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Abstract: In this paper, an intelligent data analysis method for modeling and optimizing energy
efficiency in smart buildings through Data Analytics (DA) is proposed. The objective of this proposal
is to provide a Decision Support System (DSS) able to support experts in quantifying and optimizing
energy efficiency in smart buildings, as well as reveal insights that support the detection of anomalous
behaviors in early stages. Firstly, historical data and Energy Efficiency Indicators (EEIs) of the building
are analyzed to extract the knowledge from behavioral patterns of historical data of the building.
Then, using this knowledge, a classification method to compare days with different features, seasons
and other characteristics is proposed. The resulting clusters are further analyzed, inferring key
features to predict and quantify energy efficiency on days with similar features but with potentially
different behaviors. Finally, the results reveal some insights able to highlight inefficiencies and
correlate anomalous behaviors with EE in the smart building. The approach proposed in this work
was tested on the BlueNet building and also integrated with Eugene, a commercial EE tool for
optimizing energy consumption in smart buildings.

Keywords: smart building; energy efficiency; data analytics; energy optimization; decision
support system

1. Introduction

The growth of energy consumption, energy resource exhaustion and significant en-
vironmental impacts [1,2] have raised concerns in most countries, which have entered
international agreements for the benefit of society, such as the Paris Agreement in 2015 [3].
With a total energy consumption of 41% [4,5] in residential, public service and commercial
sectors, which represents 24% of the world’s CO2 emissions [6], these sectors constitute one
of the key areas of interest to address, where most action plans are focused on improving
Energy Efficiency (EE) through the promotion of renewable energies and also evolving
systems to minimize energy consumption. Given this scenario, this work tackles the EE
challenge by proposing a new approach to support these initiatives through the optimiza-
tion of EE in smart buildings using data analytics techniques with the aim of reducing
energy consumption and, therefore, reducing CO2 emissions.

Because of the relevance of these initiatives for the future of society, many international
organizations are sponsoring these initiatives [7,8], such as the International Energy Agency
(IEA), the U.S. Department of Energy—Energy Information Administration (DOE/EIA),
the Energy European Commission (EEC) and the Organisation for Economic Co-operation
and Development (OECD), with directives such as Energy Efficiency Directive 2012/27/EU
(EU) or Executive Order (EO) 13514, Federal Leadership in Environmental, Energy, and
Economic Performance, October 2009 (DOE/EIA). Additionally, substantial opportunities
to improve energy efficiency have been expressed by the International Energy Agency
(IEA), as described in [9]. These international initiatives, along with new technologies and
their related research proposals, are actively contributing to tackling the above-mentioned
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challenges. Accordingly, with rising concerns about the exhaustion of energy resources
and significant environmental impacts around the world, EE consumption is a rapidly
increasing field.

From this perspective, in the last decade, huge efforts have been dedicated to the
development of smart cities [10–12] in an attempt to design more sustainable cities by
applying green energies and a high level of smart services [13–21] with the support of
new technologies such as IoT [22–26] and 5G [27,28] and the progress made in AI [29–37],
transport [38], etc. Within this context, efforts have been dedicated to increasing EE in
smart buildings with more intelligent behavior, a high level of comfort and environmentally
friendly operation [34,37,39–44].

There is considerable research focus on energy optimization in buildings. The increas-
ingly sophisticated Building Automation System (BAS) [45] has become the cornerstone of
intelligent modern buildings, integrating energy supply and demand factors, often known
as Demand-Side Management (DSM), as energy efficiency policies that predict demand, as
presented in [46]. Accordingly, most of the progress has been made in Energy Management
and Control Systems (EMCSs) [47], which can manage energy policies in real time with
the aim of maintaining a high level of comfort with minimum power consumption in
different operating conditions [18,48,49]. In EMCSs, one of the most complex problems
is optimization according to real-time environmental variables of the building. Current
research approaches try to solve this problem from different points of view and with diverse
techniques [50] and in different potential scenarios [51–53]. These approaches started with
basic actions to improve EE [51] until more sophisticated energy management models were
introduced, such as those based on a predictive controller in a Supervisory Control and
Data Acquisition (SCADA) system [54], multi-objective models through a multi-criteria
decision analysis [55–57], a more complex approach with Multi-Agent Systems (MAS) [58]
or MAS based on occupant behaviors [59], a model based on a Markov Decision Model
(MDM) [60] or a predictive control model combined with weather forecasting [61].

Within the above context, the current work is part of the KnoHolEM project, associated
with FP7 (FP7-285229 KnoHolEM). The main purposes of this project are mainly focused
on achieving the following seven objectives: (1) a functional energy-oriented building
model complemented by a corresponding generic building ontology, (2) a specific building
behavior model completed by a building-specific ontology, (3) data-mining procedures for
detailed real-time energy consumption analysis, (4) algorithms derived from the building-
specific ontology running in real time to acquire energy efficiency measures, (5) software
for the synthesis and validation of real-time control algorithms, (6) the definition and
engineering of hardware and firmware for real-time communication and optimization of
energy in buildings and (7) and an interactive virtual reality smart building simulator.

In this sense and following the third and fourth objectives of the KnoHolEM project,
the aim of the present paper is to optimize EE in smart buildings through a data analytics
approach based on applying Data-Mining (DM) techniques, reducing energy consumption,
maintaining a high degree of comfort and being environmentally friendly. Several research
efforts have been dedicated to studying energy optimization in buildings with different
techniques [62]. The efficiency of a building depends heavily on the way that it is used and
how it is managed. In [63], the authors provided an interesting analysis of energy-efficient
building design through DM techniques. In [64], the semantic modeling of building
systems to support advanced data analytics for EE improvements was described. The
authors of [65] presented an advanced DA framework for EE in buildings. However,
the analysis of energy consumption at the use stage is essential, and it is clear that the
construction characteristics of buildings strongly affect their energy consumption during
their life cycle. In [66], the authors presented a review of unsupervised analytics techniques
applied to EE enhancement. Finally, [67] proposed a classification approach of energy
consumption in buildings.

In this work, a system to classify and measure EE in a smart building is presented. This
system is implemented after an analytical process is performed to extract the knowledge



Sensors 2022, 22, 1380 3 of 26

hidden in historical building data. In addition, the systems are based on a set of models
and algorithms corroborated by EE experts and historical data. This knowledge is used to
classify each day analyzed based on its features to then predict the EE based on the insights
extracted from historical data and experts. The purpose of this study is the optimization
of EE based on measuring and predicting EE for each day from historical and real-time
data of the BlueNet building. Subsequently, from the results obtained, it is easy to detect
patterns that correlate days with poor EE with a high probability of anomalies. Finally,
thanks to the progress made in this field and the results obtained, the system is in the test
phase. A future goal is to integrate this framework with commercial EE software called
Eugene, owned by the company Isotrol (Seville, Spain).

The paper is organized as follows: In Section 2, the smart building description and
data sources of this work are presented. The description of data sources is divided into
four subsections: indoor sensors, outdoor sensors, energy analyzers and, finally, EEIs. In
Section 3, the proposed method, a data-mining-based DSS to measure and increase energy
efficiency in the building, is detailed. It is divided into three subsections: data preprocessing
(cleaning, integration, reduction and selection, and transformation), description of the
classification module and, finally, the energy efficiency prediction module. In Section 4, the
results of the work are presented.

2. Case Study: BlueNet Smart Building

Usually, smart buildings are made up of several data-metering units that are managed
by an EMCS. This EMCS is able to act as a powerful tool for increasing EE in the building.
For EE optimization, it is necessary to know how patterns of energy consumption in
the building have been behaving. This knowledge is essential for understanding the
consumption patterns of the BlueNet building and, therefore, for optimizing the energy
efficiency of the consumption process. Thus, in this section, the BlueNet building and
the technology employed in the smart building are described in detail. In addition, a
description of data sources used for the classification and prediction of EE in the building
is presented.

The BlueNet building is situated in the south of Spain (Seville, 37◦24′29.97′′ N,
6◦00′18.63′′ W). This building is used as an office building, and its main activity occurs from
8:00 to 17:30, although there is some variability in the schedule. The data obtained from the
BlueNet building are from several data sources, such as indoor sensors, outdoor sensors,
energy analyzers and EEIs, covering the main four areas of the building. The indoor sensors
are made up of 16 ZigBee sensors per floor that collect indoor variables; ZigBee motes are
centralized by a master ZigBee mote used as a gateway that gathers all measurements and
sends them to a centralized server. Occupancy data can be obtained by many approaches,
such as Passive Infrared (PIR) sensors, ultrasonic systems, camera-based systems, radar
systems, CO2 sensing, Electromagnetic (EM) signal detection systems, energy measurement
devices, computer activity or sensor fusion, chair sensors or the use of multiple technologies
to enhance the results [68,69]. In our case, the measurements were obtained through a com-
bination between Radio Frequency Identity (RFID) technology, which is used by proximity
cards at the entrance and exit of each room for exhaustive control for staff identity purposes,
and Passive Infrared (PIR) sensors incorporated in Zigbee motes positioned strategically
throughout the building space. Outdoor sensors comprise a set of sensors placed on the
BlueNet building to extract environmental variables and send all of their measurements to
a centralized server. Finally, the energy analyzers measure all power consumption variables
of the building (HVAC, air mixers, splits, lighting, power plugs and other consumptions).
These analyzers are centralized through a master Modbus device. The master Modbus
device collects and transmits all consumption measurements to a centralized server that
collects all of the BlueNet building information. Besides the information on these areas, a
set of useful EEIs and information concerning the schedule of working and non-working
days are shared, as this is quite valuable information to understand building consumption
patterns and apply the knowledge extracted in this work.
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2.1. Indoor Sensors

These sets of ZigBee sensors are placed in strategic locations in the BlueNet building
and coordinated by a master sensor. The master sensor collects the measurements of the
other sensors and sends the data to a master device that acts as a gateway. The purpose of
this gateway is to collect sensor information and send it to the BlueNet centralized server.
Indoor sensors are programmed to send meter readings every 30 s. These sensors collect
the following measurements:

• Temperature: ZigBee sensors read the temperature in every room of the building.
Generally, at least 2 or 3 sensors are used in every room to apply rules that ensure that
the correct temperature is obtained.

• Humidity: ZigBee sensors read the relative humidity in every room of the BlueNet
building. It is important to calculate the real feeling of the temperature in each zone.

• Lux: ZigBee sensors check the real effect of the lighting system by measuring the lux
values in every room of the building.

• Presence: These sensors obtain data that indicate the presence of all occupants in
the BlueNet building by identifying every person with a unique id and obtaining
information about the time that every person is in BlueNet building rooms.

2.2. Outdoor Sensors

In addition, there is a set of sensors that collect metering data of the BlueNet environ-
ment. These sensors are responsible for collecting environmental data. Outdoor sensors are
programmed to measure metering data every 10 min. The main measurements are:

• Temperature: These sensors take the environmental temperature every 10 min and are
also able to provide the maximum, minimum and mean temperature of each day.

• Humidity: The outdoor sensors measure the environmental humidity and the amount
of rain fallen to calculate the feeling of environmental temperature.

• Sunshine: These sensors obtain the amount of sunshine that irradiates onto the build-
ing every day.

• Wind: The outdoor sensors also obtain the amount and direction of the wind in the
building environment.

2.3. Energy Analyzers

Energy analyzers are placed in an energy distribution panel inside of the BlueNet
building. They are connected to a Programmable Logic Controller (PLC), which acts as a
master Modbus device of the energy analyzers. These analyzers meter the four typologies of
energy consumption in the building (HVAC, lights, power plugs and other consumptions).
These analyzers are programmed to send measurements every 5 min to the master Modbus
device. The principal features of every typology of consumption are described below.

2.3.1. HVAC

In the BlueNet building, HVAC is based on a VRV system. This system is made up of
a set of indoor units (Daikin FXSQ-M7V1B, Daikin AC Spain S.A, Madrid, Spain) and a
set of outdoor units (Daikin RXYQ-MY1B VRV II inverter—Daikin AC Spain S.A, Madrid,
Spain—with heat pump). All units are connected by a DIII-Net. These connections are
centralized in a DMS504B51 Daikin Lonworks Interface, which is in turn connected to a
centralized server through a Lonworks/Modbus gateway (IntesisBox—HMS Industrial
Networks AB S.L.U., Barcelona, Spain) using the communication protocol I3E.

HVAC was the primary area of consumption in this study due to its strong influence
on EE [50–52]. Specifically, HVAC systems are appliances with the largest consumption in
the building and are also the most controllable. HVAC management has the largest margin
for EE improvement, consuming 143,876.7 MWh in 509 days, which represents 40.11% of
the total energy consumption in the building.
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2.3.2. Lights

The BlueNet building is made up of a luminary system, Philips Light Master (Lumi-
nary with ballast HF-R TD 318), connected through a DALI bus. This bus is centralized and
managed by an LRC5141 controller, and it is connected to a centralized server through a
Lonworks/Modbus gateway (IntesisBox—HMS Industrial Networks AB S.L.U., Barcelona,
Spain). This server is responsible for sharing the data and applying certain energy manage-
ment policies.

The lighting only accounted for 19.03% of total energy consumption in the BlueNet
building, consuming 68,281.7 MWh throughout the 509 studied days. Thus, it is difficult to
reduce this consumption (lighting is a necessary building function, and it is associated with
occupancy in rooms). Nonetheless, the study of this field provides interesting information
on EE, such as occupation patterns, anomalous consumptions or group behaviors.

2.3.3. Power

The consumption at power points in the BlueNet building is mainly the result of ICT
equipment (PCs, servers, media, etc.). The majority of power consumption usually occurs
during working hours, with the exception of some services that provide support 24 h a day.

This area is the second most relevant for this study, accounting for 120,368.7 MWh
of the total consumption in the study period. Although it constitutes the second largest
consumption in the building, accounting for 33.56% of the total, this energy consumption is
hard to improve from the EE point of view because computers perform scheduled tasks
outside of working hours, making it difficult to reduce this type of energy consumption.

2.3.4. Others

This area accounts for the minority of energy consumption, with only 26,170 MWh of
total consumption. In addition, it has a strongly fixed consumption that is difficult to manage.
Thus, with only 7.3% of total energy consumption, it is the least relevant field in EE.

2.4. Energy Efficiency Indicators (EEIs)

A set of EEIs of the BlueNet building were analyzed. These EEIs are based on experts’
knowledge and historical data behavior of each relevant area in the BlueNet building, as
described in [21]. The EE behavior in the BlueNet building is evaluated on the basis of
these EEIs. In addition, each EEI provides the knowledge required to detect EE behaviors
and anomalies. The EEIs are described further below.

2.4.1. Operational Changes in HVAC Compressor (OCC) Indicator

This EEI counts the number of daily on–off operations in the compressor. A large
number of daily on–off operations are considered anomalous or inefficient, and it can cause
one of the largest energy leaks and high inefficiency, greatly increasing energy consumption.
A high on–off operation variance could indicate a possible anomaly in HVAC management
(the HVAC is poorly dimensioned for this room, the HVAC is too powerful for this room,
or there is a possible malfunction in the temperature sensor). Moreover, a compressor with
a high OCC is prone to break down and have a shorter lifetime.

2.4.2. Number of Operational Regime Changes in the HVAC Compressor (ORCC) Indicator

This EEI counts the number of daily ORCC periods and the number of minutes in
which the daily ORCC periods occurred. An ORCC is defined as a change in the compressor
power consumption greater than 0.5 kW with respect to the previous measurement (10 min).
These parameters were specified based on the results of DM techniques under the consensus
of Isotrol HVAC experts. Thus, a large number of operational regime changes in the HVAC
compressor (ORCC) is considered abnormal or inefficient.

This EEI can indicate that the HVAC system is not properly calibrated (HVAC is too
powerful for this requirement) or that the temperature in the room is forcing the HVAC
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compressor to constantly change its operating mode. Furthermore, this EEI can denote a
possible improvement in HVAC management, softening the HVAC consumption curve.

2.4.3. Switch on HVAC Compressor and Abnormal Changes in Indoor Temperature
(SONCCIT) Indicator

This EEI counts the number of total minutes per day with a SONCCIT anomaly. In
addition, this EEI averages the daily active power in the HVAC compressor during the
compressor anomaly and the number of periods per day in which a switched-on compressor
anomaly is observed (an anomalous period is specified as the aggregation of consecutive
anomalous data points). A SONCCIT anomaly is defined when the HVAC system is turned
on (the HVAC compressor consumption is higher than 1.7 kWh) and produces a change in
indoor temperature greater than or equal to 1 ◦C between samples (10 min).

It is considered abnormal or inefficient when the room temperature decreases sharply
(winter) or increases sharply (summer) while the compressor is running. This could be
due to a sudden leakage of heat (winter) or a sudden influx of heat (summer) in the room,
which counteracts the effect of the HVAC system (i.e., opened windows or doors).

2.4.4. Switch off HVAC Compressor and Abnormal Changes in Indoor Temperature
(SOFFCCIT) Indicator

This EEI counts the total minutes per day with a SOFFCCIT anomaly. In addition, this
EEI averages the daily active power in the HVAC compressor and the number of periods
per day in which a switched-off compressor anomaly is observed (as in SONCCIT, an
anomalous period is defined as the aggregation of consecutive anomalous data points).

It is considered abnormal or inefficient when the room temperature rises sharply
(winter) while the compressor is not running. This could be due to a heat source (electric
heater) replacing the HVAC system and can indicate the inefficient use of power energy.
From historical data, a 1 ◦C increase between samples (10 min) during the winter period or
a 1 ◦C decrease during the summer months is considered anomalous.

2.4.5. No Persons in BlueNet Building and Switch on HVAC Compressors (NPSONC) Indicator

This EEI counts the total daily minutes in which an NPSONC anomaly is detected, the
number of periods per day with an NPSONC anomaly (an anomalous period is defined
as the aggregation of consecutive anomalous data points) and the average active power
consumption per day by the HVAC compressor during the anomaly. An anomalous
function of the compressor is identified when there is an absence of occupants or the lights
are switched off and the compressor is switched on (NPSONC). This could indicate that the
air conditioner is switched on accidentally, considering that there are no building occupants
if the lights are not switched on.

In this study, five data sources were analyzed: indoor sensors, outdoor sensors,
schedule of working days, energy analyzers and EEIs. These data sources were employed
during this work, in which every area was exhaustively and carefully examined to detect
any possible improvement in energy management.

Some important information for this first analysis of historical data behaviors yielded
the following results: 40.11% of building consumption was attributable to HVAC, 33.56%
of energy consumption was due to power, 19.03% was spent on lighting, and another 7.3%
was due to other activities, with an accumulated energy consumption of 358,697.1 MWh in
the BlueNet building during the analyzed period. The most relevant consumption of the
BlueNet building was due to HVAC operation with 143,876.7 MWh, and specifically, the
major HVAC consumption was attributable to the compressor motor engine consumption,
accounting for 46.38% of the total HVAC consumption.

Thus, a system to measure and optimize EE in the BlueNet building through DA
techniques was developed. The objectives of this system were to: extract the knowledge
hidden in BlueNet building data, develop a classification module and build an EE prediction
module that helps to predict EE for each day. This EE classification is able to compare
EE on days with similar characteristics, regardless of the season and other factors, which
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would be difficult to compare without this information, and also allows the presence of
anomalous energy consumptions and other possible problems to be identified. The EE
prediction module is able to quantify the energy efficiency every day, comparing days with
similar energy efficiency conditions based on clusters.

The architecture of the EE optimization system is depicted in Figure 1.

Figure 1. Prototype architecture.

3. The Data-Mining-Based Decision Support System to Optimize EE in the Smart Building

This section describes the approach selected to optimize the EE in the BlueNet building.
This approach is based on a hybrid decision support system that combines a search based
on the historical data to classify the energy consumption on days with similar features
and a prediction module for additional EE interpolations. This approach takes advantage
of the knowledge extracted from the historical data of the building, making it possible to
reveal information about behavioral patterns in energy management, as well as knowledge
provided by HVAC experts to optimize EE. Therefore, this approach comprises a module
for the classification of energy consumption, which is based on CR&T decision tree [70]
and cluster classification, and a module for EE prediction, which is based on metrics. With
both modules, the days are analyzed with the EEI results to discover patterns and detect
anomalies or other possible problems.

Data can provide some insights hidden in the behavior of historical data. Normally, the
expert’s knowledge is hidden in the collected dataset. Knowledge Discovery in Databases
(KDD) refers to the overall data-mining process of discovering useful knowledge from large
amounts of data. The DM process consisted of 6 essential phases: understanding the busi-
ness, understanding the data, data preprocessing, modeling, evaluation and deployment.
Once the phases of understanding the business and data were carried out, the next phase
was the preprocessing of data. In this phase, the data were cleaned, and the different data
sources were integrated, reduced and selected, and finally, transformed [71,72] (described
in Section 3.1). After these phases, data were prepared for the modeling phase, which is
explained in Sections 3.2 and 3.3 and evaluated in Section 4.

On the one hand, the first study aimed to extract the knowledge of energy consumption
behaviors of the BlueNet building and determine how the energy has been consumed (e.g.,
regime changes in the compressor, operational changes in the compressor, lighting patterns
and others). Secondly, the influence of each BlueNet building variable in every area (indoor
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sensors, outdoor sensors, HVAC, lighting, power and other consumption measurements,
and EEIs) was quantified.

On the other hand, after extracting the knowledge hidden in BlueNet building data,
an EE classification of the historical data was carried out through a hybrid system of
classification. This EE classification allows the establishment of a relationship between days
with similar features and also enables experts to compare the behavior on these days in
EE terms. The classification module is based on a decision tree, the clustering of historical
building data and the use of a set of energy efficiency indicators (Section 3.2). As a result,
this classification identifies the presence of anomalous energy consumptions and other
possible problems. In addition, a prediction system to quantify EE every day was developed
(Section 3.3). This prediction is based on the features of each cluster classification, with the
aim of assisting in the quantification of energy efficiency every day.

In order to carry out this work, a powerful and extended tool in the analytics area was
used, namely, the SPSS Modeler tool (originally Statistical Package for Social Sciences Inc.,
an IBM company). This tool was used to perform the preprocessing and modeling tasks, as
well as to evaluate the models. In addition, SPSS Modeler includes IA libraries used by the
classification and prediction systems through DM techniques.

Currently, the decision support system to optimize EE in the BlueNet building is in
the testing phase, and it will be connected to Eugene, an EE tool owned by Isotrol. These
modules provided all of the knowledge extracted from the large amount of data provided
by the BlueNet building with the aim of improving the results of the EE tool.

3.1. Data Preprocessing

The DM process requires an initial phase of data preprocessing, in which the data are
analyzed, filtered and formatted [71]. BlueNet data comprise different data sources: energy
consumption, environmental sensors inside of the building, external climate sensors, EEIs
and other sources of data, all of which have their own temporal frequency. Thus, to manage
different timestamps among the recorded data, the frequency was synchronized with a
period of 10 min. The time interval for these data sources is between January 2011 and
March 2013 (509 days).

The type of data strongly depends on the source of the data. The types of data and
their time bases are as follows:

- Indoor sensors (30 s basis): mote_id, timestamp (YYYY/MM/DD hh:dd:ss), tempera-
ture (Celsius degrees), percentage_humidity, CO2 and lux (lumens).

- Indoor sensors (30 s basis): mote_id, timestamp (YYYY/MM/DD hh:dd:ss) and
employee_id (presence).

- Outdoor sensors (10 min basis): sensor_id, latitude, longitude, timestamp (yyyy/mm/dd
hh:dd:ss), wind_direction (degrees), max_wind_speed (m/s), min_wind_speed (m/s),
ave_wind_speed (m/s), UV_index, max_humidity, min_humidity, ave_humidity,
precipitation (l/m2) and sunshine_radiation (W/m2).

- Energy Analyzers—HVAC (5 min basis): timestamp (YYYY/MM/DD hh:mm:ss),
AP_CLI_FASE1 (kW), AP_CLI_FASE2 (kW) and AP_CLI_FASE3 (kW).

- Energy Analyzers—Lights (5 min basis): timestamp (YYYY/MM/DD hh:mm:ss),
AP_LIG_FASE1 (kW), AP_LIG_FASE2 (kW) and AP_LIG_FASE3 (kW).

- Energy Analyzers—Power (5 min basis): timestamp (YYYY/MM/DD hh:mm:ss),
AP_POW_FASE1 (kW), AP_POW_FASE2 (kW) and AP_POW_FASE3 (kW).

- Energy Efficiency Indicators—OCC, ORCC, SONCCIT, SOFFCCIT and NPSONC
(10 min basis): timestamp (YYYY/MM/DD hh:mm:ss) and anomaly (true/false).

- Energy Efficiency Indicators—OCC (10 min basis): timestamp (YYYY/MM/DD
hh:mm:ss) and anomaly (true/false).

- Energy Efficiency Indicators—ORCC (10 min basis): timestamp (YYYY/MM/DD
hh:mm:ss) and anomaly (true/false).

- Energy Efficiency Indicators—SONCCIT (10 min basis): timestamp (YYYY/MM/DD
hh:mm:ss) and anomaly (true/false).
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- Energy Efficiency Indicators—SOFFCCIT (10 min basis): timestamp (YYYY/MM/DD
hh:mm:ss) and anomaly (true/false).

- Energy Efficiency Indicators—NPSONC (10 min basis): timestamp (YYYY/MM/DD
hh:mm:ss) and anomaly (true/false).

In this regard, the techniques used during the entire preprocessing stage were
the following:

- Data cleaning: removing all missing and null values, as well as inconsistencies found
in each data source;

- Data transformation: normalizing all data to the same period (10 min) to facilitate the
aggregation of data and their analysis;

- Data reduction: simplifying the data with the aim of providing meaningful data.

Once the data were normalized and standardized, the data sample consisted of
5,088,765 records corresponding to EEI data and the set of variables of the BlueNet building.
From all of these variables, only the most relevant ones were selected for use in the study.
A list of these variables is summarized in Appendix A.

Initially, the 5,088,765 records of the dataset were analyzed. From these records, 636,848
missing data records were found, corresponding to null values. These records were filtered
and removed from the data sample. After the exclusion of outliers, the next requirement was
ensuring the data quality. Thus, a set of rules were established to guarantee the data quality:

• Detect every outlier in the data sample and fix it with the average value of data
dispersion through DM techniques.

• Data consistency validation: every sample of data requires at least one value for each
30 min period.

As a consequence of this first phase of data quality control, 636,848 records were
filtered in the preprocessing task, corresponding to null values. After applying basic rules
to ensure data consistency, 34 records were filtered. Finally, the data sample was reduced
from 5,088,765 records to 4,451,883 records.

Once the preprocessing phase was carried out, a set of 25 relevant variables was
selected from the total of variables measured in the BlueNet building for the tasks of
data classification and data prediction (described in Appendix A). This selection was
carefully analyzed by studying the degree of the influence of each selected variable through
Principal Component Analysis (PCA) techniques [73]. At first, the standardization of
continuous variables was carried out, so each one contributed equally to the analysis.
Second, a covariance matrix was established to identify correlations between the selected
variables; pairs that had a positive score were correlated, and pairs that had a negative
score were inversely correlated. Third, the eigenvectors and eigenvalues of the covariance
matrix were computed to identify the principal components. These principal components
are new variables constructed as linear combinations or mixtures of the initial variables;
principal components are uncorrelated and provide the maximum information based on
their variance. On the basis of the results, the most meaningful variables were selected,
providing 25 relevant variables. Most of the variables analyzed were used in other similar
research studies [74,75].

3.2. Classification Module

The classification module was developed through DM techniques with the aim of
classifying days with similar features and comparing these days to quantify the EE. These
clusters were developed with the aim of extracting insights about how different features
affected days in EE terms. The second aim of these comparisons is to determine the clusters
in which the detected anomalies are concentrated and infer key features that can provide
some insights to reveal anomalies. Once the classification and detection are carried out,
the main objective is to predict days with anomalies and then apply policies to improve
the EE. This classification module uses the most influential information supplied by EEIs;
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HVAC, lighting, indoor and outdoor environmental information; BlueNet occupation; and
holiday/work schedule.

In the first instance, data for the classification module were analyzed through Gen-
eralized Rule Induction (GRI) [76] and the Apriori algorithm [77] to study the correlation
between the selected variables and consumption. GRI begins with the original set S as a
root node. It iterates through every unused attribute of the set S and calculates the entropy
H(S) or the information gain IG(S) of that attribute. It selects the attribute with the smallest
entropy (or largest IG), and the set S is partitioned by the selected attribute. Finally, the
algorithm continues recursion on each subset.

Entropy H(S) is a measure of the amount of uncertainty in the dataset S:

H(S) = ∑x∈X p(x)log2 p(X)

where S is the current dataset for which entropy is being calculated, X is the set of classes in
S, and p(x) is the proportion of the number of elements in class x to the number of elements
in set S.

Information Gain IG(A) is the measure of the difference in entropy from before to
after the set S is split on the basis of an attribute A. In other words, it measures how much
uncertainty in S was reduced after splitting set S on the basis of attribute A:

IG(S, A) = H(S)−∑t∈T p(t)H(t) = H(S)− H(S|A)

where H(S) is the entropy of set S; T is the subsets created by splitting the set S by attribute
A, such as S =

⋃
t∈T t; p(t) is the proportion of the number of elements in t to the number of

elements in set S; and H(t) is the entropy of subset t.
Additionally, the Apriori algorithm is used for frequent item set mining and association

rule learning, and it uses breadth-first search and a hash tree structure (Algorithm 1).

Algorithm 1. A Priori with breadth-first search.

Apriori(T,ε)
L1 ←− {large 1 − itemsets}
k←− 2
while Lk−1 6= ∅

Ck ←− {a ∪ {b} | a ∈ Lk−1 ∧ b /∈ a} − {c|{s|s ⊆ c ∧ |s| = k − 1}* Lk−1}
for transformations t ∈ T

Ct ←−{c|c ∈ Ck ∧ c ⊆ t}
for candidates c ∈ Ct

count[c]←−count[c + 1]
Lk ←−{c|c ∈ Ck ∧ count[c] ≥ ε}
k←−k + 1

return
⋃

k Lk
where
T—The set of data;
ε—Confidence threshold;
k—Size of the set of candidate items;
Ck—Candidate set at level k;
c—Candidate c;
count[c]—Pointer to the candidate set c.

As a result, 24 features were selected from the initial set of 25 variables that were
previously filtered. These features provided more detailed and useful information to
develop the classification module through DM techniques with the aim of supplying the
most accurate results possible. The features selected for the classification module are shown
in Table 1.
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Table 1. Selected features.

Feature Unit

AEMET_AT ◦C
AP_COMPRESSOR kW

AP_COMPRESSOR_MINUTES minutes
AP_COMPRESSORS_MEAN kW

AP_LIGTH kW
DATE DD/MM/YY hh:min:ss

HOLIDAY DD/MM/YY
LIG_MINUTES minutes

NPSONC_MINUTES minutes
NPSONC_PERIODNUMBER integer

NPSONC_TIMES integer
OCC_STOPPOINTS integer

ORCC_PERIODNUMBER integer
ORCC_MINUTES minutes

ORCC_TIMES integer
PRESENCE_ID_ENT DD/MM/YY hh:min:ss
PRESENCE_ID_EXI DD/MM/YY hh:min:ss

SOFFCCIT_MINUTES minutes
SOFFCCIT_PERIODNUMBER integer

SOFFCCIT_TIMES integer
SONCCIT_AP kW

SONCCIT_MINUTES minutes
SONCCIT_PERIODNUMBER integer

SONCCIT_TIMES integer

Subsequently, the resultant variables, also called features, were analyzed and classified
according to outdoor temperature (AEMET_AT), occupant presence (PRESENCE_ID_ENT and
PRESENCE_ID_EXI) and HVAC compressor consumption (AP_COMPRESSORS_MEAN).

Firstly, a filter was applied to exclude all data without compressor measurements.
On the one hand, after obtaining the sample without null compressor function values, an
analysis of this sample was carried out to realize the segmentation of the data according to
outdoor temperature (AEMET_AT). As a result of applying a binning algorithm, 8 groups of
outdoor temperature (TE_Mean_BIN) were defined with a range from 3.56 ◦C to 39.52 ◦C in
5 ◦C intervals, as is shown in Table 2. The binning algorithm is used to reduce the effects of
minor observation errors, and it carried out bucketing, where bins have an equal frequency
of 5 degrees Celsius following the formula:

L =
max(x)−min(x)

n
(1)

where L is the length of the bucket, and n is the number of buckets.

Table 2. External temperature binning.

Bin Lower Upper

1 ≥3,562,762 <8,562,762
2 ≥8,562,762 <13,562,762
3 ≥13,562,762 <18,562,762
4 ≥18,562,762 <23,562,762
5 ≥23,562,762 <28,562,762
6 ≥28,562,762 <33,562,762
7 ≥33,562,762 <38,562,762
8 ≥38,562,762 <39,529,412

On the other hand, the distribution of the building occupancy was analyzed by
applying statistical methods and defining 3 clear groups: a group with fewer than 50
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persons, which mainly represents holidays; a group with between 50 and 110 persons,
which indicates days with medium occupancy; and finally, a group with a range between
110 and 160 persons corresponding to working days with high occupancy, which contains
the majority of the sample, as is shown in Figure 2.

Figure 2. Occupancy distribution.

Finally, the data were represented in terms of compressor consumption (AP_COMPRESS
ORS_MEAN), external temperature (AEMET_AT) and occupancy (PRESENCE_ID_ENT
and PRESENCE_ID_EXI) to be further analyzed. Furthermore, a discriminant analysis
between workdays and non-workdays was performed to provide more depth to our model.
The sample distribution is illustrated in Figure 3.

Figure 3. Sample compressor consumption distribution.

After representing and studying the data distribution through the different features,
a classification model based on a C&RT decision tree using Gini impurity measures was
carried out, with the aim of modeling the sample based on the mean daily active power of
the compressors (AP_COMPRESSORS_MEAN). As a result, a set of rules were obtained.
C&RT is used for both classification and regression, and it uses the Gini Index (GI) criterion
to split a node into subnodes. It starts with the training set as a root node, and after splitting
the root node in two, it splits the subsets using the same logic recursively until it finds
that further splits will not result in any pure subnodes or reaches the maximum number of
leaves in a growing tree. The Gini Index is expressed as follows:

GI =
c

∑
i=0

Pi(1− Pi)
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where c is total classes, and Pi is the probability of class i.
This set of rules was the basis for substantiating our clustering model. The scheme of

this classification algorithm is shown in Figure 4.

Figure 4. Set of rules for the clustering of the sample with the objective of average active power
compressor versus temperature and work or non-workdays.

As can be seen at the first level of the decision tree, the sample was classified into 2
groups distinguished by external temperature (AEMET_AT). On the one hand, groups with
lower external temperature ranging from 3.5 ◦C to 23.5 ◦C correspond to groups 1, 2, 3 and
4. On the other hand, groups with higher external temperature ranging from 23.5 ◦C to
39.5 ◦C correspond to groups 5, 6 and 7. Once this first classification was carried out, it
was possible to observe a division between days with lower temperature: one group has
external temperature ranges from 3.5 ◦C to 18.5 ◦C (1, 2 and 3) with very little compressor
use, and another group has a comfortable temperature range ranging from 18.5 ◦C to
23.5 ◦C (4) with slight compressor use.

These 3 groups were derived from the following clusters analyzed to study EE in the
BlueNet building.

3.2.1. Cluster 1

In cluster 1 (Figure 5), it was possible to observe a classification of days with lower
external temperature ranging from 3.5 ◦C to 18.5 ◦C. This group (158 days) had an average
compressor consumption ranging from 2.566 kW/h to 2.583 kW/h on working days with
an effect of−0.006 and 0.011, respectively. On non-working days (LaborFestive equals 1), the
average consumption of the compressor ranged from 2.067 kW/h to 2.409 kW/h with an
effect of −0.18 and 0.114, respectively, which indicates the effect on the entropy—average—
when removing a value from the cluster. Furthermore, it should be noted that most of the
days followed this distribution, while scattered days usually coincided with individual
cases of high consumption over a short period of time. In addition, non-working days
had a homogeneous distribution with compressors having quite low average active power
consumption, very close to 2 kW/h.



Sensors 2022, 22, 1380 14 of 26

Figure 5. Graphical representation of distribution of cluster 1.

3.2.2. Cluster 2

In cluster 2 (Figure 6), it was possible to observe a classification of days with a com-
fortable external temperature that ranged between 18.5 ◦C and 23.5 ◦C. This group (38
days) had an average compressor consumption of 3.086 kW/h on workdays with an ef-
fect of −0.016. On non-working days, the compressor average was 2.934 kW/h with
an effect of −0.136. In addition, it was possible to observe a wider dispersion and high
similarity between workdays and non-workday cases. This is caused by a comfortable
external temperature ranging between 18.5 ◦C and 23.5 ◦C. In addition, in Figure 6, it is
possible to observe the number of minutes in which the HVAC system was switched on
(C_FunctionMins).

Figure 6. Graphical representation of distribution of cluster 2.

3.2.3. Cluster 3

After analyzing cluster 1 and cluster 2, cluster 3 was the most relevant and interesting,
and it covered the majority of cases with high external temperature. This cluster, with 116
days, has a somewhat complex distribution because it was analyzed carefully and split into
3 well-defined groups, as is shown in Figure 7.
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Figure 7. Graphical representation of distribution of cluster 3.

Cluster 3.1

Cluster 3.1 contains the majority of non-working days, in which the compressor had a
low range of average energy consumption, with values between 1.7 kW/h and 3 kW/h for
the entire period covered in the data sample (26 days) (Figure 8).

Figure 8. Graphical representation of distribution of cluster 3.1.

Cluster 3.2

Cluster 3.2 includes the majority of working days during the year 2011 until the
months of July–August (22 days), during which consumption was higher, with values of
3 kW/h and 5 kW/h, except for a day on which data were dispersed to almost 8 kW/h.
As it is possible to observe, this cluster corresponds to a season with more moderate
temperatures, as is illustrated in Figure 9. Furthermore, in the illustration in Figure 9, it is
possible to observe the number of minutes in which the HVAC system was switched on
(C_FunctionMins), providing further detail.
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Figure 9. Graphical representation of distribution of cluster 3.2.

Cluster 3.3

Finally, cluster 3.3 corresponds to most of the working days during 2012 from April to
October. This cluster (68 days) is characterized by days with a large dispersion, caused by a
hotter season with higher temperatures, and an average compressor consumption ranging
between 3 kW/h and 7 kW/h in a regular manner, as is illustrated in Figure 10.

Figure 10. Graphical representation of distribution of cluster 3.3.

In this case, the behavior of all days is characterized by a high compressor consumption
and a high number of changes in compressor consumption. Thus, on days with similar
environmental characteristics, the features that indicate the grades of efficiency comprise
lower compressor consumption, uniform compressor consumption and a small number of
slight changes in compressor consumption.

3.3. Energy Efficiency Prediction Module

Once the developed classification module was implemented, the results of this module
were carefully studied. As a result of the study, an energy efficiency prediction module
was developed. The purpose of this module was mainly to obtain a metric of EE for this
study. Therefore, clusters were studied independently, and the EE estimation was based on
historical behavior inferred through statistical methods.

First, every cluster was selected, and a distribution analysis for each sample was
carried out. The distribution analysis was based on an energy consumption histogram.
This distribution curve follows a distribution that is similar to a Gaussian distribution; thus,
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the EE categories were fitted with a function of the sample distribution, as is shown in
Figure 11.

Figure 11. Gaussian distribution of energy consumption in cluster 3.3.

Thus, the days were categorized into 5 EE categories based on cluster dispersion. These
categories were established on the basis of the normal distribution, which approximates
a Gaussian distribution. The limits for each category comprise the following segments:
µ− 3/2 σ, µ− 1/2 σ, µ+ 1/2 σ and µ+ 3/2 σ, where µ is the mean, and σ is covariance.
As a result, the consumption on each day was categorized according to every cluster
characteristic following the classification based on the data distribution shown in Figure 12.

Figure 12. EE category prediction for cluster 3.3 and energy consumption behaviors.

Besides EE categories for each cluster, this module is able to provide some insights
that can help to reveal and detect the patterns and anomalies observed on inefficient days.
For example, the consumption behaviors on 4 October 2012 (cat. 1) and 20 September 2012
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(cat. 5) had the same features (cluster 3.3), which comprise the same range of outdoor
temperatures, number of persons and other environmental conditions, but the energy
consumption behavior was very different, as it was highlighted through the EE category
carried out by the EE prediction module. Figure 12 shows a wide range of consumption
(0–6 kWh vs. 0–12 kWh), a greater number of stop points (5 OCC vs. 3 OCC) and regime
changes (43 ORCC with 293 min of anomalous function vs. 77 ORCC with 532 min of
anomalous function), a less softened energy consumption curve with a larger variation
in energy consumption changes at the same time, etc. All of these results can indicate
an anomaly, such as HVAC breakdown, poorly dimensioned HVAC, a possible isolation
problem in the room and other issues.

In summary, the EE prediction module indicates the EE category for every day as a
function of the historical behavior for the cluster sample. In addition, the EE prediction
module, together with the classification module, can indicate possible anomalous consump-
tion patterns that occur in the building and other possible anomalies. These cases were
studied, and the results show a tight correlation between the detected OCC and ORCC
anomalies and the index of EE, as shown in Tables 3–7. At the same time, it is observed
that SOFFCCIT, SONCCIT and NPSONC anomalies are not correlated with inefficient
consumption behavior.

Table 3. Cluster 1 anomaly distribution. Each EE Category is associated with a color as depicted in
Figure 12.

Cluster 1 Days OCC ORCC SOFFCCIT SONCCIT NPSONC TOTAL
EE Categ. 1 0 - - - - - 0
EE Categ. 2 9 0 1 1 1 9 12
EE Categ. 3 8 0 5 9 6 8 28
EE Categ. 4 2 0 1 1 0 2 4
EE Categ. 5 0 0 1 0 0 0 1

19 0 8 11 7 19 45

Table 4. Cluster 2 anomaly distribution. Each EE Category is associated with a color as depicted in
Figure 12.

Cluster 1 Days OCC ORCC SOFFCCIT SONCCIT NPSONC TOTAL
EE Categ. 1 3 0 0 0 0 1 1
EE Categ. 2 8 0 0 0 0 1 1
EE Categ. 3 13 0 0 0 0 3 3
EE Categ. 4 12 0 2 0 0 0 2
EE Categ. 5 2 0 2 0 0 1 3

38 0 4 0 0 6 10

Table 5. Cluster 3.1 anomaly distribution. Each EE Category is associated with a color as depicted in
Figure 12.

Cluster 1 Days OCC ORCC SOFFCCIT SONCCIT NPSONC TOTAL
EE Categ. 1 0 - - - - - 0
EE Categ. 2 11 0 1 0 0 7 8
EE Categ. 3 8 0 1 0 0 4 5
EE Categ. 4 4 0 0 0 0 2 2
EE Categ. 5 3 0 0 0 0 1 1

26 0 2 0 0 14 16
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Table 6. Cluster 3.2 anomaly distribution. Each EE Category is associated with a color as depicted in
Figure 12.

Cluster 1 Days OCC ORCC SOFFCCIT SONCCIT NPSONC TOTAL
EE Categ. 1 0 - - - - - 0
EE Categ. 2 7 0 3 0 0 3 6
EE Categ. 3 12 0 3 0 0 3 6
EE Categ. 4 2 0 0 0 0 0 0
EE Categ. 5 1 0 1 0 0 0 1

22 0 7 0 0 6 13

Table 7. Cluster 3.3 anomaly distribution. Each EE Category is associated with a color as depicted in
Figure 12.

Cluster 1 Days OCC ORCC SOFFCCIT SONCCIT NPSONC TOTAL
EE Categ. 1 5 0 0 0 0 0 0
EE Categ. 2 16 8 12 0 0 1 21
EE Categ. 3 20 13 16 0 0 1 30
EE Categ. 4 18 14 14 0 0 2 30
EE Categ. 5 5 4 5 0 0 0 9

64 39 47 0 0 4 90

The above-mentioned correlation between detected OCC and ORCC anomalies versus
the index of EE highlights not only the number of anomalies but also the period (in
minutes) of each anomaly for ORCC and the number of stop points for OCC, as shown
in Table 8. This insight is even more relevant when one of the principles of EE consists in
softening the consumption curve, aiming to avoid peaks and large changes in consumption.
Furthermore, OCC and ORCC anomalies denote large changes and peaks in consumption,
which means that the HVAC system is poorly dimensioned or calibrated, the HVAC system
is too powerful, or a possible breakdown in a temperature sensor has occurred. On the
other hand, a compressor with high OCC is prone to break and to have a shortened lifetime.
Table 8 highlights the correlation between an increasing number of stop points for OCC
and an increasing number of minutes with ORCC in each period when EE decreases.
Additionally, in Table 9 are detailed the average of OCC and ORCC anomalies per day and
its correlation with each EE Category.

Table 8. Stop points and minutes for OCC and ORCC anomalies vs. EE category. Each EE Category
is associated with a color as depicted in Figure 12.

Cluster Anomaly Days Categ. 1 Categ. 2 Categ. 3 Categ. 4 Categ. 5

Cluster 1
OCC 5 0 0 0 0 0

ORCC 16 0 313 (1) 1769 (5) 418 (1) 544 (1)

Cluster 2
OCC 20 0 0 0 0 0

ORCC 18 0 0 0 724 (2) 658 (2)

Cluster 3.1
OCC 20 0 0 0 0 0

ORCC 18 0 340 (1) 315 (1) 0 0

Cluster 3.2
OCC 20 0 0 0 0 0

ORCC 18 0 1020 (3) 945 (3) 0 543 (1)

Cluster 3.3
OCC 20 0 64 (8) 142 (13) 158 (14) 39 (4)

ORCC 18 0 5026 (12) 7278 (16) 5881 (14) 2671 (5)

Total 64 0 64/6699 142/10307 158/7023 39/4416
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Table 9. Average stop points and minutes per day for OCC and ORCC anomalies. Each EE Category
is associated with a color as depicted in Figure 12.

Cluster Anomaly Days Categ. 1 Categ. 2 Categ. 3 Categ. 4 Categ. 5

Cluster 1
OCC 5 0 0 0 0 0

ORCC 16 0 313 353.8 418 544

Cluster 2
OCC 20 0 0 0 0 0

ORCC 18 0 0 0 362 329

Cluster 3.1
OCC 20 0 0 0 0 0

ORCC 18 0 340 315 0 0

Cluster 3.2
OCC 20 0 0 0 0 0

ORCC 18 0 462.7 437.7 0 543

Cluster 3.3
OCC 20 0 8 10.9 11.3 9.8

ORCC 18 0 418.8 454.9 420.1 534.2

Total 64 0 8/394.1 10.9/412.3 11.3/413.1 9.8/490.7

4. Summary and Experimental Results

The objective of the present work was to present a decision support system to optimize
Energy Management and Control Systems (EMCSs) in smart buildings for any energy-
consuming operations. Thus, in order to achieve the main purpose of this work, a model
to extract knowledge to realize the efficient management of energy consumption was
developed. This model was based on a classification module and a prediction module
developed through DM techniques and statistical inference. All BlueNet variables were
considered for this EE classification study (indoor, outdoor, energy analyzers, EEIs and
work schedule). In addition, the knowledge extracted from data and EE experts was
considered for this purpose. Once the study was carried out, five clusters were identified.
Each cluster was defined by the following set of conditions:

• Cluster 1: This cluster represents days with lower external temperature ranging from
3.5 ◦C to 23.5 ◦C. This cluster does not discriminate between energy consumption or
between work and non-workdays.

• Cluster 2: This cluster represents days with a softer curve of intermediate temperature
ranging from 23.5 ◦C to 28.5 ◦C. This cluster does not discriminate between energy
consumption or between work and non-workdays.

• Cluster 3.1: This cluster groups days with higher external temperature ranging from
28.5 ◦C to 39.6 ◦C, in which most of the days are non-working days with low energy
consumption.

• Cluster 3.2: This cluster represents days with higher external temperature ranging
mainly from 28.5 ◦C to 33.5 ◦C. Most of the selected days are working days with high
energy consumption.

• Cluster 3.3: This cluster groups days with higher external temperature ranging mainly
from 28.5 ◦C to 39.6 ◦C, in which most of the selected days are working days with high
energy consumption.

Once clusters were defined, days that belong to the same cluster were compared to
observe differences among behaviors and, consequently, the effects of the different variables
on each day. In order to validate and quantify the results, the results were analyzed and
corroborated by EE experts of the BlueNet building, and additionally, a module for EE
prediction was developed. The aim of the EE prediction module was to evaluate EE
according to the type of cluster analyzed. The results obtained were applied to the sample
of 509 days with the following results.

All of the results in this study were corroborated by EE experts. In summary, only
3.25% of the total days classified were considered to be very efficient, 29% were efficient and
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41.36% were classified with normal EE. The remaining 20.29% of the days were considered
to be energy inefficient, and 6.36% of days were classified as very inefficient, indicating a
large margin for EE improvement, as detailed in Table 10.

Moreover, in this study, days that represent anomalous behavior were detected with
the support of the classification module and prediction module. These anomalous behav-
iors usually correspond to days that were very inefficient. In addition, these anomalous
behaviors can indicate possible problems that are affecting the BlueNet building (HVAC
breakdown, incorrectly dimensioned and other problems), as shown in Tables 2–8. With the
results in this study, system integration with EE software could yield substantial benefits:
detection of anomalous behaviors in energy consumption, facilitation of energy savings,
large profits due to consumption reduction and environmentally friendly management of
the building.

Table 10. Distribution of days for each cluster based on EE category. Each EE Category is associated
with a color as depicted in Figure 12.

Cluster Days Categ. 1 Categ. 2 Categ. 3 Categ. 4 Categ. 5
Cluster 1 171 0% 32.35% 48.87% 13.53% 5.25%

Cluster 2 91 7.89% 21.05% 34.21% 31.58% 5.27%

Cluster 3.1 26 0% 42.31% 30.77% 15.39% 11.53%

Cluster 3.2 22 0% 31.82% 54.55% 9.09% 4.54%

Cluster 3.3 64 7.81% 25% 31.25% 28.13% 7.81%

Total 374 3.25% 29% 41.36% 20.29% 6.36%

5. Conclusions

After a bibliographical review, an intensive field of research with strong interest in EE
was identified. This review revealed that similar approaches have been considered, but no
other works have been performed with the aim of rendering support in EE classification
and prediction. Specifically, systems able to measure EE and support the detection of
anomalies have not been investigated with similar approaches or results.

This paper presents a system for the optimization of energy consumption in smart
buildings. The main purposes of this work are the following: extract the knowledge hidden
in building data, develop a classification module and build an EE prediction module that
helps to predict EE for each day. This proposal was tested in the BlueNet building scenario,
but it is applicable to any other building and is not specific to BlueNet.

The process of energy optimization was carried out through a hybrid system whose
cornerstone is a classification module and an EE prediction module. The classification
module is made up of a hybrid system based on a CR&T decision tree and a clustering
model. As a result, this module is able to compare EE on days with similar characteristics,
regardless of the season and other factors, which are difficult to compare without this
information, and it is also able to highlight the presence of anomalous energy consumptions
and other possible problems. This module provides an objective point of view that is key
to measuring, comparing and predicting the EE for each day.

The EE prediction module is able to quantify the energy efficiency of each day, comparing
days with similar EE conditions supported by previous cluster classifications. This module
is able to measure and predict the efficiency for each day based on the knowledge extracted
from historical data by applying statistical analysis. Furthermore, this module is able to unveil
insights that highlight correlations between inefficiencies and anomalous behaviors.

Finally, this work presents a classification for each day of the historical data and their
respective EE categories. These results were compared and corroborated by experts to, first,
understand how the energy consumption is behaving and, second, understand the reasons
for this behavior and how to enhance the efficiency. Furthermore, our approach highlights
some evidence that days with less efficiency (6.36% and 20.29% of days respectively)
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contain more anomalies and that these anomalies also occurred over a greater amount of
time. Furthermore, this work unveils an exponential correlation between OCC and ORCC
anomalies and EE.

Based on the results obtained in the BlueNet building and aligned with this research
area, interesting future research lines that could be explored include the automation of the
full process through AI techniques that are able to classify and predict EE in an analytical
manner in real time and, based on anomalous behavior, determine how to apply actionable
measures to correct and improve EE in the building automatically. On the other hand, this
work aimed to support the gap in the understanding of building behavior, as cited in [39].
A future goal is the integration of this module with the commercial EE software called
Eugene, whose owner is the company Isotrol.
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Appendix A. Main Variables for Optimization in BlueNet Building

AEMET_AT (◦C): Outdoor air temperature in Celsius degrees outside of the
BlueNet building.

AP_AIR_MIXERS (kW): Active power in air mixers of the HVAC system.
AP_COMPRESSOR_MEAN (kW): Average daily active power of the HVAC compressor.
AP_COMPRESSOR_MINUTES (min): Total number of daily minutes of HVAC com-

pressor use.
AP_COMPRESSOR (kW): Active power of the HVAC compressor.
AP_SPLITS (kW): Active power in splits of the HVAC system.
AP_LIGTH (kW): Active power in the lighting system.
LABOR/FESTIVE (time): Date of a non-working day.
LIG_MINUTES (min): Time in minutes in which lighting was working during a day.
LIG_PERIODNUMBER: Total number of periods of lighting during a day.
NPSONC_ MINUTES (min): Time in minutes in which lighting was working and an

NPSONC anomaly was detected.
NPSONC_ PERIODNUMBER: Total number of periods with an NPSONC anomaly

during a day. A period constitutes the number of consecutive points with NPSONC
anomalies detected.

NPSONC_ TIMES: Number of times with an NPSONC anomaly during a day.
OCC_STOPPOINTS: Number of daily On-Off operations in HVAC compressor (OCC).
ORCC_PERIODNUMER: Total number of periods with an operational regime change

(ORCC) in HVAC compressor during a day.
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ORCC_MINUTES (min): Time in minutes in which an operational regime change in
HVAC compressor (ORCC) anomaly was detected.

ORCC _ TIMES: Number of times with an operational regime change in HVAC
compressor (ORCC) anomaly during a day.

SOFFCCIT _MINUTES (min): Time in minutes in which the HVAC compressor was
switched off and an abnormal change in interior temperature (SOFFCCIT) was detected.

SOFFCCIT_PERIODNUMBER: Total number of periods in which the HVAC com-
pressor was switched off and an abnormal change in interior temperature (SOFFCCIT) is
detected during a day.

SOFFCCIT_TIMES: Number of times in which the HVAC compressor was switched off
and an abnormal change in interior temperature (SOFFCCIT) was detected during a day.

SONCCIT_AP (kW): Active power waste in the HVAC system while the HVAC compressor
was switched on and an abnormal change in interior temperature (SONCCIT) was detected.

SONCCIT_MINUTES (min): Time in minutes in which the HVAC compressor was
switched off and an abnormal change in interior temperature (SONCCIT) was detected.

SONCCIT_PERIODNUMBER: Total number of periods in which the HVAC compres-
sor was switched off and an abnormal change in interior temperature (SONCCIT) was
detected during a day.

SONCCIT_TIMES: Number of times in which the HVAC compressor was switched off
and an abnormal change in interior temperature (SONCCIT) was detected during a day.

ZIGBEE_AT (◦C): Indoor air temperature in Celsius degrees inside the BlueNet building.
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