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Abstract: Several factors are motivating the development of preventive, personalized, connected,
virtual, and ubiquitous healthcare services. These factors include declining public health, increase in
chronic diseases, an ageing population, rising healthcare costs, the need to bring intelligence near
the user for privacy, security, performance, and costs reasons, as well as COVID-19. Motivated by
these drivers, this paper proposes, implements, and evaluates a reference architecture called Imtidad
that provides Distributed Artificial Intelligence (AI) as a Service (DAIaaS) over cloud, fog, and edge
using a service catalog case study containing 22 AI skin disease diagnosis services. These services
belong to four service classes that are distinguished based on software platforms (containerized
gRPC, gRPC, Android, and Android Nearby) and are executed on a range of hardware platforms
(Google Cloud, HP Pavilion Laptop, NVIDIA Jetson nano, Raspberry Pi Model B, Samsung Galaxy S9,
and Samsung Galaxy Note 4) and four network types (Fiber, Cellular, Wi-Fi, and Bluetooth). The AI
models for the diagnosis include two standard Deep Neural Networks and two Tiny AI deep models
to enable their execution at the edge, trained and tested using 10,015 real-life dermatoscopic images.
The services are evaluated using several benchmarks including model service value, response time,
energy consumption, and network transfer time. A DL service on a local smartphone provides the
best service in terms of both energy and speed, followed by a Raspberry Pi edge device and a laptop
in fog. The services are designed to enable different use cases, such as patient diagnosis at home or
sending diagnosis requests to travelling medical professionals through a fog device or cloud. This is
the pioneering work that provides a reference architecture and such a detailed implementation and
treatment of DAIaaS services, and is also expected to have an extensive impact on developing smart
distributed service infrastructures for healthcare and other sectors.

Keywords: tiny AI; tiny ML; distributed AI as a service (DAIaaS); fog computing; edge computing;
cloud computing; skin disease diagnosis; healthcare; smart societies; smart cities; smart healthcare;
reference architecture; TensorFlow

1. Introduction

Smart cities and societies are at the vanguard of driving digital transformation [1–5].
The digital transformation process involves developing digital services and systems that
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allow us to sense, analyze, and act on our environment with the optimality of our objec-
tives [6,7]. Various industrial sectors are undergoing this transformation and healthcare
is among the most critical sectors in need of this [8]. Several drivers are motivating the
need to transform healthcare and develop preventive, personalized, connected, virtual,
and everywhere healthcare services and systems [9–12]. These drivers include, among
others, declining public health (due to processed food, lifestyles, etc.), increase in chronic
diseases (e.g., hypertension, diabetes, heart disease), ageing population, decreasing quality
of healthcare, and rising healthcare costs for the public and governments [6]. Due to the
restrictions placed because of COVID-19, the difficulty of accessing to public healthcare has
aggravated and amplified the need for virtual and everywhere healthcare [4].

The technology-related drivers to provide distributed services include the need to
bring intelligence near the user (at the fog and edge layers) for reasons such as privacy,
security, performance, and costs [13–18]. These drivers are not specific to healthcare alone
and are driving all of the sectors in which data is generated at the edge and/or in which
decisions need to be made instantaneously and intelligently by the user at the edge [19–23].

Motivated by these drivers, this paper proposes, implements, and evaluates a reference
(software) architecture called Imtidad that provides distributed Artificial Intelligence (AI)
as a Service (DAIaaS) over the cloud, fog, and edge layers using a case study of a service
catalog with 22 Deep Learning-based skin disease diagnosis services. These services belong
to four service classes that are distinguished by software platforms (containerized gRPC,
gRPC, Android, and Android Nearby) and are executed on a range of hardware platforms
(Google Cloud, HP Pavilion Laptop, NVIDIA Jetson nano, Raspberry Pi Model B, Samsung
Galaxy S9, and Samsung Galaxy Note 4) and four network types (Fiber, Cellular, Wi-Fi, and
Bluetooth). A selection of four AI models are provided for the diagnosis; two of these are
standard Deep Neural Networks, and the other two are Tiny AI versions to enable their
execution on smaller devices at the edge. The models have been trained and tested on the
HAM10000 dataset containing 10,015 dermatoscopic images.

The services have been evaluated against several benchmark criteria, including model
service value, processing time, response time, data transfer rate, energy consumption, and
network transfer time. The service values have been computed and compared in terms of
their speed and energy consumption. A Deep Learning (DL) service on a local smartphone
provides the best service in terms of energy, followed by a Raspberry Pi edge device. A DL
service on a local smartphone provides the best service (also in terms of speed), followed
by a laptop device in the fog layer.

Imtidad is an Arabic word indicating the “extending” or “extension” (to the cloud,
fog, and edge) nature of our reference architecture. The services are being extended in both
directions, from cloud to fog and edge, and from edge to fog and cloud.

To help the reader conceptualize the proposed work, Figure 1 provides a high-level
view of the Imtidad reference architecture. The reference architecture is described at
length in this paper. The three perspectives of the reference architecture are: the service
development and deployment perspective, the user view perspective, and the validation
perspective. The service development and deployment perspective provides guidelines on
developing and operationalizing the services: an application such as skin lesion diagnosis
is selected for the provision of related distributed services followed by acquiring the nec-
essary data, AI model designs, service use cases, service design, composing these into a
service catalog, porting these to the execution platforms and networks, operationalizing
the services, evaluating and validating them against benchmark criteria, medical profes-
sionals, and other sources of knowledge. The user view perspective includes selecting and
requesting a service from the service catalog, receiving the diagnosis, and validating it. The
validation perspective is shared with both the user view and the service designers and
providers view because it is meant to allow all of them, as well as third parties, such as
auditors, to validate. A more detailed view and discussion of the reference architecture is
provided in Sections 3 and 4.
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The contributions of this paper can be outlined as follows:

• This is the first paper in which a reference architecture for distributed AI-as-a-service
is proposed and implemented; a healthcare application (skin lesion diagnosis) is
developed and studied in great detail, with a catalog containing several AI and Tiny
AI services supported on multiple software, hardware, and networking platforms; and
several use cases are evaluated using multiple benchmarks.

• The services are designed considering innovative use cases, such as a patient at home
taking images of their skin lesion and performing the diagnosis by themselves with
the help of a service or a travelling medical professional requesting a diagnosis from
a fog device or cloud. The users of the services provided by this architecture can be
patients, medical professionals, the patients’ family members, or any other stakeholder.
Similarly, the services can be used by someone who has the disease diagnosis model,
or the image, or both, since the resource (image or model) may be requested from
other providers.

• The proposed work is highly novel and is expected to produce high impact due to
the developed reference architecture; the service catalog offering a large number of
services; the potential for the implementation of innovative use cases through the
edge, fog, and cloud as well as their evaluation on many software, hardware, and
networking platforms; and a detailed description of the architecture and case study.

• The existing works on distributed AI either focus on distributed AI methodolo-
gies [24,25] or distributed applications development [26–28], or application migration
to fog and edge [29,30]. In contrast, this paper broadly aims to provide theoretical and
applied contributions on decoupling application development from AI by using the
distributed AI as a Service (DAIaaS) concept to coordinate, standardize, and stream-
line existing research on distributed AI and application migration to the edge. The
decoupling of application development from AI is needed because it allows appli-
cation, sensor, and IoT developers to focus on the various domain-specific details,
relieve them from worries related to the how-to of distributed training and inference,
and help systemize and mass-produce technologies for smarter environments. The
Imtidad reference architecture and case study, given in this paper, outlines the whole
process and roadmap of developing a service catalog using distributed AI as a Service,
and, essentially, this provides a blueprint and procedure for decoupling applications
and AI, enabling smart application development as a foundation for smarter societies.
The approach allows development of unified interfaces to facilitate both independent
and collaborative software development across different application domains. This
is a continuation of our earlier research, where a DAIaaS concept was proposed and
investigated using simulations [13].

The rest of the paper is organized as follows. Section 2 reviews the related works.
Section 3 describes the reference architecture, methodology, and service catalog. Section 4
details the system architecture and design for the skin disease diagnosis case study. Section 5
provides results and their analysis. Section 6 concludes the paper and provides future lines
of research.



Sensors 2022, 22, 1854 4 of 41

2. Related Works

This section reviews the literature related to topics of this paper, distributed AI for
skin diseases diagnosis over the edge. Section 2.1 discusses the works related to distributed
artificial intelligence over cloud, fog, and edge. Section 2.2 reviews the works related to
skin disease diagnosis using AI and Section 2.3 discusses the research gap.

2.1. Distributed Artificial Intelligence (DAI) over Cloud, Fog, and Edge

Distributed Artificial Intelligence (DAI) allows AI to be distributed across multiple
agents, processes, cores, physical, or virtual, computational nodes with the aim of sharing
data, improving data processing capabilities, and providing faster, privacy-preserved,
node-local, global, or system-wide solutions [13]. Distributed AI on clouds has been the
focus of many proposals, [31,32], for intensive computation or global knowledge sharing.
Edge Intelligence (EdgeAI) and fog intelligence are among the main DAI approaches
where AI models are distributed across fog nodes (intermediate nodes between edge and
cloud layers) or network edges [33]. Models can be pre-trained on powerful machines
(cloud), then modified and optimized to run in the resource-constrained edges. Edges,
fogs, and cloud can also collaborate where some of the pre-processing and less-intensive
computations are performed in edges and global processing performed in the cloud [13].

Several research studies have discussed the convergence of edge, fog, and AI, as
well as their various architectures [30,34–40]. Pattnaik et al. [41] have proposed and
evaluated different approaches to distribute ML across cloud and edge layers, including
a variety of distributed edge and cloud-based training and inference with either local or
global knowledge. Muhammed et al. [33] proposed UbiPriSEQ, a framework to optimize
privacy, security, energy efficiency, and quality of service (QoS). UbiPriSEQ uses Deep
Reinforcement Learning to optimize local processing and offloading on edge, fog, and
cloud. Sparse matrix-vector multiplication (SpMV) is used as an application to implement
and evaluate the proposed framework UbiPriSEQ. In our earlier work, Janbi et al. [13], we
proposed a DAIaaS framework to standardize distributed AI provisioning across all layers
(edge, fog, and cloud) aiming to facilitate the process of generic software development
across different application domains and allow for developers to focus on the domain-
specific details rather than how-to develop and deploy distributed AI. To this end, multiple
case studies and several scenarios, applications, distributed AI delivery models, sensing
modules, and software modules were developed to explore various architectures and
understand performance barriers.

Another recently emerging direction is Federated Learning (FL), where edge devices
collaborate to train ML models. Model aggregation can be performed centrally in the cloud
or be distributed between nodes. Gao et al. [42] have proposed a cloud-edge collaborative
learning framework with an elastic local update method. In addition, the n-soft synchro-
nization approach has been proposed that combines both synchronous and asynchronous
approaches. Chen et al. [43] have proposed a federated transfer learning approach for
healthcare wearables to train global models across different organizations securely. Fully
decentralized FL approaches, where no central server and models are aggregated directly by
edge devices, have also been proposed in the literature. Hegedűs et al. [44] have provided
a comparison of central FL and decentralized FL as well as introduced two optimization
techniques for decentralized FL, a token-based flow control and partitioned models subsam-
pling. Kim et al. [45] have proposed an architecture of FL based on blockchain technology
to enable secure local model exchange. Both verification and rewards systems are designed
to support the exchange process between edges. The existing works on federated learning
have focused on federated training over distributed devices, while our work differs from it
and complements it, both in the broad aims of our research and the specific contributions
of this paper (as highlighted in Section 2.3 (Research Gap) and elsewhere in the paper).
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2.1.1. Tiny AI and Edge: Research and Frameworks

Table 1 gives a summary of research papers that utilized Tiny AI models, i.e., lighter
versions of AI models on edge devices. Tiny AI models are customized AI models that are
optimized or compressed to minimize the requirements for model memory and computa-
tion power. All the listed research has used TensorFlow Lite [46] to optimize and deploy
the AI models locally. For each research in the table, the application domain, the specific
application under that domain, and the adopted AI model are specified. Zebin et al. [47]
have designed and implemented a tiny CNN model to optimally monitor human activity
recognition using mobile devices. In the domain of the autonomous vehicles, a traffic
sign recognition Tiny DL model based on Single Shot MultiBox Detector (SSD) has been
developed by Benhamida et al. [48]. Alsing [49] has evaluated different tiny AI models for
note detections in a smart home environment. For the security domain, Zeroual et al. [50]
have developed a face recognition authentication model on mobile devices to authenticate
users before accessing cloud services. Alternatively, Ahmadi et al. [51] have proposed an
intelligent local malware detection approach for android devices based on random forests
classifier. Soltani et al. [52] have developed a Tiny Deep CNN model for Signal Modulation
Classification that identifies signals SNR region for wireless networks. A Tiny AI model on
Unmanned Aerial Vehicles (UAV) has been proposed by Domozi et al. [53] to detect objects
in search and rescue missions.

Regarding the deployment of AI at the edges, a few frameworks have been pro-
posed and developed to run AI models on edge devices. These include Caffe2 [54], Ten-
sorFlow Lite [46], and PyTorch Mobile [55]. These frameworks support various edge
platforms such as Android, iOS, and Linux and customize AI models to fit within the
resource-constrained edge.

2.1.2. Distributed AI in Healthcare

EdgeAI is still in its infancy and attracting more researchers and companies to bring
AI closer to users [34]. It aims to provide distributed, low-latency, reliable, scalable, and
private AI services [35]. Many applications that require real-time responses can utilize
edgeAI, such as autonomous vehicles, smart homes, smart cities, and security [47–53].
There are some works that have considered distributed AI for healthcare, which is the focus
of this work too. Zebin et al. [47] have proposed a human activity recognition framework
to run on mobile devices. They used batch normalization for CNN recognition tasks
using data from wearable sensors. Isakov et al. [31] have developed a monitoring and
detection system that aims to detect falls accurately through the use of mobile devices. The
mobile devices are used for preprocessing and they perform a non-linear analysis on the
cloud. Hassan et al. [32] proposed a remote pain monitoring system based on a fog-based
architecture to process patient biopotential signals locally and detect pain in a real-time
manner. They offloaded some of the processing to the cloud in case of local resource
shortage and provided remote access through a web application. Muhammed et al. [56]
have addressed the challenges of meeting network quality of service (QoS) requirements
including network latency, bandwidth, and reliability challenges for delivering real-time
mobile healthcare services.

Table 1. Related works: Tiny AI at the edge.

Reference Application Domain Application AI Model

Zebin et al. [47] Monitoring and
Healthcare Systems

Human Activity
Recognition Custom CNN Model

Benhamida et al. [48] Autonomous Vehicles Traffic Sign
Recognition SSD MobileNetV2

Zeroual et al. [50] Security
(Authentication) Face Recognition VggNET
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Table 1. Cont.

Reference Application Domain Application AI Model

Alsing [49] Smart Homes Object (Notes)
Detection

R-CNN, SSD, and
Tiny YOLO

Soltani et al. [52] Wireless Networking Signal Modulation
Classification DeepSig CNN

Domozi et al. [53] UAVs Search and
Rescue Object Detection SSD

Ahmadi et al. [51] Security Malware Detection IntelliAV (Random
Forests)

2.2. Skin Lesion Diagnosis

Health information technology systems such as clinical decision support (CDS) sys-
tems are designed to support physicians and other health professionals in their decision-
making tasks. AI based Computer-Aided Diagnosis (CAD) systems have been subject to
rapidly growing interest for the diagnosis of skin disease [57]. They are used as a “second
opinion” tool that assists radiologists and physicians in image interpretations and diseases
diagnosis. There has been a continuous increase in skin cancer cases rates around the world,
so, given that it is the most common cancer in the United States and worldwide [58], more
research must be done in this area. Especially, since an accurate and early diagnosis of
skin cancer would improve treatment and survival rates [59]. Computer vision algorithms
are used to analyze images and identify abnormal structures. This helps professionals to
detect the earliest signs of abnormality and support their evaluation. Clinical imaging and
dermatoscopy are now considered to be an essential part of the dermatology clinics for
diagnosis, treatment, follow-up, and documentation [60,61]. Skin diagnosis (and identify-
ing benign and malignant skin lesions) is an important factor in the early detection and
prevention of skin cancer. Automated skin diagnosis using dermoscopy and AI might
also let patients avoid skin biopsy [62]. DL is one of the AI approaches that are becoming
very popular for dermoscopic images classification problem. This has been boosted by the
introduction of many dermoscopic datasets that are publicly available [57]. These datasets
consist of labeled images belonging to various types of benign and cancerous skin lesions.
Training DL model with such datasets would create an appropriate and accurate model for
CAD systems.

Several research studies have been proposed in the literature aiming to improve the
accuracy of skin diagnosis [63–72]. Convolutional neural networks (CNN) are adopted
in most proposals [63–71], except in [72] where the authors proposed fuzzy classification
for skin lesion segmentation. Some proposals have considered other information or data
in the diagnosis process such as demographic and medical history [66] and sonification
(audio) [73]. Pretrained CNN models have been retrained and evaluated in [63,65–69,71]
and multiple CNN models have been ensembled in [64,66,69,70,73]. A review of DL
segmentation, classification, and pre-processing techniques for skin lesion detection is
provided in [74]. Table 2 summarizes the literature that has been reviewed in this subsection,
related to skin disease diagnosis.

Table 2. Related works: skin disease diagnosis.

Reference AI Approach Classes Datasets

Jha et al. [63] Double U-Net Segmentation 7

MICCAI 2015,
CVC-ClinicDB,
ISIC-2018, and Science
Bowl 2018

Bajwa et al. [64] CNN Ensemble Classification 7–23 ISIC 2018 and
DermNet



Sensors 2022, 22, 1854 7 of 41

Table 2. Cont.

Reference AI Approach Classes Datasets

Zhang et al. [65] CNN Classification 4
Clinical dataset
Peking Union Medical
College Hospital

Wei et al. [66] CNN Ensemble Classification 7 ISIC 2018

Liu et al. [67]

CNN on multi-image,
demographic
information and
medical history

Classification 27
Collected from
teledermatology
practice in U.S.

Gavrilov et al. [68] CNN Classification 2
ISIC 10,000 expanded
to 1,000,000 using
distortions

Garcia et al. [72] Fuzzy algorithm Segmentation 3 ISIC 2016
and ISIC 2017

2.3. Research Gap

The literature review presented in this section has evidenced the current research
gap with no earlier reference architectures on DAIaaS and no implementations of skin
disease diagnosis on fog and edge. This is the first research where a reference architecture
for DAIaaS is proposed and implemented, and a healthcare disease diagnosis service is
developed and studied in great detail, with a catalog containing several AI and Tiny AI
services supported on multiple software, hardware, and networking platforms, as well
as several use cases evaluated using multiple benchmarks. The services are designed to
enable different use cases such as a patient at home taking images of their skin lesion and
performing the diagnosis by themself with the help of a service, or a travelling medical
professional requesting a diagnosis from a fog device or cloud. The users of the service
can be patients, medical professionals, the family members of the patient, or any other
stakeholder. Similarly, the services can be used by someone who has the disease diagnosis
model, or the image, or both, by requesting the required resource (image or the model) from
other providers. The novelty and high impact of this research lies in the developed reference
architecture, the service catalog offering many services, the potential for the implementation
of innovative use cases through the edge, fog, and cloud, and their evaluation on many
software, hardware, and networking platforms, as well as a detailed description of the
architecture and case study.

Commenting on the specific application we have selected for this paper, i.e., skin
disease diagnosis (this comment applies to similar applications), it is important to note that
having an accurate disease diagnosis model is not enough; the deployment of the model for
real-time usage is an essential part of the AI system development. This includes where and
how the model is going to be installed. First, both model size and complexity will influence
the processing or inference time, especially with resource constrained devices. In addition,
the emerging trend of virtual and mobile services including healthcare services, which
are required as a result of the current COVID-19 pandemic, will require innovative and
flexible architectures to support them. Therefore, the development of quick and accurate
diagnosis methods for physicians must intrinsically consider in their designs the distributed
architectures that these diagnosis methods will be deployed on.

3. Imtidad Reference Architecture, Methodology, and Service Catalog

This section describes our proposed Imtidad reference architecture for creating dis-
tributed AI services over the cloud, fog, and edge layers and describes the service catalog,
service use cases, and the service evaluation benchmarks. The section is organized as
follows. The reference architecture overview is provided and elaborated in Section 3.1. A
series of use cases (e.g., a user takes a photo of a lesion on their skin and instantaneously



Sensors 2022, 22, 1854 8 of 41

attempts to diagnose it using their preferred service from the service catalog) are outlined
in Section 3.2. An implementation of the reference architecture using a service catalog,
designed as part of this research, is described in Section 3.3. A description of execution
platforms is provided in Section 3.4. The metrics that have been used to evaluate and
compare the services are defined and explained (service energy consumption and service
values) in Section 3.5.

3.1. Reference Architecture and Methodology Overview

The Imtidad reference architecture is proposed as a blueprint and procedure for
decoupling applications and AI and streamlining the design and deployment of distributed
AI services over the cloud, fog, and edge layers. Figure 2 depicts the Imtidad reference
architecture for the skin disease diagnosis case study. The figure can be considered an
insanitation or refinement of the Imtidad reference architecture for a given application; in
this case skin disease diagnosis. The architecture lists all required services to create new
DAIaaS services from the selection of the application to service production and operations.
Each of the rectangular blocks (e.g., Service Design) in the figure can be considered a
component or a service, and these services can independently and asynchronously talk to
each other to create services and service catalogs.
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Figure 2. Imtidad reference architecture.

Figure 3 depicts a sequential workflow diagram for creating a skin disease diagnosis
catalog. It is created by refining Imtidad Reference Architecture. The service development
and deployment process begins with a selection of an application domain, in this case, skin
disease diagnosis. A dataset is required for the selected application, so that the designed
model may be trained and validated. The dataset acquisition process includes dataset
validation and pre-processing in preparation for training. Then, Deep Learning models are
designed, trained, optimized, and validated. First, the TensorFlow (TF) model is generated,
then, an optimized version is created, which, in this case, was the TensorFlow Lite (TFLite)
model. Use cases are determined considering possible scenarios and business models. After
that, different types of services may be designed to provide support in a series of scenarios.
A service catalog is created to communicate and present various service models to users
(see Table 3 and Section 3.2 for details). In addition, service providers need to find a way
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to benchmark services by developing evaluation metrics such as service values, energy
consumption, and response time. Several execution platforms and networks are selected,
and the designed services are deployed. When the services are ready for operation, the
users can choose one of the services from the catalog and send their diagnosis request.
External opinion might be required for validation, in this case healthcare professional
opinion can be used to validate the predicted diagnosis. Validation can be done by users,
service designers and providers, or a third party such as auditors.
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Figure 3. Workflow Diagram for creating a skin disease diagnosis catalog refined from Imtidad
Reference Architecture.

3.2. Service Use Cases

Use cases are identified considering possible scenarios and business models for pro-
visioning distributed AI services and skin disease diagnosis services, over the cloud, fog,
and edge layers. These have been used to design a variety of services that suit different
conditions and requirements. Services are listed in a services catalog for the user to select
one of them and use it to diagnose a lesion image. The design of skin disease diagnosis
services involves and concerns all parties including patients, patients’ families, medical
professionals, and, even, service providers. Patients and medical professionals are the direct
users of the system and they are looking for instantaneous results and services available all
the time and everywhere, while service providers aim for users’ satisfaction by providing
high QoS and at the same time protecting their product and copyrights.

Local services in smartphones, where model and image classification tasks are per-
formed locally in the user device, guarantee a real-time response with no requirement for
an Internet connection, and will preserve the user’s privacy as the images stay on the user’s
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device. This kind of service can be used by patients or doctors anywhere using their own
smartphones. However, this will only work if the user’s device has the required resources
needed to store and run AI models, and model accuracy may be compromised when
converted into the Tiny version. On the other hand, remote services in smartphones, would
extend the service capability and enable collaboration between edge devices. Services from
nearby devices can be used when the users’ devices are either unable to process the image
locally or they are looking for more accurate results. In this case, users can collaborate and
provide services to each other without having to share their models. In addition, the DL
model service providers may also want to keep their model’s copyrights and not share
them, and at the same time, they want to guarantee service availability. To accomplish that,
the service provider can provide a secure device (smartphone) in the facility (e.g., clinic) or
with the medical professional to carry anywhere. In this case, skin images will be sent to
the local device in the local network but not through the internet, which will provide some
level of privacy for the users.

Table 3. The Imtidad service catalog.

Service
Type Layers Platform Platform Specifications Platform

Energy Network Specification Latency Model

1
Containerized
gRPC
Service

Cloud or
Fog

Google
Cloud
Compute
Node

2 CPUs
8 GB Memory
80 Concurrency

100 W
[75] Fiber or Cellular Depends on

Network

A
2 B
3 ALite
4 BLite

5

gRPC
Service

Fog or
edge

HP
Pavilion
Laptop

CPU: Intel® Core™ i7-8550U
@ 1.80 GHz (Turbo up to
4.00 Ghz)
8 GB Memory

Idle:
10.2 W
Working:
66.3 W

Wireless LAN
Frequency Band:
2.4 GHz/5 GHz
Data rate < 450 Mbps

Partially
Configurable

A
6 B
7 ALite
8 BLite

9
Fog or
Edge

NVIDIA
Jetson
nano

GPU: 128-core Maxwell
CPU: Quad-core ARM A57
@ 1.43 GHz
4 GB Memory

5–10 W

Wireless LAN
Frequency Band:
2.4 GHz/5 GHz
Data rate < 450 Mbps

Partially
Configurable

A
10 B
11 ALite
12 BLite

13

Fog or
Edge

Raspberry
Pi Model
B (8 GB)

1.5 GHz Quad-core ARM
Cortex-A72
8 GB Memory
2.4/5.0 GHz IEEE 802.11ac
wireless

Idle:
2.7 W
Working:
5.1 W

Wireless LAN
Frequency Band:
2.4 GHz/5 GHz
Data rate < 450 Mbps

Partially
Configurable

A
14 B
15 ALite
16 BLite

17
Fog or
Edge

Raspberry
Pi Model
B (4 GB)

1.5 GHz Quad-core ARM
Cortex-A72
4 GB Memory
2.4/5.0 GHz IEEE 802.11ac
wireless

Idle:
2.7 W
Working:
5.1 W

Wireless LAN
Frequency Band:
2.4 GHz/5 GHz
Data rate < 450 Mbps

Partially
Configurable

ALite

18 BLite

19

Mobile
Local
Service

Edge Samsung
Galaxy S9

GPU: ARM Mali-G72 MP18
Octa-Core, 2 CPUs:
2.7 Ghz Quad-Core
Mongoose M3
1.8 Ghz Quad-Core ARM
Cortex-A55
4 GB Memory

Idle:
1.09 W
Working:
5.16 W

Wireless LAN
Frequency Band:
2.4 GHz/5 GHz
Data rate < 450 Mbps

Partially
Configurable

ALite

20 BLite

21

Mobile
Remote
Service

Edge
Samsung
Galaxy
Note 4

GPU: ARM Mali-T760 MP6
Octa-Core, 2 CPUs:
1.9 GHz Quad-core ARM
Cortex-A57
1.3 GHz Quad-core ARM
Cortex-A53
4 GB Memory

Idle:
1.4 W
Working:
9.4 W

Wireless LAN
Frequency Band:
2.4 GHz/5 GHz
Data rate < 450 Mbps

Partially
Configurable

ALite

22 BLite

Mobile devices (smartphones) are limited in their capabilities, therefore, devices such
as laptops, NVIDIA Jetson nano, and Raspberry Pi can be used in edge or fog layers to run
more complicated models or serve a large number of users simultaneously. These devices
can be provided by service providers can and placed in hospitals, clinics, or, even, homes,
to serve medical professionals and other users. Devices at the edge or fog layers would
increase service availability and the level of user privacy and security. Nevertheless, they
are incomparable with the cloud where resources are almost unlimited. The cloud is the
original service provisioning platform for AI applications though services provided from
the cloud have a higher latency and more congested networks. Services at the cloud can
be used in case other local services at edge or fog layers are busy or absent. Moreover, DL
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model service can be resides in the cloud, and data or local models can be uploaded to it
for model retraining to improve the global model accuracy.

3.3. Service Catalog

The service catalog lists all diagnosis services with their characteristics for the users
to choose from. Diagnosis services are responsible for image classification. A total of
22 services are produced from a combination of various types of services, devices, and
models (see Table 3) that suit different purposes. For each service, the service type, layers,
devices, network, and models are listed. There are four different skin disease diagnosis
service types, namely, local mobile service, remote mobile service, gRPC service, and
containerized gRPC service. These services can be run on different layers of the network
architecture including cloud, fog, and edge. Seven different devices are used for evaluation
that varies in their capabilities. Google cloud virtual machines (VMs), a laptop, an NVIDIA
Jetson nano, two Raspberry pi (4G and 8G), and two mobile devices (Samsung Galaxy S9
and Samsung Galaxy Note 4). Wi-Fi local area network (LAN) and the Internet wide area
network (WAN) are both considered, including fiber and cellular networks. An Internet
connection is required for cloud communications, but all other levels are deployed in the
local network which means that their traffics is going through a Wi-Fi modem. Nevertheless,
they may be deployed farther than this on a base station on other LANs close to the user.
The four developed models (A, ALite, B, and BLite) are considered for all devices, though
only ALite and BLite are possible for some devices due to device capability limitations.
This service catalog is designed for our specific case study to show a practical example
of service catalogs. This means that all sorts of devices and networks could be used to
design the user’s services, and they are not limited to what is specified here. Table 4 lists
the acronyms and their definitions that have been used use throughout the paper for the
22 services in the service catalog.

Table 4. The acronyms used for the services and service definitions.

Acronym Definition

1 CloudA Model A (Executed on Cloud)

2 CloudB Model B (Executed on Cloud)

3 CouldALite Model ALite (Executed on Cloud)

4 CloudBLite Model BLite (Executed on Cloud)

5 FogA Model A (Executed on Fog—HP Laptop)

6 FogB Model B (Executed on Fog—HP Laptop)

7 FogALite Model ALite (Executed on Fog—HP Laptop)

8 FogBLite Model BLite (Executed on Fog—HP Laptop)

9 JetsonA Model A (Executed on Jetson)

10 JetsonB Model B (Executed on Jetson)

11 JetsonALite Model ALite (Executed on Jetson)

12 JetsonBLite Model BLite (Executed on Jetson)

13 Rasp8A Model A (Executed on Raspberry pi 8 GB)
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Table 4. Cont.

Acronym Definition

14 Rasp8B Model B (Executed on Raspberry pi 8 GB)

15 Rasp8ALite Model ALite (Executed on Raspberry pi 8 GB)

16 Rasp8BLite Model BLite (Executed on Raspberry pi 8 GB)

17 Rasp4ALite Model ALite (Executed on Raspberry pi 4 GB)

18 Rasp4BLite Model BLite (Executed on Raspberry pi 4 GB)

19 MobileLALite Model ALite (Executed on Local Mobile—Galaxy S9)

20 MobileLBLite Model BLite (Executed on Local Mobile—Galaxy S9)

21 MobileRALite Model ALite (Executed on Remote Mobile—Galaxy Note 4)

22 MobileRBLite Model BLite (Executed on Remote Mobile—Galaxy Note 4)

3.4. Devices and Hardware Platforms

Seven different execution platforms are adopted in the service catalog. Google Cloud
Run is selected for the cloud services which is a serverless platform that facilitates running
invocable Docker container images via requests or events. Services are the main resources
of the Cloud Run and each has a unique and permanent URL. Services are created by
deploying a container image on infrastructure that is fully managed and optimized by
Google. Service configuration includes maximum allocated memory limit, number of
assigned virtual CPUs (vCPUs), and maximum number of requests (concurrent requests).
An HP Pavilion laptop has been used as the fog node in our experiments. It comprises an
Intel® Core™ i7-8550U CPU and 8 GB Memory. The CPU has a total of 4 cores and 8 threads
with a base frequency of 1.80 Ghz and a maximum single-core turbo frequency of 4.00 Ghz.
Two types of single-board computers have been used NVIDIA Jetson nano and Raspberry
Pi. NVIDIA Jetson nano is a platform designed by NVIDIA to run AI applications at
the edge. The used Jetson Developer Kit is equipped with 128-core NVIDIA Maxwell™
architecture-based GPU, Quad-core ARM® A57, and 4 GB 64-bit Memory. Figure 4 gives a
brief of Jetson nano specifications and a picture of the device. Raspberry Pi is a tiny and
low-cost single-board computer. Several generations of Raspberry Pi have been released
during the years. In this research, two Raspberry Pi 4 Model Bs have been used. Both cards
have the same Quad-core ARM Cortex-A72 processor, but one has 4 GB memory and the
other has 8 GB memory. Figure 5 gives a brief of Raspberry Pi specifications and a picture
of the device. Two Samsung smartphones have been used, Galaxy S9 and Galaxy Note
4. Samsung Galaxy S9 comes with ARM Mali-G72 GPU and Octa-Core CPU (Quad-Core
Mongoose M3 and Quad-Core ARM Cortex-A55), Samsung Galaxy Note 4 comes with
ARM Mali-T760 GPU and Octa-Core CPU (Quad-core ARM Cortex-A57 and Quad-core
ARM Cortex-A53), and both have 4 GB memory. Figure 6 gives a brief of the smartphone’s
specifications and provides pictures for both smartphones. A full depiction of the Imtidad
testbed is given in Section 4.
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These platforms can be located in different layers at cloud, fog, or edge. The main
difference between these layers is the place where processing occurs. The cloud is located
far away from the users on datacenter/s and accessed through an Internet connection,
Wide Area Network (WAN). On the other hand, fog is located near users and the edge, on
the same Local Area Network (LAN) or a near LAN, and it does not require an Internet
connection. Fog devices might be located in streets, base stations, houses, cafes, hospitals,
etc., to serve local users, while the cloud is designed to serve a large number of users. The
cloud provides resources on-demand and can scale up easily. Though cloud and fog might
have the same type of CPUs, cloud can increase the number of located CPUs on request
or with high demands while fog resources are limited. In our case study, the cloud is the
Google datacenter, specifically the Google Cloud Run platform. For the Containerized
gRPC Service, two CPUs are allocated with an 8 GB memory limit and 80 concurrent
requests at a time. The Fog is the HP Pavilion Laptop with an Intel® Core™ i7-8550U CPU
and 8 GB Memory. Other devices on the LAN, such as NVIDIA Jetson nano and Raspberry
Pi, can also be referred to as fog but for simplicity, we only refer to the laptop as Fog.

3.5. Service Evaluation

To provide a way to evaluate various services in the service catalog, service energy
consumptions and service values have been used as evaluation metrics. The estimated
service energy consumption (et) for each task is calculated as an aggregated value of the
data transfer energy consumption and the device energy consumption (Equation (1)).

et = (εn ∗ d ∗ t) + (η ∗ p) (1)

The first part of Equation (1) calculates the data transfer energy consumption where εn
is the estimated energy of a gigabyte transfer on a network of type n. Andrae and Edler [76]
energy consumption estimations of wired fixed access network, wireless access network,
and Wi-Fi for 2020 have been used in the calculation. The used energy consumption
averages are 0.195 kWh/GB, 0.5435 kWh/GB, and 0.12 kWh/GB for network types Fiber,
4G, and Wi-Fi, respectively. The term d is the size of the transferred data for each task,
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including both request and response packets. The term t is the average network time which
is calculated as the difference between the response and processing time. The second part
of Equation (1) calculates processing energy consumption for the service device, where η is
the estimated device processing energy, which varies depending on the type of device and
its specification (see Table 3 for the devices’ energy-related data). The term p is the average
processing time for each request. The terms d, t, and p are all averages of data collected
from the experiments.

Relative values are calculated to compare two absolute values to each other, which
in return provides a better way to compare service-to-service values than the absolute
values such as response time, process time, energy consumption, etc. Two relative values
are computed service energy value (eValue) and service speed value (sValue), as a way to
benchmark different services in terms of their accuracy, energy consumption, and speed
(response time). Service eValue provides accuracy-to-energy relative value, considering
model accuracy and service energy consumption. Equation (2) is used to calculate the
services eValue, where et is the estimated service energy for each task using Equation (1)
and a is the model accuracy, which represents the percentage of true disease prediction.
The model accuracy is discussed in detail, for each model, in Section 4.3. Service sValue
provides accuracy-to-speed relative value considering model accuracy and service response
time. Service sValue is calculated using Equation (3), where rt is the average response time
for each task and a is the model accuracy.

eValue =
a
et

(2)

sValue =
a

rt
(3)

Note that the purpose of computing service value is to define a method for benchmark-
ing services and it can be considered independent of the parametric values in the equations,
such as et, εt, εn, η, etc., as they can be replaced by more accurate and specific values.

4. System Architecture and Design (Skin Lesion Diagnosis Services)

This section describes the design of the proposed distributed skin disease diagnosis
services. Figure 7 gives a depiction of Imtidad testbed including its devices and platforms
both hardware and software. The testbed consists of one NVIDIA Jetson nano card, two
Raspberry Pi cards, two Samsung smartphones, one HP Pavilion Laptop, and access to
the Google Cloud Run platform. All these are connected through a wireless connection
and equipped with the required software platforms. The white box on the bottom lists the
software platforms used in the Imtidad testbed. The specifications of each device have been
discussed in detail in Section 3.4, and the rest of this section will explain the whole system
architecture and its components in detail.

This section is organized as follows. First, an overview of the system is provided
and elaborated in Section 4.1, then each service is discussed in detail in the rest of the
section. Section 4.2 discusses available skin datasets and the selected dataset for model
training. The DL model service and model design and evaluation are described in Sec-
tion 4.3. The following sections discuss each service as follows: Section 4.4 the mobile local
service, Section 4.5 the mobile remote service, Section 4.6 the gRPC service, Section 4.7 the
containerized gRPC service, and Section 4.8 the diagnosis request service.

4.1. System Overview

The case study presented in this paper focused on the classification of the diagnoses
of common pigmented skin lesions through Deep Learning-based analysis of multi-source
dermatoscopic images, to elaborate on our distributed Deep Learning DL-as-a-service
reference architecture. A service catalog, containing 22 different services, has been designed
and implemented to investigate the proposed Imtidad reference architecture. These services
belong to four service classes (or service types) that are distinguished by their varying
communication and software platforms (containerized gRPC, gRPC, Android, and Android
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Nearby). Android service class is referred to as “Mobile Local” and the Android Nearby
service class as “Mobile Remote”. The services are executed on a range of platforms or
devices (both terms are used, platforms, and devices, interchangeably according to the
context) including Google Cloud (Compute Node), HP Pavilion Laptop, NVIDIA Jetson
nano, Raspberry Pi Model B (8 GB), Raspberry Pi Model B (4 GB), Samsung Galaxy S9,
and Samsung Galaxy Note 4. These devices could exist in one or multiple of the three
distributed system layers, cloud, fog, and edge. Service performance has been evaluated on
fiber, cellular, Wi-Fi, and Bluetooth networks, although the designed services are IP-based
and can use any IP-based networks. The 22 distributed AI services are based on four
different Deep Learning models for skin cancer diagnosis, two of these are standard Deep
Learning models, called Deep Learning “Model A” and “Model B”. The other two models
are the lighter versions of the Deep Learning models A and B called “ALite” and “BLite”.
The lighter models are Tiny AI models created using the Google platform TensorFlow
Lite. The performance of all four models has been evaluated for all the devices, except for
Raspberry Pi Model B (4 GB) and the mobile devices that were unable to execute standard
models (A and B) due to the device resource limitations.
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The developed system follows a service-based design architecture rather than a
component-based architecture. As services are self-contained, loosely coupled, reusable,
and programming language-independent components, they provide flexibility and are
easy to deploy on various platforms. Figure 8 shows the system architecture, consisting
of six different services: DL model service, mobile local service, mobile remote service,
gRPC service, containerized gRPC service, and diagnosis request service. The arrows
linking various services show the communication among them. The DL model service is
responsible for designing, implementing, training, retraining, and optimizing DL models
using TensorFlow. It provides two types of models: the TF_model and the TFLight_model.
Four different types of services have been designed that provide skin image diagnosis (clas-
sification) services, namely, mobile local service, mobile remote service, gRPC service, and
containerized gRPC service, which are explained in detail in later sections. The diagnosis
request service is used by users to request skin disease diagnosis from one of the diagnosis
services. The user takes or selects a skin image from their drive. Then, one of the services
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is selected from the provided service catalog, and a request is sent to it. Depending on
the service type, a connection is established with the provider and the image is sent to the
provider for classification (diagnosis). When the results are sent back, they are presented to
the user.
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Algorithm 1 is the master algorithm for creating new DAI services following the
proposed reference architecture (see Figure 2). The algorithm comprises a list of six services
that are designed and instantiated. They are shown in Figure 8, in addition to dataset
acquisition and service catalog creation. The parametrization of services is used to show
the instantiation of services on different devices. For instance, mobile local services are only
instantiated on mobile devices while gRPC services are instantiated on various devices
including PCs, laptops, Jetson Nanos, and Raspberry Pis.

Algorithm 1: The Master Algorithm: Create_Services(skin_disease_diagnosis)

Input: ServiceClass skin_disease_diagnosis
Output: service_catalog
1 dataset_acquisition(skin_disease)
2 deep_learing_model_service← design_deep_learing_model(tf_model, tf_lite_model)
3 instantiate(deep_learing_model_service)
4 service_catalog← create_service_catalog (skin_disease_diagnosis)
5 mobile_local_service← design_mobile_local (mobile)
6 instantiate (mobile_local_service)
7 mobile_remote_service← design_mobile_remote (mobile)
8 instantiate (mobile_remote_service)
9 grpc_service← design_grpc (pc, laptop, jetson, raspberry)
10 instantiate (grpc_service)
11 containerized_grpc_service←design_container_grpc (cloud, pc, laptop)
12 instantiate (container_grpc_service)
13 diagnosis_request_service←design_diagnosis_request (mobile, pc, laptop)
14 instantiate (diagnosis_request_service)
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Algorithm 2 is a generalized algorithm for the four types of skin image diagnosis
(classification) services: mobile local service, mobile remote service, gRPC service, and
containerized gRPC service. It explains the service provisioning procedure followed by
diagnosis services. The main function is get_diagnosis, which is called by the diagnosis
request service. It takes a skin image as input and returns a list of probabilities of each class
of skin disease.

Algorithm 2: Diagnosis_Service

Input: skin_image
Output: P[p0, . . . ,pC] ∈ R //C is the number of skin disease classes
1 Function: get_diagnosis (skin_image)
2 Init: size←model input dimension, std←model normalization factor

//Image pre-processing
3 skin_image← skin_image.rsize(size, size)//Resize the image to size x size
4 img_array[size, size]← convert_to_array(skin_image)//Convert image to an array

//Normalization
5 For x in img_array
6 For y in img_array[x]
7 img_array[x, y]← img_array[x, y]/std
8 End For
9 End For

//Classification
10 model← load_model() //load trained model
11 P←model.predict(img_array)
12 Return P

4.2. Dataset

There are several open skin datasets available. The International Skin Imaging Col-
laboration (ISIC) [77] has introduced many datasets from different sources as part of their
annual challenge including ISBI, HAM10000, BCN_20000, and MSK Datasets. Interactive
Atlas of Dermoscopy (IAD) [78] and PH2 [79] have also provided a dataset of dermoscopy
images. He et al. [71] have collected two datasets, Skin-10 and Skin-100, as part of their
research, but they have not been made publicly available. In this research, the HAM10000
(Human Against Machine with 10,000 training images) [80] dataset has been used to train
the designed models. Table 5 lists the dataset characteristic including the number of images
and classes of diagnoses. The dataset has been published in the Harvard Dataverse data
repository and consists of 10,015 dermatoscopic images belonging to seven different diag-
nostic categories of common skin pigmented lesions. The last column in the table shows
examples of dermatoscopic images that belong to different diagnosis classes.

4.3. DL Models Service

The DL model service is responsible for model design, training, retraining, and opti-
mization (see Figure 8). This service may be located locally or remotely on cloud, fog, or
edge devices. However, retrieving models from different layers of the network would affect
the response time. New models can be retrieved on an interval basis or as the services agree-
ment specifies and depending on the user preferences. TensorFlow, an ML open-source tool
developed by Google, is used for model development. Algorithm 3 shows the procedure
that this service follows to design a model. First, the TF model is designed and trained
using the given dataset. Some pre-processing is performed on the dataset images including
image resizing and normalization. After training, the TF model is saved in a Hierarchical
data format version 5 (H5) file which stores model weights and configuration so they can
be restored anytime. Then, the TF model is converted to a TensorFlow Lite (TFLite) model
which is an optimized version of the TF model to run on mobile, embedded, and IoT
devices. The TFLite model is saved in a file with the (.tflite) extension. The subsections that
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follow present a discussion on the design, training, evaluation, and conversion of the two
models used in this paper.

Table 5. HAM10000 dataset characteristics.

Class Diagnostic Categories Code Images Sample

0 Actinic Keratoses and Intraepithelial Carcinoma/Bowen’s
Disease akiec 327
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Total Number of Images 10,015

Algorithm 3: DL_Models_Service

Input: skin_image_dataset
Output: tf_model, tf_lite_model files
1 Function: design_models (skin_image_dataset)
2 Init: size← input dimension, std← normalization factor
3 tf_file_name← “TF_model”, tf_lite_file_name← “TFLite_model”

//Model designing
4 tf_model← design_tf_model()

//Model training
5 For skin_image in skin_image_dataset

//Image pre-processing
6 skin_image← skin_image.rsize(size, size)//Resize the image to size x size
7 img_array[size, size]← convert_to_array(skin_image)//Convert image to an array

//Normalization
8 For x in img_array
9 For y in img_array[x]
10 img_array[x, y]← img_array[x, y]/std
11 End For
12 End For
13 tf_model.train_model(img_array)
14 End For//end training

//save TF model
15 tf_model.save_model(tf_file_name)

//Convert to TFLite model
16 tf_lite_model← convert_to_tflite(tf_model)
17 tf_lite_model.save_model(tf_lite_file_name)
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4.3.1. TensorFlow Model Design

Two models have been designed, implemented, trained, evaluated, and converted to
smaller models for edge devices. The first model (A) is based on the pre-trained model
Inception v3, while the second model (B) is a pure CNN model. Figure 9 shows model (A)
architecture, starting with the Inception v3 model and ending with a dense layer that has
seven nodes representing each class of diagnosis. Inception v3 is a pre-trained CNN model
consisting of 48 layers and trained using the ImageNet database. Multiple layers have
been added to the Inception v3 model to improve its performance when it is trained with
the dermatoscopic images, including 2D Convolution (Conv2D), 2D Maximum Pooling
(MaxPooling2D), Dropout, Flatten, and Dense. Figure 10 shows model B architecture
consisting of a series of 19 layers including 2D Convolution (Conv2D), 2D Maximum
Pooling (MaxPooling2D), Dropout, Flatten, and Dense layers. The first layer, Conv2D,
receives the input image of shape (299,299,3), and the last layer is a dense layer that has
seven nodes representing each class of the diagnosis.
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Figure 10. Model (B) architecture.

Both models were trained using the HAM10000 dataset. The dataset was split with
60:20:20 percentages for training, validation, and testing, respectively. Model accuracy (a)
was calculated for each subset of data as the percentage of true disease prediction. Model
(A) had 0.96, 0.83, and 0.82 accuracies, while model (B) had 0.79, 0.78, and 0.77 accuracies
for training, validation, and testing, respectively. To evaluate the accuracy of models A and
B in terms of various disease classes, the heatmaps have been used to plot the confusion
matrix of the test dataset predictions. Figure 11 present the heatmaps that illustrate the
accuracy of classification results for the seven classes. The darker diagonal line in Figure 11a
shows that Model A classification results for various classes of disease are more accurate
than Model B. The nv class had the highest level of accuracy on both models and model A
outperformed model B in akiec, bcc, mel, and vasc classes.
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4.3.2. TensorFlow Lite (TFLite) Model

After training and validating both models, TFLite Converter has been used to convert
the saved TF models into TFLite models. TFLite Converter generates optimized TFLite
models in a FlatBuffer serializable format identified by the (.tflite) file extension. To evaluate
both models, the four model versions (A, ALite, B, and BLite) were run for the training,
validation, and testing datasets. Table 6 lists the characteristic of models A and B and
compares the original (TensorFlow) model and TFLite model in terms of memory footprint
and accuracy. After conversion, both A and B models were reduced in size by around
three-fold, with no reduction in model accuracy.

Table 6. Comparison between original TF and TFLite Models.

Model Layers Total Pa-
rameters

TensorFlow TensorFlow Lite
Size
RatioRAM

(MB)
Training
(%)

Validation
(%)

Testing
(%)

RAM
(MB)

Testing
(%)

A 55 23,057,255 264 95.64 83.23 82.38 87.8 82.38
3.01

B 19 3,833,367 43.9 79.05 78.28 77.33 14.6 77.33

4.4. Mobile Local Service

In the mobile local service, both diagnosis service and diagnosis request service reside
in the user device. Therefore, the user’s mobile device should have the required resources
to save and run the model locally. As shown in Figure 8, the TensorFlow Lite model is
provided by the DL model service in a (.tflite) format. In the diagnosis request service,
the user selects a skin image and chooses the mobile local service from their catalog. The
mobile local service uses the local TFLite Interpreter in the mobile device to load the model
and perform image classification tasks. This type of service guarantees a real-time response
and preserves user privacy as the images do not have to be sent across the network to a
remote service.

4.5. Mobile Remote Service

The mobile remote service is located in mobile devices and is responsible for providing
classification services to nearby devices. As shown in Figure 8, this service is equipped with
a TFLite Interpreter, Android Nearby Connections API, and downloads the model from
the DL model service. Android Nearby Connections API is used for service connection
and management. It is a networking API provided by Android for peer-to-peer service
and connection management with nearby devices using technologies such as Bluetooth,
Wi-Fi, IP, and audio. This includes service advertising, discovery, connection, and data
exchange in a real-time manner. Figure 12 shows messages exchanges between the mobile
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remote service and the diagnosis request service for the service provisioning process. The
mobile remote service starts service advertisement by periodically broadcasting messages
that include the service name and service ID. The diagnosis requests service listens to
broadcast messages for service discovery and when the required service provider is found,
the connection is requested. This invokes the connection establishment process, which
includes connection acceptance from both sides and connection result acknowledgment.
When the connection establishment is successful, the user can start requesting diagnosis
services by sending a skin image to the provider, who uses the TFLite Interpreter to classify
the image and return the result.
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4.6. gRPC Service

The gRPC service is implemented using remote procedure calls, specifically Google
Remote Procedure Call (gRPC). gRPC is a framework for building platform-independent
services and providing various utilities to facilitate service implementation and deployment.
Proto syntax is used to define the request and response messages that are passed between
gRPC servers and clients. As shown in Figure 8, gRPC services support both TF and TFLite
models for skin diagnosis. These models are provided by the DL model service. Secure
Sockets Layer (SSL) protocol is used to provide secured communications between the
server and client. The diagnosis request service first establishes a secure channel with the
gRPC service and then sends the diagnosis request, including the skin image. When the
gRPC service receives the request, it passes the image to either the TensorFlow or TFlite
Interpreter to classify the image and returns the result. The result is then sent back as a
gRPC response including classification probabilities.

4.7. Containerized gRPC Service

The containerized gRPC service is a version of the gRPC service that is containerized
as a Docker container (see Figure 8). Docker containers provide an executable, lightweight,
and standalone container image that encapsulates everything the gRPC service needs
in order to run. This service image is deployed in Google Cloud using the Cloud Run
platform. Containerized gRPC service reduces efforts in deploying gRPC service into
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the cloud especially when they are already supported by the cloud platform, such as
the Google Cloud Run platform that have been used here. Cloud Run provides a fully
managed serverless platform to deploy highly scalable containerized applications. The
containerized gRPC service could not replace the gRPC service as Docker containers do
not have full support for many of the AI libraries for different processor architectures
such as armv7 and aarch64 in Raspberry Pi and Jetson. Therefore, offering this variety of
technologies and software platform allows services to be instantiated anywhere in cloud,
fog, and edge layers.

4.8. Diagnosis Request Service

The diagnosis request service has been developed using Android studio, so that
it could run on Android devices. This service is responsible for image selection and
communication with various diagnosis services. Algorithm 4 shows the procedure that the
diagnosis request service follows to get a skin diagnosis prediction from one of the skin
image diagnosis services and present the final result.

The algorithm takes, as an input, the user selected skin image and the chosen service
type from the provided service catalog. In the case of mobile local service, the local service
installed in the device will be used for skin image classification directly. In other cases,
the diagnosis request service first establishes a connection with the required service. If the
mobile remote service is chosen, the application listens to the nearby service broadcasts and
establishes a connection with a nearby mobile device. For gRPC-based services (gRPC and
containerized gRPC), the application uses gRPC stubs to communicate with the services.
When the connection is ready, the diagnosis request is sent along with the skin image to
be classified (diagnosed) by the chosen diagnosis service and when the results are sent
back, they are presented to the user. Figure 13 shows screenshots of the user interface for
the skin diagnosis application, which enables the user to request a diagnosis service. The
screenshots are numbered from 1 to 5 to show the steps involved in selecting a service and
obtaining a diagnosis on the application.
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Algorithm 4: Diagnosis_Request_Service

Input: skin_image, service_type
Output: class of skin disease
1 Function: skin_diagnosis (skin_image, service_type)
2 Init: ip← grpc server ip address, crt← server certificate, url← cloud service URL,
3 service_id← nearby service ID, user_name← given device name
4 Try
5 If service_type = = mobile_local_service Then

//request from the local service
6 P[p0, . . . ,pC]←mobile_local_service.get_diagnosis (skin_image)
7 Else If service_type = = mobile_remote_service Then

//Create connection with the nearby device
8 connection← request_connection(user_name)

//Send a request to the diagnosis service
9 P[p0, . . . ,pC]← connection.get_diagnosis (skin_image)
10 Else If service_type = = grpc_service Then

//Create a secure channel with the diagnosis service
11 channel← create_secure_channel (ip, crt)
12 P[p0, . . . ,pC]← channel.get_diagnosis (skin_image)
13 Else If service_type = = containerized_grpc_service Then

//Create a secure channel with the cloud
14 channel← create_secure_channel (url)
15 P[p0, . . . ,pC]← channel.get_diagnosis (skin_image)
16 End If

//Find the largest probability value
17 probability← p0
18 prediction_class← 0
19 For c in C
20 If P[c] > probability Then
21 probability← P[c]
22 prediction_class← c
23 End If
24 End For

//Find corresponding labels
25 prediction_label← get_prediction_label(prediction_class)
26 Return prediction_label
27 Catch exception
28 Return error_message
29 End Try

5. Service Evaluation and Analysis

This section presents and discusses our experiments and results. First, the experiment
settings are presented (Section 5.1). Then, every evaluation metric has been discussed and
evaluated, including processing time (Section 5.2), response time (Section 5.3), network time
(Section 5.4), service data transfer rate (Section 5.5), and the services’ energy consumption
(Section 5.6) and values (Section 5.7).

5.1. Experimental Settings

The experiments were conducted in a real-life environment in a typical family home
setting to represent everyday city life. They took place over a period of several weeks.
Every week, they were conducted for four consecutive days (from Saturday to Tuesday), at
three different times of the day. Unfortunately, limited human, and other, resources, made
it impossible to conduct the experiments more frequently (every three h) and for the seven
weekdays. Table 7 lists the various evaluation variables for which data had been collected
during the experiments and those were recorded as testing logs. The table lists the variable
names, definitions, units, and an example of collected data.
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Figure 14 shows the networking setup for the experiments. All edge devices are
connected to a WiFi router that provides a local connection between them and a connection
to the Cloud through the Fiber and 4G networks. Two WiFi routers have been used
separately for the two different experiment settings. One is the Fiber WiFi router which is
both a fiber optic modem and WiFi router that is connected to the fiber optic cable provided
by Internet Service Provider (ISP). The second is a 4G WiFi router connected to the 4G
cellular network via a SIM card provided by ISP. The smartphones use the Android Nearby
Connections API to create a peer-to-peer (P2P) connection between them, which uses either
WiFi or Bluetooth for communication. The figure shows the Fog node connects to the edge
WiFi network through the 4G and Fiber networks. This is depicted to show how it should
be connected in reality and to avoid confusion for the reader. However, the Fog device in
our case is connected to the edge devices through the same two routers. This is done due to
the human and infrastructure resource limitations since having the fog node in a separate
network requires a separate physical space and human support for conducting experiments.
In our case, this is an acceptable setup because in studying fog node performance we have
focused on the computational performance of the fog node which depends on the device
compute capability and is virtually independent of the network performance.

Table 7. Evaluation data variables and examples.

Variable Definition Unit Example

Date Date of the request Date 16/02/2021

Day Day of the week Date Tuesday

Hour Time of the request Time 06:15:49.333

ImageName Image name from the dataset String ISIC_0033458

ModelVersion Model used for classification (A = 1, B = 2, ALite = 3, BLite = 4) Number 1

DeviceName The name of the device: Cloud, Laptop, Jetson, Rasp8, Rasp4,
S9, Note 4 String Cloud

RequestSize The packet size of the request message Bytes 171,316

RequestSentTimestamp The timestamp when the request is sent by the user Milliseconds 1,613,445,211,566

RequestReceiveTimestamp The timestamp when the request is received at the service Milliseconds 1,613,445,342,877

ServiceProcessTime The service processing time (inference or compute) Milliseconds 6334

ResponseSentTimestamp The timestamp when the response is sent from the service Milliseconds 1,613,445,349,211

ResponseReceiveTimestamp The timestamp when the response is received at the user device Milliseconds 1,613,445,349,325

ResponseTime The total time taken to obtain a response, from the moment the
request had been made Milliseconds 137,759

ResponseSize The packet size of the response message Bytes 112

Result Diagnosis results as a probability of each class of the diseases
(7 values for 7 classes separated by commas) List of floats

[4.025427 × 10−7,
1.1340192 × 10−7,
4.8968374 × 10−8,
6.5097774 × 10−6,
3.8256036 × 10−7,
0.00020890325, 0.9997837]

5.2. Service Processing Time

The processing time is the time that the diagnosis service needs to process an image
and predict the skin disease category. It depends on both model complexity and device
resources. The processing time was recorded at different times of the day during the week.
Figures 15 and 16 show processing times for all service types, devices, and models. Services
and devices specifications can be referred to in Table 3.
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Figure 15 compares models processing time behavior for each service type and device.
The bar chart presents the average processing time where the horizontal axis represents
devices, the vertical axis represents the average processing time in seconds, and bars
represent model types. For all devices, model A average processing time is higher than that
of model B, even for the TFLite versions, which was excepted considering the complexity
and size of model A. Jetson device has the highest average processing time for all models
compared to other devices and this is related to both Jetson memory limitation and device
capability. On Jetson, the average processing times were 49 s, 10 s, 2 s, and 0.5 s for models
A, B, ALite, and BLite, respectively. The lowest average processing times were for the Fog
device with 7.7 s, 0.8 s, 0.5 s, and 0.1 s for models A, B, ALite, and BLite, respectively.
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The boxplot in Figure 15 depicts the processing time data distribution for the whole
data collected in our experiments. Boxplots show five statistical measurements the mini-
mum, first quartile (Q1), median (Q2), third quartile (Q3), and maximum. The first quartile
(Q1) is the 25th percentile, the median (Q2) is the 50th percentile, and the third quartile
(Q3) is the 75th percentile of data. These are depicted as the bottom line in the colored
box, the middle thick line inside, and the top line of the box, respectively. The distance
between Q1 and Q3 (the height of the colored box) is called the interquartile range (IQR).
The maximum and minimum values are the highest and lowest points of the vertical lines
on the top and the bottom of the colored boxes. They are calculated using the quartiles and
IQR, Q3 + 1.5 × IQR for the maximum and Q1 − 1.5 × IQR for the minimum. Any value
more than maximum or less than minimum values is considered as an outlier and depicted
as a circle outside the boxplot. Jetson minimum, Q1, Q2, Q3, and maximum processing
times for model A were 41 s, 43 s, 48 s, 51 s, and 55 s, respectively, with some outliers
over 65 s (see Figure 15 boxplot). This shows that all recorded values for Jetson model A
are greater than any other devices or models. Model B processing times distribution on
Jetson was much better with 13 s as the maximum value though there were some outliers
over 25 s.

Figure 16 compares the device’s processing time behavior for each model. The bar
chart presents the average processing time where the horizontal axis represents models, the
vertical axis represents the average processing time in seconds, and the bars represent the
seven devices that were being evaluated. The Fog had the lowest average processing times
among all devices for all models and this can be related to the resources of the fog device.
An HP Pavilion Laptop had been used here as a fog device which has an Intel® Core™
i7-8550U processer and 8 GB memory. The Fog has, even, outperformed the Cloud average
processing time, 9.3 s, 1.1 s, 1.15 s, and 0.18 s (Cloud) compared to 7.7 s, 0.8 s, 0.5 s, and 0.1 s
(Fog) for models A, B, ALite, and BLite, respectively. It seems that the vCPU assigned by
Google for the containerized gRPC service is less powerful than the Intel® Core™ i7-8550U
processer in the Fog device (gRPC service). The exact physical CPU the containerized gRPC
service run on is unspecified by Google on the Google Cloud Run platform.

For models A and B, the Cloud provided the second-best average processing time (9.3 s
and 1.1 s), followed by Rasp8 (30.5 s and 2.4 s), and Jetson (49.1 s and 9.9 s), respectively.
Rasp8 and Rasp4 average processing times were almost identical for TFLite models (around
3 s ALite and 0.5 s BLite), though Rasp4 could not process original TF models due to memory
shortage. For the ALite model, after the Fog (0.46 s), the S9 was the fastest (0.61 s) followed
by the Cloud (1.15 s), Jetson (2.48 s), Rasp8 (2.52 s), Note 4 (2.72 s), and Rasp4 (2.74 s). For
the BLite model, after the Fog (0.09 s), the Cloud was the fastest (0.18 s), followed by S9
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(0.26 s), Jetson (0.52 s), Rasp8 (0.51 s), Rasp4 (0.53 s), and Note 4 (0.72 s). Although both S9
and Note 4 are mobile devices, S9 showed better results due to its processor capabilities
(see Table 3).

Looking at previous observations, the processing time is closely related to both device
capabilities and the model size and complexity. TFLite optimization greatly improved the
processing time and there was no accuracy loss (in our case). In more complex models, the
accuracy may lower to a certain level, which may jeopardize the application, depending on
its criticality. Devices at the fog or edge layers showed acceptable results compared to the
cloud which make them great candidates for local processing.

5.3. Service Response Time

The response time is the total time since the request was made until the result is
returned; this includes the processing time. Figures 17 and 18 show the response time
of all service types, devices, and models. Service and device specifications are referred
to in Table 3. Figure 17 compares the models’ response time behavior for each service
type and device. The bar chart presents the average response time where the horizontal
axis represents devices, the vertical axis represents the average response time in seconds,
and the bars represent model types. The average processing time (see Figure 15) and the
average response time (Figure 17) have similar behavior. Model A average response time
is always more than model B’s average response time for both TF and TFLite versions.
Unlike other devices, the Cloud performed better for model B (3.36 s) than model ALite
(3.7 s), and Rasp8 had an identical average response time (2.9 s) for both model B and ALite.
Looking at the boxplot in Figure 17 which shows the data distribution of the response time
for all the data collected in the experiments. There is a difference in the Cloud performance
distribution of model B and ALite. Model ALite IQR is larger than the IQR of model B
though both medians (Q2) are at around 1 s. CloudALite had an outliner above 25 s, while
the highest CloudB outliner is at around 17 s. For Rasp8, both model B and ALite had a
similar distribution, although the maximum value of ALite is more than that of B.
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Figure 18 compares the devices’ response time behavior for each model. The bar
chart presents the average response time, where the horizontal axis represents models, the
vertical axis represents the average response time in seconds, and the bars represent the
seven devices that were being evaluated. Although the Cloud and Fog had a close average
processing time (see Figure 16), the difference between them is greater when it comes to
response times. The difference between the Cloud and Fog average processing times is
1.6 s, 0.4 s, 0.7 s, and 0 s for models A, B, ALite, and BLite, respectively; the difference
between their average response times is 2.6 s, 2.2 s, 2.8 s, and 0.4 s for models A, B, ALite,
and BLite, respectively. The Cloud average response time is higher as it requires more time
to transfer the image across the internet. The networking time metric that is covered in
the next section clearly shows the load on the network of different services. The Jetson
average processing time greatly affects its response time, especially for model A (48.7 s),
with more than 18 s difference with the next highest response time, which is for Rasp8
(31 s). S9 had the lowest average response times for TFLite models 0.6 s (ALite) and 0.3 s
(BLite), while Note 4 had the highest average response time among TFLite models (10 s
and 7 s), which can be related to the Android Nearby Connections API that was used for
mobile device services.

The boxplot in Figure 18 provides a deeper look at the service’s response time values
showing the distribution of all collected response times. Note 4 boxplots for ALite and
BLite show that the maximum response times were 25 s and 20 s while the medians (Q2)
were 7 s and 2 s. BLite median is close to the Q3 (1 s), which means that 50% of collected
response times for Note 4 was below 1 s. This variation of data means that this type of
service response time is highly unpredictable.

These results show that local processing at mobile devices with MobileL services had
the best response time as they do not require any network communication, though only
TFLite or small models can be accommodated. On the other hand, other fog and edge
devices at the local network such as the Fog and Rasp8 can accommodate more complex
models and provide fast responses to local service requests.

5.4. Service Network Time

The network time is calculated as the difference between the response time and the
processing time, so it includes connection initialization time, devices network processing,
and data transfer time (see Equation (4)). This metric shows both the load on the network
for each service type and the performance of the different network connection technologies
used to communicate with the diagnosis services. There are two basic types of communica-
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tion protocols that have been used in this research, namely, the nearby connections and
gRPC. The mobile remote services use the Android Nearby Connections API to create a
peer-to-peer connection using various technologies such as Bluetooth, Wi-Fi, IP, and audio
depending on the available connection. Other services use gRPC and SSL for communica-
tion and the mobile local service does not require any network communication. In addition,
the network time gives an indication of the data transfer factor of the total response time.

NetworkTime = ResponseTime− ServiceProcessTime (4)

5.4.1. Model and Device Behavior

In this section, the network time is evaluated for various devices and models.
Figures 19 and 20 show the calculated network time values from the collected response
and processing times data. Figure 19 focuses on models’ behavior for each service type and
device while Figure 20 focuses on the behavior of the devices for each model.
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The bar chart on the left hand side of Figure 19 presents the average network time for all
service types and devices in terms of model types. MobileR services had the highest values
of average network time (around 7 s), and this can be related to the nearby connections,
especially since the network time includes the time required for connection initialization.
The difference of average network time between different models on the same device is
very small for all devices except the Cloud. The average network time of CloudBLite was
0.6 s, while for other models the network time was 1.4 s, 2.2 s, and 2.6 s (for A, B, and
ALite, respectively). However, looking at the right-hand side of Figure 19, the network
time boxplot shows the distribution of the data. The Q1, Q2, and Q3 of the Cloud network
time for all models fall below 1 s, though there are a lot of anomalies above 9 s for models
A, B, and BLite, which have affected the average value. All other devices have a similar
distribution of network time but with fewer and much lower anomalies, except for the
mobile remote. The maximum value of MobileRALite is 23 s and MobileRBLite is 19 s, both
have a minimum of 0.5 s. MobileRALite median is 4 s and MobileRBLite is median 2 s.
This high variation of network time on MobileR indicates that the nearby connections are
more unpredictable.

Figure 20 compares calculated network time in terms of devices for each model. The
bar chart on the left side shows the average network time. Despite the MobileR, whose
behavior was explained earlier, the Cloud had the highest values among them. This is
expected, as it is the only service that is located across WAN, and all other services are
on LAN. Among devices on the LAN, the Fog had the best average network time for all
models of around 0.39 s. Resp (Rasp4 0.41 s and Rasp8 0.46 s) was the second best followed
by Jetson (0.72 s). The boxplot on the right side shows the distribution of these values. The
Cloud had the highest anomalies followed by Jetson. All other device network times fall
below 2 s, including all anomalies.

To summarize, the results confirm that both the type of connection and technique
used for communication are affecting the networking time. Local services are always the
best option if the available resources are sufficient for processing although the available
network cards and other device specifications showed a variation of network times among
devices on the same LAN.

5.4.2. Behavior over Weekdays

This section describes the network time, which has been evaluated over the whole
period of the experiment to investigate the behavior of the devices. The data were collected
for four days starting from Saturday to Tuesday, three times a day for all models and
devices. Figure 21 shows the calculated network times plotted over a time series. In the
scatter plot on the left side of Figure 21, the network times were plotted as colored dots
where each color represents a different device. The vertical axis represents the network
time in seconds, the horizontal axis represents the time series including days and hours,
the dots represent the calculated network time for each device at a specific time, and the
line shows the trend of the network time over time. The trend curve is plotted using the
LOESS (Locally Estimated Scatterplot Smoothing) regression analysis method. The S9
mobile device has no network time as it runs a mobile local service that does not require
any network communication.

The highest network time trend line (top line) is for Note 4, which runs a remote
mobile service. The behavior of the Nearby Connections API has been observed in the
previous section, which had a very high distribution of data (see the boxplot of Note 4 in
Figure 19). Similarly, it can be seen that the Note 4 data points are spread all over the graph,
with a maximum of 23 s on Sunday 00:00 and a minimum of around 0.1 s on Tuesday 13:00.
The Cloud is the second-worst network time (second trend line from the top). However,
there are eleven values over the Note 4 trend line, ten of them ranging from 9 s to 13 s and
one 23 s on Tuesday 21:00. Other devices on LAN are showing a similar trend line, except
for Jetson (the purple line), which went slightly higher on Saturday until Sunday afternoon.
Saturday 15:00 was the highest with 8 s, and the second highest was on Saturday 22:00 with
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around 4 s network time. The Fog, Rasp8, and Rasp4 were more stable with one point over
the Cloud trend line for the Fog at around 2 s on Sunday 18:00.
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Looking at the shape of the trend lines over time, all the lines were lower on Sunday
00:00 and higher on Tuesday 22:00. Note 4 trend line fluctuated more than the other lines,
the curve rose on Saturday afternoon until Sunday night. On Monday at daytime, the
network time was lower, and then the curve started to rise again from Monday evening
until the end of the period. The Cloud network time trend started with a low network
time at 1 s on Saturday 00:00, then started to build up, and stabilized at around 2 s from
Saturday evening to Monday evening, before it rose again from Monday night to Tuesday
night reaching 3 s.

The boxplot on the right side of Figure 21 shows the distribution of calculated network
times on different days for different devices. Due to the space limitation in the figure, only
the distribution of days has been plotted, not specific times. The boxplot confirms the
earlier observation made from the scatter plot. The large boxes of Note 4 confirm the high
distribution of network times on the days shown in the scatter plot. Similarly, the Cloud
had many outliers over the maximum values on all days and the high outliers for Jetson on
Saturday confirm the curve in the Jetson trend line.

To summarize, the results showed there are changes in the device’s network times on
different times and days. These changes could be related to the user’s network usage trend
at different times of the day and during weekends and weekdays. Further investigation is
needed to find trends in network usage. Such information could be used for network and
service placement planning which could improve the QoS.

5.4.3. Cellular (4G) vs. Fiber Networks

In this section, a comparative study is made of fiber-optic and cellular 4G internet
connections. An experiment has been conducted over three days, from Sunday 28 March
2021 to Tuesday 31 March 2021. The data were collected for both fiber and 4G at two
different times of the day, and both Internet connections were from the same network
provider. The Cloud services are the ones that require the internet connection to connect to
them as they were installed in the Google datacenter. All other services do not require an
internet connection as they were installed in the LAN.

Figure 22 shows the network time of all Cloud services (for all models) for both fiber
and 4G Internet connections. The vertical axis represents the network time in seconds
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and the horizontal axis represents the time series including days and hours. In the scatter
plot on the left side of Figure 22, the dots represent the calculated network time for each
connection at a specific time, and the line shows the trend of the network time over time.
The trend curve is plotted using the LOESS regression analysis method. As expected, the
fiber connection had a better network time (around 2 s) than 4G (ranging from 3 s to 10 s).
The fiber connection is more stable over time with a slight rise at the end of the period to
around 2.5 s. However, there are a few (seven points total) higher values between 9 s and
13 s. The cellular (4G) connection is less stable over time as the trend line fluctuates over
time with many high and low values. The lowest value was 1.5 s on Sunday 28 March
2021 at 11:00, and the highest value was 30 s on Tuesday 31 March 2021 at 00:00. It appears
that there was higher demand on the cellular network from Monday night to Tuesday
afternoon and lower demand on Sunday afternoon to Monday afternoon, which produced
these variations.
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The boxplot on the right side of Figure 22 shows the distribution of calculated network
times for both fiber and 4G internet connections over time. The boxplot confirms our
earlier observation from the scatter plot. The large boxes of the 4G network on Sunday
00:00, Tuesday 00:00, and Tuesday 13:00 are aligned with the curve in the 4G trend line in
the scatter plot. The fiber network was much more stable, with smaller IQRs, consistent
medians, and few outliners over the whole period.

5.5. Service Data Transfer Rate

The service data transfer rate metric is the rate at which the data are being transferred
from the request service to the diagnosis service and back again. It includes the time needed
for the operating system to initialize the connection, prepare the packets, and send them
across the network. Mobile local services do not have a service data transfer rate, as they
do not require network communications. The service data transfer rate is calculated as
the total size of the transferred data divided by the network time (see Equation (5)). The
RequestSize and the ResponseSize are sizes of the request and response packets in bits.
Figures 23 and 24 show the calculated service data transfer rate from the collected packet
sizes and calculated network times.

ServiceDataTransfrerRate =
ResponseSize + RequestSize

NetworkTime
(5)

Figure 23 compares the service data transfer rate of different models for each service
type and device. The bar chart presents the average service data transfer rate where the
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horizontal axis represents devices, the vertical axis represents the average service data
transfer rate in Kbps, and bars represent model types. The gRPC service on the Fog device
had the highest average service data transfer rate for all models 4 Kbps for A, B, and ALite
as well as 5 Kbps for BLite, which is aligned with the average network time discussed earlier.
The Cloud service had the lowest service data transfer rate among all models, 1.7 Kbps,
1.7 Kbps, 1.6 Kbps, and 2 Kbps for models A, B, ALite, and BLite, respectively. This was
expected, as the Cloud services are the only services that require the data to be transferred
across WAN. The boxplot on the right side of Figure 23 shows the distribution of the service
data transfer rates. All devices show larger boxplots than the Cloud’s boxplots, this means
that the service data transfer rate for all local devices varies in its values more than the
Cloud’s values. Note 4 showed a very low service data transfer rate, with minimum and Q1
values of around 0.1 Kbps. In addition, the medians of both MobileRALite (0.6 Kbps) and
MobileRBLite (1.5 Kbps) are lower than those of CloudALite (1.9 Kbps) and CloudBLite
(2.1 Kbps).
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Figure 24 compares the service data transfer rate of different devices for each model
type. For all original TF models, the Fog had the best data service transfer rate followed
by Resp8, Jetson, and Cloud. For the ALite model, Rasp4 was better than the Fog by 0.06
Kbps, and they were followed by Resp8, Jetson, Note 4, and Cloud. For the BLite model,
the Fog was the best followed by Rasp4, Resp8, Jetson, Note 4, and Cloud. The boxplot
on the right side of Figure 24 shows the distribution of the service data transfer rates. The
medians of the original TF models show the same pattern as the average values; however,
the TFLite models showed a slightly different pattern. Unlike the averages, Note 4 medians
were lower than the Clouds, and Rasp4 and Rasp8 both had a similar median of 4 Kbps for
ALite model.

5.6. Service Energy Consumption

Energy is a key factor for system efficiency in terms of cost and environmental sus-
tainability. Therefore, services that consume less energy are favorable. Figure 25 shows the
estimated average energy consumption per task for all service types presented in service
catalog (see Table 3). The bar chart on the left side shows energy consumption grouped in
terms of devices, while the one on the right side shows energy consumption grouped in
terms of models. MobileL had the lowest energy consumption for both ALite (0.0009 Wh)
and BLite (0.0004 Wh), as no energy is used on data transfer in those models. The Cloud had
the highest energy consumption for all models, 0.26 Wh, 0.03 Wh, 0.03 Wh, and 0.01 Wh
for models A, B, ALite, and BLite, respectively. The BLite model consumed the least energy
for all service types, compared to other models which was expected, considering the char-
acteristics of this model. On the other hand, model A had the highest energy consumption
due to its computation and memory requirements. The CloudA had the highest energy
consumption of 0.26 Wh followed by FogA (0.14 Wh), JetsonA (0.14 Wh), and Rasp8 A
(0.04 Wh).

Sensors 2022, 22, x FOR PEER REVIEW 37 of 44 
 

 

  

Figure 25. Service energy consumption. 

5.7. Service Value (eValue and sValue)  
Two relative values are calculated, one for energy (eValue) and the other for speed 

(sValue) (see Section 3.5). These service values are used to compare the 22 different service 
types in terms of their accuracy, energy, and speed (response time). We only used the 
Fiber network in these calculations (the same applies to the energy consumption values 
presented in the previous section). The service values are computed using appropriate 
energy consumption parameters (see Section 3.5). For example, the Cloud eValue uses 
both Fiber and Wi-Fi energy consumption values. For Bluetooth, in the figures, we used 
the same energy consumption as for the Wi-Fi but this could easily be replaced by precise 
Bluetooth energy values. Note that there are also no problems in computing and plotting 
service values for the 4G network, but this will lengthen the paper and unnecessarily add 
to its complexity. The comparison provided for 4G versus Fiber in Section 5.4.3 only pre-
sents a comparison between network times; all other values, such as the service values, 
can be drawn from it. This is to bring another design dimension to the reader’s attention, 
while keeping the article complexity to a minimum. 

Figure 26 shows normalized service eValues as an integer between 0 and 100 for all 
service types. The bar chart on the left side shows the service eValues grouped in terms of 
devices, while the one on the right side shows the service eValues grouped in terms of 
models. MobileLBLite had the highest service eValue, and CloudA had the lowest eValue, 
which is aligned with their energy consumption. In general, the BLite model had the high-
est values among other models, and model A had the lowest values. When it comes to 
devices, MobileL services had the best service eValues, though they can only run TFLite 
models. MobileL services do not require network communication, which eliminates the 
network data transfer energy from the energy equation (see Equation (1)), reduces their 
energy consumption, and increases their eValues. The Rasp8 services had the best service 
eValue among services that run original TF models, and they are the second best for TFLite 
models after MobileL. This can be related to the energy consumption of the Raspberry Pi 
devices, which is the lowest among all devices used in the experiments (see Table 3). The 
Cloud services had the worst eValues due to both devices and data transfer energy con-
sumptions. 

Figure 25. Service energy consumption.

5.7. Service Value (eValue and sValue)

Two relative values are calculated, one for energy (eValue) and the other for speed
(sValue) (see Section 3.5). These service values are used to compare the 22 different service
types in terms of their accuracy, energy, and speed (response time). We only used the
Fiber network in these calculations (the same applies to the energy consumption values
presented in the previous section). The service values are computed using appropriate
energy consumption parameters (see Section 3.5). For example, the Cloud eValue uses
both Fiber and Wi-Fi energy consumption values. For Bluetooth, in the figures, we used
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the same energy consumption as for the Wi-Fi but this could easily be replaced by precise
Bluetooth energy values. Note that there are also no problems in computing and plotting
service values for the 4G network, but this will lengthen the paper and unnecessarily add to
its complexity. The comparison provided for 4G versus Fiber in Section 5.4.3 only presents
a comparison between network times; all other values, such as the service values, can be
drawn from it. This is to bring another design dimension to the reader’s attention, while
keeping the article complexity to a minimum.

Figure 26 shows normalized service eValues as an integer between 0 and 100 for all
service types. The bar chart on the left side shows the service eValues grouped in terms
of devices, while the one on the right side shows the service eValues grouped in terms
of models. MobileLBLite had the highest service eValue, and CloudA had the lowest
eValue, which is aligned with their energy consumption. In general, the BLite model had
the highest values among other models, and model A had the lowest values. When it
comes to devices, MobileL services had the best service eValues, though they can only run
TFLite models. MobileL services do not require network communication, which eliminates
the network data transfer energy from the energy equation (see Equation (1)), reduces
their energy consumption, and increases their eValues. The Rasp8 services had the best
service eValue among services that run original TF models, and they are the second best
for TFLite models after MobileL. This can be related to the energy consumption of the
Raspberry Pi devices, which is the lowest among all devices used in the experiments (see
Table 3). The Cloud services had the worst eValues due to both devices and data transfer
energy consumptions.
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Figure 27 shows normalized service sValues as an integer between 0 and 100 for all
service types. The bar chart on the left side shows the service sValues grouped in terms
of devices, while the one on the right side shows the service sValues grouped in terms
of models. MobileLBLite had the highest service eValue, and JetsonA had the lowest
sValue. For devices running TFLite models, MobileR had the lowest sValues, and for
devices running TF models, Jetson had the lowest sValues. In general, MobileL had the
best sValues, and the Fog services came in second place. Rasp8 and Rasp4 had similar
sValues, and the Cloud services’ were better than those for A and BLite models. The sValue
is strongly related to the services’ response times, which have been discussed extensively
in Section 5.3.

To summarize, MobileL services had the highest eValue and sValue, as they are using
less energy and provide faster responses. The only concern with MobileL services is that
they are limited in their resources and cannot accommodate large and complex models
or large volumes of data. The Cloud services were much better in terms of sValues but
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not eValues due to their high energy consumption. The Fog also performed very well in
terms of sValues (they are the second-best), but Rasp8 outperformed them when it came
to eValues. Jetson services had closer eValue and sValue, as their high processing time
affected both energy and response time.
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6. Conclusions and Future Work

Digital services are the fundamental building blocks of technology-driven smart cities
and societies. There has been an increasing need for distributed services that provide
intelligence near the fog and edge for reasons such as privacy, security, performance, and
costs. The healthcare sector is not an exception; not only does it require such distributed
services, but also it is also driven by many other factors including declining public health,
increase in chronic diseases, ageing population, rising healthcare costs, and COVID-19.

In this paper, the Imtidad reference architecture is proposed, implemented, and evalu-
ated. It provides DAIaaS over the cloud, fog, and edge using a service catalog case study
containing 22 AI skin disease diagnosis services. These services belong to four service
classes that are distinguished by software platforms (containerized gRPC, etc.) and are
executed on a range of hardware platforms (NVIDIA Jetson nano, etc.) and four network
types (Fiber, etc.). The AI models for diagnosis included two standard and two Tiny AI
Deep Neural Networks to enable their execution at the edge. They were trained and tested
using 10,015 real-life dermatoscopic images.

A detailed evaluation of the DAIaaS skin lesion diagnosis services was provided using
several benchmarks. A DL service on a local smartphone provides the best service in terms
of energy followed by a Raspberry Pi edge device. A DL service on a local smartphone
provides the best service also in terms of speed followed by a laptop device in the fog
layer. DL services in the edge layer on local smartphones are the best in terms of energy
and response time (speed) as they do not require any network communication, though
they can only accommodate TFLite or small models. TFLite optimization provided a great
improvement in terms of processing time and compatibility with edge devices. However,
it could reduce model accuracy to some levels that could be tolerated depending on the
criticality of the application and user preferences. Therefore, we considered the accuracy of
the model in both eValue and sValue, to provide a way for the user to choose and trade-off
between these factors, energy, and speed. Other devices in the fog and edge layers, such as
a laptop and Raspberry Pi (8 GB), can accommodate more complex models and at the same
time provide fast responses to local service requests. DL service on a remote smartphone
provided unpredictable behavior in terms of network time compared to other edge and fog
services due to the Android Nearby Connections API, which is used for nearby smartphone
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communication. The Cloud services’ processing time is close to the Fog services, though
the response time is higher as it requires more time to transfer the image across the internet.
This would depend on particular scenarios, such as those requiring heavy computations,
which would render the cloud to have much faster responses because in those cases the
processing time would be a bottleneck for low-resource fog devices. DL services in the
cloud layer also depend on the type of internet connection used. Our evaluation of both
Fiber and Cellular (4G) internet connections on the Cloud services confirmed that the fiber
network connection is more stable and has lower network time than the cellular connection
(4G in this case, but this may change for 5G and 6G). Obviously, while fiber connection was
shown to be more stable, it has limitations in terms of user mobility. The Cloud services
eValue and sValue are both affected by the required network communication over WAN.

The novelty and the high impact of this research lies in the developed reference
architecture, the service catalog offering a large number of services, the potential for
the implementation of innovative use cases through the edge, fog, and cloud, and their
evaluation on many software, hardware, and networking platforms, as well as a detailed
description of the architecture and case study. To the best of the authors’ knowledge,
this is the first research paper in which a reference architecture for DAIaaS is proposed
and implemented, as well as in which a healthcare application (skin lesion diagnosis) is
developed and studied in detail. This work is expected to have an extensive impact on
developing smart distributed service infrastructures for healthcare and other sectors.

Future research on distributed services will focus on improving the accuracy and
other performance aspects of the skin disease AI model and services. While the design,
implementation, and evaluation of the proposed reference architecture and DAIaaS services
is detailed and diverse, human, computer, and network resource limitations impeded a
higher diversity of hardware, networks, and more frequent measurements. Future lines of
research will be oriented towards improving the granularity of the measurements as well
as adding to the diversity of the software, hardware, and communication platforms.

Future work will also consider improving and refining the reference architecture,
extending it through the development of services in other application domains and sectors
including many smart city applications that we have developed over the years including
smart cities [2,3,81], big data [8,20], improving computing algorithms [82,83], education [1],
spam detection [84], accident and disaster management [85,86], autonomous vehicles and
transportation [87–91], and healthcare [6,56,92,93].

AI will be an important parameter in the evolution of the 5th Generation (5G) networks
and the conceptualization and design of the 6th Generation (6G) networks. Technologies
such as network function virtualization (NFV), software-defined networking (SDN), 3D
network architectures, and energy harvesting strategies will play important roles in de-
livering the promises of 5G and 6G networks. However, it is AI that is expected to be
the main player in network design and operations, not only in terms of the use of AI for
the optimization of network functions, but also due to the expectations that AI, being a
fundamental ingredient of smart applications, will be a major workload to be supported by
next-generation networks. While 5G promises us high-speed mobile internet, 6G pledges
to support ubiquitous AI services through next-generation softwarization, heterogeneity,
and configurability of networks [13]. The work on 6G is in its infancy and requires the
community to conceptualize and develop its design, implementation, deployment, and
use cases [13]. This paper is part of our broader work on distributed AI as a Service and is
a timely contribution to this area of developing next-generation infrastructure, including
the network infrastructure, needed to support smart societies of the future. Our earlier
work [13] proposed a framework for provisioning Distributed AI as a service in IoE (In-
ternet of Everything) and 6G environments and evaluated it using three case studies on
distributed AI as service delivery in smart environments, including a smart airport and
a smart district. This paper adds to the earlier work by extending another case study on
developing a service catalog of distributed services.



Sensors 2022, 22, 1854 38 of 41

Author Contributions: Conceptualization, N.J. and R.M.; methodology, N.J. and R.M.; software,
N.J.; validation, N.J. and R.M.; formal analysis, N.J., R.M., J.M.C. and T.Y.; investigation, N.J., R.M.,
I.K., A.A., T.Y. and J.M.C.; resources, R.M., I.K. and A.A.; data curation, N.J.; writing–original draft
preparation, N.J. and R.M.; writing–review and editing, R.M., I.K., A.A., T.Y. and J.M.C.; visualization,
N.J.; supervision, R.M. and I.K.; project administration, R.M., I.K. and A.A.; funding acquisition, R.M.,
A.A. and I.K. All authors have read and agreed to the published version of the manuscript.

Funding: The authors acknowledge with thanks the technical and financial support from the Dean-
ship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia, under
Grant No. RG-10-611-38. The experiments reported in this paper were performed on the Aziz
supercomputer at KAU.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The HAM10000 dataset is a public dataset available from the link
provided in the article.

Acknowledgments: The work carried out in this paper is supported by the HPC Center at King
Abdulaziz University. The training and software development work reported in this paper was
carried out on the Aziz supercomputer.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mehmood, R.; Alam, F.; Albogami, N.N.; Katib, I.; Albeshri, A.; Altowaijri, S.M. UTiLearn: A Personalised Ubiquitous Teaching

and Learning System for Smart Societies. IEEE Access 2017, 5, 2615–2635. [CrossRef]
2. Yigitcanlar, T.; Butler, L.; Windle, E.; Desouza, K.C.; Mehmood, R.; Corchado, J.M. Can Building ‘Artificially Intelligent Cities’

Safeguard Humanity from Natural Disasters, Pandemics, and Other Catastrophes? An Urban Scholar’s Perspective. Sensors 2020,
20, 2988. [CrossRef] [PubMed]

3. Yigitcanlar, T.; Kankanamge, N.; Regona, M.; Maldonado, A.; Rowan, B.; Ryu, A.; DeSouza, K.C.; Corchado, J.M.; Mehmood, R.;
Li, R.Y.M. Artificial Intelligence Technologies and Related Urban Planning and Development Concepts: How Are They Perceived
and Utilized in Australia? J. Open Innov. Technol. Mark. Complex. 2020, 6, 187. [CrossRef]

4. AlOmari, E.; Katib, I.; Albeshri, A.; Mehmood, R. COVID-19: Detecting Government Pandemic Measures and Public Concerns
from Twitter Arabic Data Using Distributed Machine Learning. Int. J. Environ. Res. Public Health 2021, 18, 282. [CrossRef]
[PubMed]

5. Yigitcanlar, T.; Corchado, J.; Mehmood, R.; Li, R.; Mossberger, K.; Desouza, K. Responsible Urban Innovation with Local
Government Artificial Intelligence (AI): A Conceptual Framework and Research Agenda. J. Open Innov. Technol. Mark. Complex.
2021, 7, 71. [CrossRef]

6. Alotaibi, S.; Mehmood, R.; Katib, I.; Rana, O.; Albeshri, A. Sehaa: A Big Data Analytics Tool for Healthcare Symptoms and
Diseases Detection Using Twitter, Apache Spark, and Machine Learning. Appl. Sci. 2020, 10, 1398. [CrossRef]

7. Yigitcanlar, T.; Mehmood, R.; Corchado, J.M. Green Artificial Intelligence: Towards an Efficient, Sustainable and Equitable
Technology for Smart Cities and Futures. Sustainability 2021, 13, 8952. [CrossRef]

8. Alam, F.; Mehmood, R.; Katib, I.; Albogami, N.N.; Albeshri, A. Data Fusion and IoT for Smart Ubiquitous Environments: A
Survey. IEEE Access 2017, 5, 9533–9554. [CrossRef]

9. Mehmood, R.; Faisal, M.A.; Altowaijri, S. Future networked healthcare systems: A review and case study. In Handbook of Research
on Redesigning the Future of Internet Architectures; IGI Global: Hershey, PA, USA, 2015; pp. 531–555.

10. Greco, L.; Percannella, G.; Ritrovato, P.; Tortorella, F.; Vento, M. Trends in IoT based solutions for health care: Moving AI to the
edge. Pattern Recognit. Lett. 2020, 135, 346–353. [CrossRef]

11. Mukherjee, A.; Ghosh, S.; Behere, A.; Ghosh, S.K.; Buyya, R. Internet of Health Things (IoHT) for personalized health care using
integrated edge-fog-cloud network. J. Ambient Intell. Humaniz. Comput. 2020, 12, 943–959. [CrossRef]

12. Farahani, B.; Barzegari, M.; Aliee, F.S.; Shaik, K.A. Towards collaborative intelligent IoT eHealth: From device to fog, and cloud.
Microprocess. Microsyst. 2019, 72, 102938. [CrossRef]

13. Janbi, N.; Katib, I.; Albeshri, A.; Mehmood, R. Distributed Artificial Intelligence-as-a-Service (DAIaaS) for Smarter IoE and 6G
Environments. Sensors 2020, 20, 5796. [CrossRef] [PubMed]

14. Usman, S.; Mehmood, R.; Katib, I. Big Data and HPC Convergence for Smart Infrastructures: A Review and Proposed Architecture.
Smart Infrastruct. Appl. 2020, 561–586.

15. Al-Dhubhani, R.; Mehmood, R.; Katib, I.; Algarni, A. Location privacy in smart cities era. In Lecture Notes of the Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering; Springer Publishing Company: New York, NY, USA, 2018;
Volume 224, pp. 123–138.

http://doi.org/10.1109/ACCESS.2017.2668840
http://doi.org/10.3390/s20102988
http://www.ncbi.nlm.nih.gov/pubmed/32466175
http://doi.org/10.3390/joitmc6040187
http://doi.org/10.3390/ijerph18010282
http://www.ncbi.nlm.nih.gov/pubmed/33401512
http://doi.org/10.3390/joitmc7010071
http://doi.org/10.3390/app10041398
http://doi.org/10.3390/su13168952
http://doi.org/10.1109/ACCESS.2017.2697839
http://doi.org/10.1016/j.patrec.2020.05.016
http://doi.org/10.1007/s12652-020-02113-9
http://doi.org/10.1016/j.micpro.2019.102938
http://doi.org/10.3390/s20205796
http://www.ncbi.nlm.nih.gov/pubmed/33066295


Sensors 2022, 22, 1854 39 of 41

16. Assiri, F.Y.; Mehmood, R. Software Quality in the Era of Big Data, IoT and Smart Cities; Springer: Cham, Switzerland, 2020;
pp. 519–536.

17. Singh, J.; Kad, S.; Singh, P.D. Implementing Fog Computing for Detecting Primary Tumors Using Hybrid Approach of Data Mining;
Springer: Singapore, 2021; pp. 1067–1080.

18. Amin, S.U.; Hossain, M.S. Edge Intelligence and Internet of Things in Healthcare: A Survey. IEEE Access 2020, 9, 45–59. [CrossRef]
19. Arfat, Y.; Aqib, M.; Mehmood, R.; Albeshri, A.; Katib, I.; Albogami, N.; Alzahrani, A. Enabling Smarter Societies through Mobile

Big Data Fogs and Clouds. Procedia Comput. Sci. 2017, 109, 1128–1133. [CrossRef]
20. Arfat, Y.; Usman, S.; Mehmood, R.; Katib, I. Big Data for Smart Infrastructure Design: Opportunities and Challenges. Smart

Infrastruct. Appl. 2020, 491–518.
21. Ahmad, A.; Fahmideh, M.; Altamimi, A.B.; Katib, I.; Albeshri, A.; Alreshidi, A.; Mehmood, R. Software Engineering for IoT-Driven

Data Analytics Applications. IEEE Access 2021, 9, 48197–48217. [CrossRef]
22. Tang, P.; Dong, Y.; Chen, Y.; Mao, S.; Halgamuge, S. QoE-Aware Traffic Aggregation Using Preference Logic for Edge Intelligence.

IEEE Trans. Wirel. Commun. 2021, 20, 6093–6106. [CrossRef]
23. Tsaur, W.-J.; Yeh, L.-Y. DANS: A Secure and Efficient Driver-Abnormal Notification Scheme With IoT Devices Over IoV. IEEE Syst.

J. 2018, 13, 1628–1639. [CrossRef]
24. Cui, X.; Zhang, W.; Finkler, U.; Saon, G.; Picheny, M.; Kung, D. Distributed Training of Deep Neural Network Acoustic Models for

Automatic Speech Recognition: A comparison of current training strategies. IEEE Signal Process. Mag. 2020, 37, 39–49. [CrossRef]
25. Langer, M.; He, Z.; Rahayu, W.; Xue, Y. Distributed Training of Deep Learning Models: A Taxonomic Perspective. IEEE Trans.

Parallel Distrib. Syst. 2020, 31, 2802–2818. [CrossRef]
26. Aspri, M.; Tsagkatakis, G.; Tsakalides, P. Distributed Training and Inference of Deep Learning Models for Multi-Modal Land

Cover Classification. Remote Sens. 2020, 12, 2670. [CrossRef]
27. Sugi, S.S.S.; Ratna, S.R. A novel distributed training on fog node in IoT backbone networks for security. Soft Comput. 2020, 24,

18399–18410. [CrossRef]
28. Li, C.; Wang, S.; Li, X.; Zhao, F.; Yu, R. Distributed perception and model inference with intelligent connected vehicles in smart

cities. Ad Hoc Netw. 2020, 103, 102152. [CrossRef]
29. Hosseinalipour, S.; Brinton, C.G.; Aggarwal, V.; Dai, H.; Chiang, M. From Federated to Fog Learning: Distributed Machine

Learning over Heterogeneous Wireless Networks. IEEE Commun. Mag. 2020, 58, 41–47. [CrossRef]
30. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge

Computing. Proc. IEEE 2019, 8, 1738–1762. [CrossRef]
31. Cao, Y.; Chen, S.; Hou, P.; Brown, D. FAST: A fog computing assisted distributed analytics system to monitor fall for stroke

mitigation. In Proceedings of the 2015 IEEE International Conference on Networking, Architecture and Storage, NAS 2015,
Boston, MA, USA, 6–7 August 2015; pp. 2–11.

32. Hassan, S.R.; Ahmad, I.; Ahmad, S.; AlFaify, A.; Shafiq, M. Remote Pain Monitoring Using Fog Computing for e-Healthcare: An
Efficient Architecture. Sensors 2020, 20, 6574. [CrossRef]

33. Mohammed, T.; Albeshri, A.; Katib, I.; Mehmood, R. UbiPriSEQ—Deep reinforcement learning to manage privacy, security,
energy, and QoS in 5G IoT hetnets. Appl. Sci. 2020, 10, 7120. [CrossRef]

34. Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge Intelligence: The Confluence of Edge Computing and
Artificial Intelligence. IEEE Internet Things J. 2020, 7, 7457–7469. [CrossRef]

35. Wang, X.; Han, Y.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep Learning: A
Comprehensive Survey. IEEE Commun. Surv. Tutorials 2020, 22, 869–904. [CrossRef]

36. Park, J.; Samarakoon, S.; Bennis, M.; Debbah, M. Wireless Network Intelligence at the Edge. Proc. IEEE 2019, 107, 2204–2239.
[CrossRef]

37. Chen, J.; Ran, X. Deep Learning With Edge Computing: A Review. Proc. IEEE 2019, 107, 1655–1674. [CrossRef]
38. Isakov, M.; Gadepally, V.; Gettings, K.M.; Kinsy, M.A. Survey of Attacks and Defenses on Edge-Deployed Neural Networks. In

Proceedings of the 2019 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 24–26 September
2019; pp. 1–8.

39. Rausch, T.; Dustdar, S. Edge intelligence: The convergence of humans, things, and AI. In Proceedings of the 2019 IEEE International
Conference on Cloud Engineering, IC2E 2019, Prague, Czech Republic, 24–27 June 2019; pp. 86–96.

40. Shi, Z. Advanced Artificial Intelligence, 2nd ed.; World Scientific: Singapore, 2019.
41. Pattnaik, B.S.; Pattanayak, A.S.; Udgata, S.K.; Panda, A.K. Advanced centralized and distributed SVM models over different IoT

levels for edge layer intelligence and control. Evol. Intell. 2020, 1–15. [CrossRef]
42. Gao, Y.; Liu, L.; Zheng, X.; Zhang, C.; Ma, H. Federated Sensing: Edge-Cloud Elastic Collaborative Learning for Intelligent

Sensing. IEEE Internet Things J. 2021, 8, 11100–11111. [CrossRef]
43. Chen, Y.; Qin, X.; Wang, J.; Yu, C.; Gao, W. FedHealth: A Federated Transfer Learning Framework for Wearable Healthcare. IEEE

Intell. Syst. 2020, 35, 83–93. [CrossRef]
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