Equation (6), σZPD is specified
by Equation (10) and σuser,i is the same as for Scheme A and B.

Schemes D–F are the counterparts of A–C for the ground-based positioning applications, where
the stochastic model of the receiver-related error term is now defined by Equation (20). Scheme G is
intended for the evaluation of the ARAIM performance improvement brought about by using a more
accurate tropospheric correction model, via a comparison with the results of Scheme F.

5.1.1. Results and Discussion for Aviation Application
The global coverage of ARAIM availability satisfying the LPV-200 requirements for aviation

under Schemes A, B and C are shown in Figure 9, with each point representing a 1 × 1-degree
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grid value at 50 m altitudes. Each point is calculated every 10 min to obtain the availability over
the entire time span of 386 days. It shows that under the original design of the baseline algorithm,
99.5% availability (defined as the percentage of time that the availability criteria are met at the
user grid point), coverage is just 22.4%, while the corresponding percentages can reach 91.05% and
94.62% availability under Scheme B and C, respectively. This indicates that a huge improvement of
ARAIM availability can be achieved when the IGS precise orbit and clock products are used, and a
further 3.5% improvement is possible by using a time-varying STD value for the atmospheric-related
error term. Under Scheme A, ARAIM availabilities higher than 99.5% are mainly possible in the
equatorial and mid-latitude regions, and the percentages reduce to 95% in the regions at 20◦ N–40◦ N
and 20◦ S–40◦ S. The worst performance is observed in the polar regions, where the availability
percentages reduce to 50%. Under Scheme B and C, 99.5% availability is possible in most regions.
Even in the polar regions, the availability percentages are significantly improved and can be higher
than 95%.
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Figure 9. Global coverage of ARAIM availabilities according to the LPV-200 criteria
under Schemes A, B and C (left panel: Scheme A, middle panel: Scheme B right panel: Scheme C).

The 99.5% VPL maps under the three schemes are further plotted in Figure 10. These maps
show a significant improvement from Scheme A to B, when IGS RTS products are used instead of the
broadcast ephemeris. Under Scheme A, 99.5% of VPLs in low and mid-latitude regions are mainly
between 20 m and 35 m; those values in the polar regions are much larger, being between 40 m
and 50 m. Maximum values, larger than 50 m, although rare, are observed in Antarctica. Under
Scheme B, more than 50% of these values in low and mid-latitude regions are reduced to less than
20 m, and the majority of those values in the polar regions are between 20 m and 35 m. By further
applying spatiotemporal-varying STDs for residual tropospheric delays under Scheme C, VPLs are
generally reduced across the globe. The coverage where 99.5% VPLs are lower than 15 m is expanded
in mid-latitude regions. Improvements are also observed in the equatorial and Arctic regions, where
the coverage of 99.5% VPLs less than 20 m is significantly increased. On the other hand, there
are fewer improvements in the Antarctic, which is coincident with those values in Figure 7, as the
spatiotemporal-varying value of σZPD in this region has less reduction compared with the constant
value of 0.12 m, which is used under Scheme B.
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Similarly, the 99.5% HPL maps under the three schemes are shown in Figure 11. One can see
that 99.5% HPLs are almost less than 40 m across the globe under Scheme A, and smaller values,
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less than 20 m, are observed in equatorial and polar regions. Under Scheme B, those values are
almost less than 20 m, which indicates a significant improvement on HPLs in mid-latitude regions.
In general, little difference is observed between Scheme B and C in the current color bar legend. It
is anticipated that more detailed differences would appear if the color bar interval was narrower.
However, this uniform color bar setting is coincident with the horizontal alert limit (HAL) criterion
from the ICAO SARPs.
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In general, the results and analyses in this section show that worldwide ARAIM availability
for aviation can be significantly improved by using the IGS RTS products and a tighter and variable
value for σZPD. Compared with HPLs, the improvement to VPLs is more significant, as the AL for
VPL is generally more stringent for aviation.

5.1.2. Results and Discussion for Ground-Based Positioning Application
One expects similar improvements to be observed for ground-based positioning. Compared

with vertical positioning (for aviation applications), horizontal positioning is more crucial for ground-
based positioning users. The 99.5% HPL maps for Schemes D–G are given in Figure 12, where a
smaller color bar interval and range are chosen to show more details. Among these four schemes,
smaller values are always observed in the equatorial and polar regions, and the largest values always
appear in the regions around 60◦ N and 60◦ S. This indicates that horizontal ARAIM availability
in the equatorial and polar regions is higher than in mid-latitude regions. Under Scheme D, those
values are generally between 15 m and 30 m in the equatorial and polar regions, and between 30 m
and 40 m in mid-latitude regions. Under Scheme E, those values are generally reduced by 5 m to
10 m globally. This improvement is attributed to using IGS RTS products instead of the broadcast
ephemeris. Discrepancies among Schemes E–G are marginal, which indicates that a less conservative
σZPD to characterize the residual tropospheric delay has an insignificant role in enhancing horizontal
ARAIM availability.
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To further highlight the discrepancies among Scheme E, F and G, the HPL mean values at each
user grid point are plotted along with the point number in Figure 13, where the user grid points are
numbered from [90◦ S, 180◦ W] to [90◦ N, 180◦ E], sorted by longitude at each latitude. Figure 13
shows that the discrepancies among the three schemes are mostly at the centimeter level, and the
mean HPLs under Scheme G are always the smallest at each user grid point. This is coincident with
those values of σZPD shown in Figure 7, where σZPD differences between UNB3 and GPT2w are
at the centimeter level. In general, the receiver-related error is the dominant term of the stochastic
model for ground-based positioning; therefore, centimeter differences in σZPD under Scheme E, F
and G only lead to small variations in the HPLs. Discrepancies among the three schemes become
more obvious in mid-latitude regions, where the HPLs are also larger.
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The above analyses assume that the user is in an open-sky environment, which is a condition
that usually cannot be satisfied in ground vehicle-based positioning applications. To demonstrate the
performance degradation caused by receiving ambient occlusion, Schemes H, I and J are designed
with the cut-off elevation angle being 10, 15 and 20 degrees, while the other parameters are kept the
same as those of Scheme G. The 99.5% HPL maps of the three schemes are shown in Figure 14, for
comparison with the results of Scheme G in Figure 13. One can see that HPLs are globally larger
than 120 m when the cut-off elevation angle is increased to 20◦. Even for a cut-off elevation angle
of 15◦, HPLs are still larger than 120 m across nearly two-thirds of the globe, with smaller values
mainly located in the equatorial regions. A cut-off elevation angle of 10◦ can ensure a value smaller
than 50 m in more than 90% of the world. The results in Figure 14 indicate that satellite visibility is a
crucial factor in ARAIM availability. For ground-based positioning, especially in city canyon areas,
accurate prediction of ARAIM performance should rely on the real data or use an accurate 3D city
model for the prediction of signal occultations.
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5.2. Local Site-Wise Assessment Based on Real Data
The receiver-related error term of the stochastic model should characterize the receiver noises

and multipath errors, and therefore the model should be able to accommodate different receivers
and operational environments. Via LSVCE, receiver-related errors can be optimally modeled by
an elevation-dependent function with adaptive coefficients. To evaluate the ARAIM performance
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improvements via this refinement, the same dataset as that in last section is used. To analyze the
impacts of fault detection and exclusion, we simulated 20 m gross errors on two pseudoranges at each
station during the 1000th and 2000th epoch. The Stanford diagrams of horizontal positioning errors
(HPEs) and HPLs before and after the refinement at the four IGS stations are shown in Figure 15,
with HAL being 40 m. The HPEs are obtained by subtracting the estimated horizontal coordinates
from the truth values, which are given by the SINEX file provided by the IGS. The upper panels are
the results at the four IGS stations before refinement, under Scheme G, where Equation (20) with
fixed coefficients is used to characterize the receiver-related errors. The middle and lower panels
are corresponding results after refinement, without and with the FDE, where Equation (11) with
adaptive coefficients, as listed in Table 2, is used to characterize the receiver-related errors, and the
other parameters are the same as those of Scheme G.
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In Figure 15, the top and middle panels generally show that HPLs at the IGS stations are
significantly reduced and more concentrated after refinement, while the HPEs show less improvement.
This indicates that stochastic model refinement of the receiver-related error term mainly contributes
to improving the ARAIM availability rather than the positioning accuracy. Before refinement, the
HPLs at the IGS stations are mainly larger than 20 m, and there are significant instances where the
HPLs exceed the HAL, which leads to system unavailability. After refinement, HPLs at the IGS
statins mainly are in the range of 10 m to 30 m. From another aspect, when PLs reduce, points in
these Stanford diagrams generally move down, and the number of MI and HMI epochs increases
accordingly. In this case, misleading or dangerous misleading may occur with higher probabilities,
so FDE is necessary. Results in the middle and bottom panels further show the performances of
the MHSS test at the four stations after stochastic model refinement. It shows that after refining
the stochastic model, MHSS tests can successfully detect and exclude the faulty pseudoranges and
avoid misleading.

There are also significant differences in performance at different stations. At the polar station
NYA2, HPEs are obviously smaller than HPEs at the other three stations, and the HPLs reduce to a
much lower range of 10 m to 25 m after refinement. The worst performance is at the mid-latitude
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station DAEJ, where the HPLs before and after refinement are mainly in the range 25 m to 50 m, and
10 m to 40 m, respectively. Slightly better performance is observed at the station REUN, where the
HPLs after refinement are reduced to a range of 10 m to 30 m, while the values before refinement are
mainly between 20 m and 50 m.

In general, the results evaluated via real data shown in Figure 15 are coincident with those
prediction results in Figure 12. All of these results indicate that ARAIM availabilities of the GPS
constellation are typically higher in the equatorial and polar regions, and significantly lower in
mid-latitude regions (around 40 to 60 degrees’ latitude).

Table 4 lists the number of total observed epochs, the number (and percentages) of ARAIM
availability epochs before and after the stochastic model refinement, as well as the number of
MI and HMI epochs without and with FDE after stochastic model refinement, at the four IGS
stations. A total of 26,000 epochs are tested at each station. Before refinement, there are significant
latitudinal discrepancies, and higher ARAIM availabilities appear at stations in the equatorial and
polar regions. The most unavailable epochs are at the mid-latitude station DAEJ, where the percentage
of unavailable epochs is 14.715%. After the receiver-related error term of the stochastic model is
refined, the unavailable percentages are all significantly reduced to 0.0%. This confirms that the
receiver-related error is one of the dominant factors that influence system availability. Furthermore,
the number of MI and HMI epochs also reduce to zero when FDE is adopted after stochastic model
refinement. This further proves that stochastic model refinement also enhances the FDE capability.

Table 4. Numbers of epochs, and numbers (percentages) of unavailable epochs before and after the
stochastic model refinement for the receiver-related error term at the four IGS stations.

Station Number of
Epochs

Number of Unavailable
Epochs

Number of MI and HMI
Epochs

Before
Refinement

After
Refinement Without FDE With FDE

NYA2 25,920 313 (1.208%) 0 (0%) 9 0

DAEJ 25,920 3814
(14.715%) 28 (0%) 9 0

REUN 25,920 1318 (5.085%) 0 (0%) 7 0
BELE 25,576 173 (0.667%) 5 (0%) 10 0

According to the ARAIM baseline algorithm, the first order ionospheric delays can be corrected
using the dual-frequency IF combination, and the residual tropospheric delays after model correction
are usually at the centimeter level. For aviation, the satellite-related error term, mainly caused by the
broadcast ephemeris errors, dominates the stochastic model. By replacing the broadcast ephemeris
with IGS precise orbit and clock error products, the ARAIM availability can be significantly improved
on a global basis. For ground-based positioning, the receiver-related error term is the intractable
one that should be adapted to different receivers and operating environments. Usually, an elevation-
dependent function is used to characterize the error. With LSVCE via real data at a station, more
accurate coefficients can be obtained, thus improving ARAIM availability at that station.

6. Concluding Remarks
In this paper, the authors have proposed refinements to the stochastic model for GNSS ground-

based positioning and IM under the ARAIM framework. Refinements to satellite-related, atmosphere-
related and receiver-related error terms are presented. Firstly, Gaussian bounds of IGS-precise orbit
and clock errors for all GPS satellites are established and used to characterize the satellite-related
error term. Secondly, a variable standard deviation is implemented to characterize the residual
tropospheric delay after model correction. Thirdly, an elevation-dependent model with adaptive
coefficients is used to characterize the receiver-related error term. The corresponding enhancements
to ARAIM availability are discussed.

These refinements are evaluated via global simulations and real data experiments. Different
schemes are proposed and tested to investigate the enhancement of ARAIM availability for both
aviation and ground-based positioning applications. Results show that ARAIM availability can be
significantly improved when the satellite-related error term is refined with the use of IGS precise orbit
and clock products. With LSVCE via real data at a station, coefficients of the elevation-dependent
model can be adapted to different receivers and operating environments, so as to further improve
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the ARAIM availability at the station. In contrast, PL improvements from using a variable standard
deviation to characterize the residual tropospheric delay are smaller, usually on the decimeter or
centimeter level. Although these produce marginal improvements to ARAIM availability under
current schemes, they would become significant if carrier phase observations are used.

At the first stage, these refinements are designed and evaluated for the SPP mode with the use of
GPS dual-frequency IF combination pseudorange observations. Contributions by these investigations
to IM can be further extended when using advanced GNSS positioning modes.
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