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Abstract: The parking problem, which is caused by a low parking space utilization ratio, has always
plagued drivers. In this work, we proposed an intelligent detection method based on deep learning
technology. First, we constructed a TensorFlow deep learning platform for detecting vehicles. Second,
the optimal time interval for extracting video stream images was determined in accordance with the
judgment time for finding a parking space and the length of time taken by a vehicle from arrival to
departure. Finally, the parking space order and number were obtained in accordance with the data
layering method and the TimSort algorithm, and parking space vacancy was judged via the indirect
Monte Carlo method. To improve the detection accuracy between vehicles and parking spaces, the
distance between the vehicles in the training dataset was greater than that of the vehicles observed
during detection. A case study verified the reliability of the parking space order and number and the
judgment of parking space vacancies.

Keywords: deep learning; vehicle detection; parking space detection; convolutional neural networks

1. Introduction

Parking space detection (PSD) is a fundamental problem in the field of computer
vision. Finding an empty parking space is becoming more difficult with increases in the
number of urban vehicles. In accordance with statistics, 10% of car drivers in the city
need to spend a considerable amount of time looking for empty parking spaces. Therefore,
studying the detection of parking spaces [1] and providing parking space information to
drivers to help them quickly find an empty parking space are urgent concerns.

PSD technology is divided into two major categories: sensor-based and image-based.
The first method requires a large number of sensors to cover the entire parking lot [2]. One
sensor can only detect one parking space, and it is susceptible to environmental interference.
Simultaneously, deploying and maintaining a large number of sensors is expensive. By
contrast, the second method requires only a few inexpensive cameras, and each camera has
wide coverage. Meanwhile, nearly all parking lots are already equipped with cameras for
security monitoring. Therefore, this method is not only economical but also convenient as
it uses existing cameras to detect parking spaces.

Some researchers have studied PSD by using frame images extracted from a video
stream. For example, a PSD method was proposed in accordance with vehicle feature point
and color histogram classification [3]. This method does not consider whether a vehicle is
parked in a parking space. Wang et al. [4] used Sobel edge detection to detect a vehicle in a
parking space, and a parking space was considered occupied by a vehicle if the percentage
of edge pixels exceeded 5% of the total pixels; otherwise, the parking space was considered
available. The disadvantage of this method was the poor identification of parking spaces in
outdoor parking lots. In consideration of this issue, a detection method (called ParkLotD) [5]
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was proposed to improve detection accuracy in outdoor parking spaces; this method uses a
classifier based on fuzzy C-means clustering and hyper-parameter tuning. On the basis
of a texture feature descriptor [6], Almeida et al. [7] used local binary patterns and local
phase quantization to perform parking space detection. Shaaban et al. [8] proposed an
individual vehicle detection method by using grayscale images acquired from cameras.
This method can detect the vacancy of a parking space under different scenes and weather
conditions. The advantage of this method is that the detection system does not require
high-quality images; therefore, existing surveillance cameras can be used to detect parking
spaces. The disadvantage of this method is that a vehicle-like object in a parking space may
be recognized as a vehicle.

At present, some researchers have focused on PSD by using machine learning. In sum-
mary, these methods can be classified into three major aspects: object detection-based, image
segmentation-based, and marking point regression-based methods. An object detection-
based method detects the marking points of a parking space via deep learning [9–11]. For
example, Xiang et al. [12] proposed a PSD method based on the Haar-AdaBoosting algo-
rithm and a convolutional neural network (CNN). Zhang et al. [13] used You Only Look
Once Version 2 (YoloV2) to detect parking spaces by identifying marking points in input
parking lot images. Zinelli et al. [14] adopted a faster region-based CNN (Faster-RCNN) to
detect parking spaces and carry out the classification of parking space occupation. Suhr
et al. [15] proposed an end-to-end single-stage parking detection method that can obtain
information about the type of parking space and its occupancy. Image segmentation-based
methods use a deep neural network to segment parking spot markings and then use the
obtained marking lines to infer the location of a parking spot. For example, Jang et al. [16]
conducted PSD by using the semantic segmentation of parking space lines. In accordance
with vehicle features [17], a CNN was applied to training parking space images, and then
the trained model was used for PSD [18]. In [19], Wu et al. proposed a high fusion convolu-
tional network (HFCN) to segment parking space lines. The limitation of this method is that
it cannot be applied for PSD in every parking lot because the image characteristics of each
parking lot are different. The detection of parking spaces is easily affected by inter-object
occlusion; to address this issue, an inference framework with multiple layers was proposed
for PSD [20]. Marking point regression-based methods establish regression models to
determine the location of parking spot lines [21]. Li et al. [22] conducted the regression
of parking spaces in different directions and classified entrance lines for different types
of parking spaces to realize the detection of various parking spaces. Karakaya et al. [23]
proposed a method for detecting the occupancy rate of parking spaces by using deep
learning; this method runs a cyclic neural network on the embedded system to process
parking lot images and to collect information on available parking spaces simply. However,
this method is unable to identify the distribution of each parking space. Simultaneously, it
can only be applied to the detection of parking spaces with clear lane lines, and it has high
requirements for the quality of lane line images [24–26].

In consideration of the aforementioned issues, the current study proposes a parking
detection method without lane line detection. This method directly uses deep learning to
conduct vehicle identification and implements parking detection in accordance with vehicle
detection. First, the proposed method determines the optimal time interval for reading
the video stream frame images by analyzing the time when a vehicle enters and leaves a
parking space. Second, the vacancy of the parking space is judged in accordance with the
indirect Monte Carlo method. Third, the detected parking spaces are numbered using the
hierarchical model and the TimSort algorithm. Simultaneously, the vehicle detection results
can be displayed in top-view form.

2. Proposed Method

The proposed method includes four modules (Figure 1): the optimal reading of the
video stream, the distribution identification of parking spaces, the numbering and ordering
of parking spaces, and the judgment of parking spaces.
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2.1. Optimal Reading of the Video Stream

The first step in detecting parking spaces using a camera is to read the video stream.
OpenCV was employed to read the images from a video stream. However, not every image
frame is useful for identifying parking spaces in the process of reading images from a video.
To reduce the number of extracted image frames, we did not need to extract every image
frame for each second of the video stream. Therefore, the optimal time interval for reading
a video needed to be determined. Assuming that the judgment time of identification for
each parking space is T and that the number of parking spaces covered by the video area is
c, then the total judgment time can be rewritten as:

t1 = c× T. (1)

Assume that the time length for a vehicle from its arrival to departure is t2. On the one
hand, the time interval for reading a video should reflect the change in the parking space
from the vehicle arriving to the vehicle driving away. On the other hand, the time interval
should ensure that all parking spaces have been successfully identified. With regard to the
magnitude relationship between t1 and t2, two different cases were considered. First, if
t1 ≥ t2, then to ensure that all parking spaces could be accurately identified in each image
frame, the time interval for reading the video can be determined as t1. Second, if t1 < t2,
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then to ensure that the time interval for reading the video stream reflects the change in the
parking space when a vehicle arrives and leaves, the time interval for reading the video
can be determined as t2.

2.2. Vehicle Identification Based on the EfficientDet Model

The vacant condition of a parking space is primarily determined by the vehicles parked
on it. In the current study, we detected a parking space by identifying the vehicle on it.

Object detection network models trained via deep learning [27–29] include Cascade
R-CNN [30], SpineNet [31], CenterNet [32], and EfficientDet [33]. These structures require a
backbone network to extract features, such as DLA-34 [34], ResNet [35], InceptionV3 [36,37],
Inception ResNet [38], and Efficientnet [39]. TensorFlow denotes the deep learning frame-
work for calculations in the form of computational graphs [40]. All calculations are trans-
formed into nodes on a computational graph. The application programming interface (API)
project [37] provides a variety of network structures trained by the Common Objects in
Context (COCO) database. Therefore, separately constructing a framework for Cascade
R-CNN, RetinaNet, CenterNet, and EfficientDet is unnecessary, and the object detection
model can be trained by modifying relevant parameters on this basis. The COCO mAP in
Table 1 indicates the detection performance of the models measured using the standard
mean average precision (mAP) [41] on the COCO dataset. The higher the mAP value, the
better the detection performance.

Table 1. COCO-trained partial models.

Model Name Speed/ms COCO mAP

Cascade R-CNN_ResNet-101 410 42.8
CenterNet_DLA-34 31 41.6

RetinaNet_ResNet-101 32 39.9
EfficientDet-D1 16 40.5
EfficientDet-D3 37 45.6

EfficientDet-D7x 285 55.1

EfficientDet is a fast and efficient detection method that was proposed by Mingxing Tan
et al. [33]; they also proposed a bidirectional feature pyramid network (BiFPN) that allows
highly effective cross-scale connections and bidirectional weighted feature fusion. BiFPN
removes some nodes; these nodes have only one input and no feature fusion. Moreover,
an edge is connected between the original input and output nodes of the same level, as
this edge can fuse more features. During the training of the EfficientDet model, top-down
and bottom-up bidirectional feature fusion are applied iteratively. The fused features are
fed into the class and box networks to produce predictions for class and bounding boxes,
respectively. Meanwhile, the weights of the class and box networks are shared across all
the features.

We compared the EfficientDet detection framework with other object detection struc-
tures such as Cascade-RCNN, RetinaNet, and CenterNet. All the models were applied on a
computer with a hardware configuration of a Nvidia 2080Ti 11 GB memory GPU with an
Ubuntu 20.04 system. Table 1 clearly indicates that the EfficientDet detection framework
was significantly more efficient and accurate than the other structures when dealing with
various targets [37]. Meanwhile, considering the rapid detection of parking spaces and the
accurate identification of vehicles, we selected EfficientDet-D3 as the detection framework.
The trained vehicle identification network model was used to identify the frame image,
and the score for vehicle identification using this model was obtained by:

Lcon f (x, c) = −
N
∑

i∈Pos
xp

ij log
(

ĉp
i

)
− ∑

i∈Neg
log
(
ĉ0

i
)

ĉp
i =

exp(cp
i )

∑p exp(cp
i )

(2)
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where xp
ij = {1, 0} is an indicator for matching the i-th prior box to the j-th ground truth box

of category p and cp
i is the predicted value of the category confidence of the i-th prior box.

2.3. Detection of Parking Spaces
2.3.1. Determination of Parking Space Position

To obtain the distribution of all the parking spaces in a parking lot, the location of each
parking space should be determined. The key to determining the position of a parking
space is to obtain the coordinate of each parking space. To ensure that the position of each
parking space can be obtained, the detection model of the trained object is used to produce
the bounding box of each parking space, and the orientation of a vehicle on an image frame
extracted from a video stream has two cases—as illustrated in Figure 2. Figure 2a shows
that the area of the parking spaces is not a rectangle in the captured images because of the
camera angle. The bounding boxes still cover each vehicle, although the dimensions of
these boxes are larger than those in Figure 2b.
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Figure 2. Bounding box of each parking space.

The intersection of the left and top sides of a vehicle image frame is the origin of the
pixel coordinate system. Thus, the position of each parking space is obtained in accordance
with the (xmin, ymin) and (xmax, ymax) of each bounding box on the pixel coordinate system,
as shown in Figure 3. In accordance with the position of each vehicle, the distribution of
the parking spaces is determined.
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2.3.2. Order and Number of Parking Spaces

Sorted and numbered parking spaces are convenient for drivers to use. To sort and
number the parking spaces accurately, this study combined the TimSort algorithm and the
data layering method.

A parking space is considered in two dimensions—the vertical and horizontal directions—
in the process of vehicle identification via deep learning. Simultaneously, the vehicles in parking
spaces are not completely in order in real scenarios, as shown in Figure 4.
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The positions of the upper left and lower right corners of each parking space were
defined as Ci−min(xmin, ymin)i = 1, · · · , 14 and Ci−max(xmax, ymax) i = 1, · · · , 14. The
random parking space numbers were produced as illustrated in Table 2.

Table 2. Positions of random vehicle numbers.

1 2 3 . . . . . . 12 13 14

xmin 493.33 493.92 187.25 . . . . . . 793.33 40.58 640.58
ymin 48.00 400.58 413.92 . . . . . . 53.92 59.42 422.75
xmax 612.75 612.75 303.92 . . . . . . 911.42 159.42 759.42
ymax 318.25 670.00 683.92 . . . . . . 324.58 330.00 690.00

The TimSort algorithm was used to sort all parking space numbers in accordance with
the vertical coordinates of each bounding box in each row, as shown in Table 3.

Table 3. Position of each vehicle after sorting using the TimSort algorithm.

1 2 3 . . . . . . 12 13 14

xmin 493.33 187.25 647.25 . . . . . . 947.25 640.58 796.08
ymin 48.00 48.58 53.92 . . . . . . 413.92 422.75 426.83
xmax 612.75 304.00 765.33 . . . . . . 1066.08 759.42 910.58
ymax 318.25 319.42 324.75 . . . . . . 682.75 690.00 696.08

In accordance with the position of each vehicle after sorting with the TimSort algorithm,
each vehicle number was determined as shown in Figure 5.
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Given the difference in the length and width of various types of vehicles and the
relative positional difference between a vehicle and a parking space, guaranteeing that
the ymin of each bounding box will be the same is difficult. Therefore, each parking space
number was confusing, as shown in Figure 5. To address this issue, the data layering
method was used to layer the vertical direction using Equation (3):

Datalayer =
{

i :
∣∣∣yA

min − yB
min

∣∣∣ < q, A, B ∈ i, A 6= B;}, (3)

where q is considered the threshold value, which is defined by Equation (4).
In general, q is expressed as one-third of the vertical length of the parking lot.

q =
1

3n∑
n

(
yj

max − yj
min

)
(4)

Assume that the difference between the parking spaces of Vehicles A and B is e. If
e < q, then the parking spaces of Vehicles A and B belong to the same row. Otherwise, they
belong to different rows and must be layered.

In accordance with the data layering method, the order and number of the parking
spaces were implemented as shown in Table 4.

Table 4. Position of each vehicle after sorting using the data layering method.

1 2 3 . . . . . . 12 13 14

xmin 40.58 187.25 347.25 . . . . . . 640.58 796.08 947.25
ymin 59.42 48.58 55.08 . . . . . . 422.75 426.83 413.92
xmax 159.42 304.00 465.92 . . . . . . 759.42 910.58 1066.08
ymax 330.00 319.42 324.58 . . . . . . 690.00 696.08 682.75
Data
layer 0 0 0 . . . . . . 1 1 1

Table 4 indicates that the data layering method divided the data into two layers—namely,
layers 0 and 1. In accordance with the position of each vehicle after sorting with the data
layering method, each vehicle number was determined as shown in Figure 6. Ultimately, we
were able to determine the order and number of each parking space.
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2.3.3. Judgment of Parking Space Vacancy

The judgment of parking space vacancy was determined by the coverage of parking
spaces by vehicles. Figure 7 shows one image frame of the parking lot; some parking
spaces are clearly occupied, while others are vacant. To judge the vacancy of a parking
space, random points were produced within each identified parking space. The range of
the number of random points within one square meter was denoted as:

a ≤ n ≤ b, (5)

where a and b represent the lower and upper limits, respectively. Meanwhile, the area of
each identified parking space was calculated as follows:

S = (xmax − xmin)(ymax − ymin). (6)
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Then, the range of the number of random points within each identified parking space
was written as:

Sa ≤ n ≤ Sb. (7)
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Here, we only considered the upper limit. Ultimately, the number of random points
within each identified parking space was Sb.

The judgment of the coverage of a parking space was largely based on the ratio of
random points covered by a vehicle in the parking space, as depicted in Figure 8. The
random points covered by a vehicle can be detected using the density clustering model [42].
The indirect Monte Carlo method [43] was utilized to construct the probability discriminant
model to judge the parking space.
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The distribution of one vehicle in a parking space was determined as shown in Figure 8,
which includes the vehicle and parking space frame. Figure 9 presents the flowchart for
the judgment of the parking space. The ratio of the points in the vehicle to the total
points was calculated and compared with the threshold. If Ratio ≥ Threshold, then the
parking space was considered occupied. If Ratio < Threshold, then the parking space
was considered vacant.
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To determine the threshold value, the time cost of parking space identification for
different numbers of empty parking spaces with various thresholds was obtained as shown
in Figure 10. For fewer empty parking spaces, more time was clearly taken. However, PSD
takes at least 6 s to complete; therefore, the influence of the number of empty parking spaces
on the operation time was substantial, and hence, must be considered. Simultaneously,
the time costs of the different thresholds were nearly the same. Therefore, we should not
consider the influence of different thresholds on operation time. Ultimately, the threshold
was determined as 0.8.
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In accordance with the indirect Monte Carlo method, the judgment time T of each
parking space could be determined. In particular, a statistical method was used to determine
the judgment time of each parking space. With regard to the geometrical relationship
between the parking lot and the camera, two different scenarios were considered. The first
scenario was as follows: the camera was installed in a low position, such that the distance
between the parking lot and the camera was shorter. Meanwhile, the second scenario was
as follows: the camera was installed in a high position, such that the distance between
the parking lot and the camera was longer. For simplicity, the former is called the short
distance scenario and the latter is called the long distance scenario. We selected 15 parking
spaces with different positions to calculate the judgment time of a parking space, as shown
in Figure 11.

In accordance with Equation (1), the judgment time for all parking spaces can be
calculated when determining the number of parking spaces. As shown in Figure 11, the
judgment time T of each parking space was within the range of 0.7 and 0.9, with a mean
of 0.8 s. Assuming that 10 parking spaces are present; in accordance with Equation (1),
the total judgment time is t1 = 8 s. In accordance with our investigation of 53 drivers,
the longest and shortest times for a vehicle to arrive and drive away were 23 s and 7 s,
respectively, and the average time was 15 s. Therefore, t2 was set as 15 s in the current study.
In consideration of t1 < t2, the time interval for extracting image frames was determined
to be 15 s.

Figure 12 presents the identification results for all 10 vehicles going in and out of the
parking spaces over a period of 75 s. Within the first 15 s, the vehicle in parking space
1 left and was identified. Two vehicles left from parking spaces 1 and 4 at different times.
Meanwhile, another vehicle entered parking space 3 at another time. Detecting the change
information for parking spaces 2, 3, and 4 within the first 15 s is impractical; however, the
vehicles entering and leaving parking spaces 2, 3, and 4 could be identified within 15 s, as
shown in Figure 12.
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3. Experimental Results and Discussion
3.1. Data Set Production

In order to verify the proposed method for common use under different conditions,
images of different types of vehicles were applied in this experiment, as shown in Figure 13.
The 6387 vehicles images were used as training sets and 1146 images were used as verifi-
cation sets. The 7533 images were manually annotated using the LabelImg tool, and the
annotation files generated by each image were converted to TensorFlow’s unified TFRecord
data format via a Python script file.
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3.2. Detection of Vehicles

According to the characteristics of the data set, the parameters in the configuration file
corresponding to the pre-training model were adjusted, including the number of categories,
the batch size, the initial learning rate, and the related data reading path. The vehicle
identification model was not influenced by the variation of vehicle type. A part of the
data was selected to obtain the prediction value using the CNN algorithm at the beginning
of the iteration. The amount of this data was the batch size. According to the size of the
data set and the computer configuration, the batch size of the initial training was selected
first, and then it was adjusted according to the variation in the loss function value and the
identification effect.

The vehicle identification model was trained using a standard gradient descent al-
gorithm. TensorFlow_Slim is a lightweight library for defining, training, and evaluating
complex models in TensorFlow. In the process of model training, TensorFlow_Slim provides
a simple but very powerful set of training models. The return value of the loss function
during training is the value of the objective function generated in the process of each
iteration. In other words, the sum of the localization loss and the confidence loss are an
indicator for measuring the performance of the prediction model.

To debug and optimize the training process of the neural network, TensorFlow pro-
vides a visualization tool—Tensor Board—which monitors and displays the training process
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by reading the recorded data files. Within reason, the larger the batch size, the higher the
memory utilization rate and the faster the data is processed. In training, the batch size was
set to 16 when using the single NVIDIA GeForce RTX 2080Ti GPU.

The accuracy of the verification set was evaluated after executing the test script, as
shown in Figure 14. Figure 14 shows the evaluation and identification effect in the IMAGES
panel. The higher the identification scores of the vehicle, the better the identification effect.
The advantage of the EfficientDet detection framework was that it had higher accuracy
when detecting targets and had fewer parameters than the other structures. According to
Figure 14, the identification effects of the vehicles were all greater than 85%.
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3.3. Detection of Parking Spaces

In this process of the video stream reading, the average judgment time for each empty
parking space was T = 0.5′ and the number of parking spaces covered by the video area
was c. According to Equation (1), the judgment time was 0.5c. Assume the length of
time taken by the vehicle from the start to leaving the parking space was 0′; the reading
time of video stream was equal to 0.5c. The trained identification model was applied to
produce bounding boxes for each vehicle and the score of each vehicle was obtained, as
shown in Figure 15.
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According to the score of each vehicle, we confirmed that every parking space was
covered by a vehicle. Then, the random number of each parking space was obtained, as
shown in Figure 16.
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Figure 16. Random number of each parking space.

The (xmin, ymin) and (xmax, ymax) of each bounding box on the Pixel Coordinate System
was obtained. As shown in Figure 16, the parking space numbers were disordered. In view
of this, the Timsort algorithm was applied to sort the bounding box number of each parking
space, as shown in Figure 17. It was clearly visible that the parking space number was in
order in the vertical direction, but still in disorder in the horizontal direction. Meanwhile,
the (xmin, ymin) and (xmax, ymax) of each bounding box on the Pixel Coordinate System
was obtained, as shown in Table 5. As described in Section 2, the data layering method
was applied to divide the layer in the vertical direction, and then the Timsort algorithm
was applied to sort the parking space numbers at each layer, as shown in Figure 18. It was
shown that the parking space numbers were in order. The position of each parking space
was obtained, as shown in Table 6.
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Table 5. Position of the vehicles after sorting and the numbering of the parking spaces by the Timsort
algorithm.

Parking
Number 1 2 3 4 5 6 7 8 9 10 11 12

ymin 186.7453 186.3284 204.6493 216.4648 235.2376 237.4085 460.5099 504.3114 516.6836 523.6484 530.2592 532.6093
xmin 1096.534 1324.633 882.5272 663.6877 433.7274 212.866 1356.459 1121.151 879.7378 655.9752 172.1902 380.7485
ymax 453.757 460.8913 440.2206 448.5158 472.4123 490.6271 787.125 797.4492 798.6421 801.9327 820.0494 797.8188
xmax 1286.16 1522.195 1059.158 836.6179 626.4663 431.8626 1564.168 1299.886 1052.452 835.4104 370.5828 583.7634

Scores 0.96967 0.815933 0.925088 0.928011 0.907685 0.926269 0.962921 0.928651 0.989354 0.991868 0.938664 0.954729
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Table 6. Position of the vehicles after sorting and the numbering of the parking spaces by the data
layering method.

Parking
Number 1 2 3 4 5 6 7 8 9 10 11 12

ymin 237.4085 235.2376 216.4648 204.6493 186.7453 186.3284 530.2592 532.6093 523.6484 516.6836 504.3114 460.5099
xmin 212.866 433.7274 663.6877 882.5272 1096.534 1324.633 172.1902 380.7485 655.9752 879.7378 1121.151 1356.459
ymax 490.6271 472.4123 448.5158 440.2206 453.757 460.8913 820.0494 797.8188 801.9327 798.6421 797.4492 787.125
xmax 431.8626 626.4663 836.6179 1059.158 1286.16 1522.195 370.5828 583.7634 835.4104 1052.452 1299.886 1564.168

Scores 0.926269 0.907685 0.928011 0.925088 0.96967 0.815933 0.938664 0.954729 0.991868 0.989354 0.928651 0.962921
Data
layer 0 0 0 0 0 0 1 1 1 1 1 1

4. Conclusions

In this study, we proposed a method for detecting parking spaces in a parking lot
by utilizing deep learning in object identification. The proposed method consisted of the
detection of parking spaces and the identification of the distribution of parking spaces.
In the PSD process of using the video stream, the optimal reading time interval for the
video stream was provided. A vehicle identification model based on EfficientDet-D3 was
constructed. To improve the training efficiency of the identification model, we flexibly
changed the learning rate during the training of the model. Simultaneously, we proposed
the combined methods of the TimSort algorithm and the data layering method to determine
the number and order of the parking spaces. We found that the indirect Monte Carlo
method could be used to judge parking space occupancy. To evaluate the performance
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of the proposed method, we conducted the detection of a large parking lot with realistic
scenarios. The detection results showed that the proposed method could detect parking
spaces efficiently when vehicles came and went.

In the future, we will focus on parking space assignment and guidance. In considera-
tion of one parking lot, if the number of requests for a parking space service is higher than
the total number of empty parking spots, then the system will inform the users to choose
other nearby parking lots with certain numbers of available parking spaces and inform the
users the distances to those parking lots. Meanwhile, on the basis of the occupation time
of each parking space and the allowed maximum parking period, the system can inform
users how long they will need to wait for the next available empty space. On the basis of
such information, the users can make a decision on whether they should wait for a parking
space or drive to the closest parking lot with available parking spaces.
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