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Abstract: Damage detection is important for the maintenance of automated machines. General
non-destructive testing techniques require static equipment and complex analysis processes, which
restricts the maintenance of automated machines. Therefore, this paper proposes an acoustic emission
(AE) tomography method for detecting cavity damage in automated machines, combining the
fast sweeping method (FSM) and the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
method. This approach overcomes the limitations of real-time AE detection for cavity damage in
continuous and homogeneous materials. The proposed method has been applied in numerical and
laboratory experiments to validate its feasibility. The results show that the inversed low-velocity
regions correspond to the actual cavity regions, and the sources of cavity damage can be effectively
detected. This paper provides a new perspective for AE testing technologies, and also lays the
foundation for other non-destructive testing techniques, in terms of cavity damage detection.

Keywords: non-destructive testing; acoustic emission tomography; cavity damage detection;
ray tracing

1. Introduction

With the development of electrical automation technologies, automated machines
have played an important role in engineering. However, automated machines are inevitably
affected by damage sources in continuous and mechanized production processes, which
brings great challenges to the safety of enterprises. Various damages and defects affect
the health condition of equipment components, such as the rolling bearings [1,2], rotating
machinery [3], and cylinders [4], and induce huge hazards to enterprises.

The damage detection technologies for automated machines are commonly divided
into general testing technologies and non-destructive testing technologies. General testing
technologies need to sample research materials and conduct a destructive test, which is
not conducive to the maintenance of the automated machine. Non-destructive testing
technologies, including magnetic particle testing [5–7], radiographic testing [8], and eddy
current testing [9], can detect the health condition without damaging the tested materials.
However, some common non-destructive testing technologies also face problems such as
the requirement to keep the tested equipment static, complex analysis processes, and so
on. This greatly restricts the non-stop maintenance of automated machines in engineering.
However, compared with other non-destructive testing technologies, acoustic emission
(AE) technology can realize real-time monitoring using acoustic signals [10]. In addition,
AE tomography can further detect the distribution of damage sources when the variation
in the velocity field is caused by the damage sources. This is of great importance for the
real-time monitoring of automated machines in engineering.

AE technology is an important and basic non-destructive testing technology that is
widely used for the detection of damages and defects [11,12]. Thomas Krause proposed a
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signal model-based AE detection algorithm, and utilized low-frequency signals to detect
damage events in wind turbine rotor blades [13]. Dong [14] utilized AE technology to
investigate the qualitative relationship between precursors and principal stress direction,
and proposed a new analysis method for stability monitoring in engineering. Zhao [15]
investigated the tensile deformation characteristics and damage evolution of aluminum
alloy sheets, based on AE technology. The tradition AE methods, such as multiple mode
decomposition methods, can be used with AE data to identify a single region of damage
on a uniform background. However, the distribution of velocity and damage sources is
usually complex in engineering, and the noise is also inevitable to the frequency of the
sampled signal. This restricts the application of multiple mode decomposition methods.
Additionally, identifying the AE damage location is an important application of AE technol-
ogy. Dong [16] developed an improved A* search algorithm and realized the high-precision
source location under complex three-dimensional structures with irregular holes. Wei [17]
proposed a dynamic damage location method for a high-speed train bogie, and accurately
detected damage sources through signal reconstruction and localization. Dong [18] investi-
gated the effect of temperature on the location accuracy in AE experiments, and found that
the accuracy decreased sharply due to cracks in the heating process. Dong [19] proposed an
AE location method, and realized the accurate location in complex structures containing un-
known empty areas. However, for metallic engineering structures, the velocity distribution
is complex, and can be variable in different directions. The assumption of constant velocity
might induce errors in source detection. To overcome this limitation, AE tomography has
recently been developed [20–22]. Jiang [23] proposed an AE tomography method, based on
simultaneous algebraic reconstruction, to visualize the internal damages in a steel plate.
Dong [24] proposed a new method, combining the improved A* search algorithm and
the match method for empty region identification in complex two-dimensional structures.
Nicolas Brantut [25] proposed active–passive acoustic emission tomography to monitor
laboratory rock deformation experiments. Most AE tomography research focuses on con-
tinuous and homogeneous materials, but ignores the detection of cavity damage sources.
Cavity damage sources have a great impact on the mechanical properties of metallic ma-
terials in automated machines. Research on the real-time detection of cavity damage in
automatic machines, based on AE tomography technology, plays an important role in
ensuring the safe operation of equipment.

In this paper, AE tomography, combining the fast sweeping method (FSM) and the
limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method, is proposed for
detecting cavity damage sources. This method utilizes the optimization of misfit between
the observed and calculated arrivals, to literately update the velocity distribution from the
background velocity. Numerical and laboratory experiments are conducted to verify the
identification performance of the proposed method for cavity damage sources.

2. Methods

AE tomography is composed of forward and inversion parts. The forward part
is also called forward modeling, which calculates the arrivals of nodes in the research
region. The arrivals of nodes are directly related to the velocity distribution of the research
region. The arrivals where the receivers are located are picked up in the forward part,
and then compared with the observed arrivals in the inversion part. When the misfit
between the calculated and observed arrivals is higher than the convergency requirement,
an inversion algorithm is used to update the velocity field. This procedure does not stop
until it converges or reaches a certain iteration.

2.1. Forward Modeling

Under the condition of high-frequency approximation, the wavefront of an elastic
wave in an isotropic medium is an approximately satisfied eikonal equation, as follows:

|∇T(x)| = 1
c(x)

, x ∈ Ω, (1)
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where the boundary condition is t(xs) = 0. The fast sweeping method (FSM) calculates
arrivals based on the upwind method and the alternating scanning sequence of a Gauss–
Seidel iteration [26]. It can provide highly accurate and efficient computation for the
forward part, which is important in the tomography process. The FSM is used to solve
the eikonal equation in the discrete case. For simplicity, the FSM is introduced in the
two-dimensional case. In FSM, the discrete eikonal equation is written as follows:

[
(ti,j − tx min)

+
]2

+
[
(ti,j − ty min)

+
]2

=
h2

ci,j
(2)

where {
tx min = min

(
ti−1,j, ti+1,j

)
,

ty min = min
(
ti,j−1, ti,j+1

)
,

(3)

and

x+ =

{
x, x > 0,
0, x ≤ 0.

(4)

The unique solution to Equation (2) is as follows:

ti,j =


min(a, b) + h

ci,j
, |a− b| ≥ h

ci,j
,

a+b+
√

2h2

c2
i,j
−(a−b)2

2 , |a− b| < h
ci,j

,

(5)

where a = tx min and b = ty min. To determine the unique solution, FSM consists of the
following three steps:

1. Initialization: initializing the model with ts = 0, and assigning large positive values
at all other grid points;

2. Gauss-Seidel iteration: sweeping the domain by Gauss-Seidel iterations, and selecting
the smaller value between the new solution and the original solution;

3. Convergence: repeating step (2) until ||tk+1 − tk|| ≤ ε .

2.2. Inversion

To invert the wave velocity field by iteration, we tried to minimize the objective
function, as follows:

L(c) =
1
2 ∑m

i=1 ∑n
j=1

[
t(c, r)− tobs(r)

]2
, (6)

where t and tobs represent the values of calculated first arrivals and observed first arrivals,
respectively. The gradient of the objective function, with respect to the wave velocity,
is implicitly nonlinear. Moreover, the adjoint state method [27] is used to calculate the
gradient L′

(
ck
)

. The adjoint state variable λ is the solution of the following:

∇·λ∇T = 0, (7)

with the following boundary condition:

n·λ∇T = Tobs − T, (8)

where n represents the unit normal vector. Equation (7) can be rewritten as follows:

d
dx

(aλ) +
d
dz

(bλ) = 0, (9)
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where a = dt(x,z)
dx , b = dt(x,z)

dz can be calculated as follows:

ai−1/2,j =
ti,j − ti−1,j

∆x
, ai+1/2,j =

ti+1,j − ti,j

∆x
, (10)

bi,j−1/2 =
ti,j − ti,j−1

∆z
, bi,j+1/2 =

ti,j+1 − ti,j

∆z
, (11)

Then, the values for a±i−1/2,j, a±i+1/2,j, b±i,j−1/2, a±i,j+1/2 with itself and its absolute value

can be calculated. Take a±i−1/2,j, for instance, as follows:

a+i−1/2,j =
ai−1/2,j +

∣∣∣ai−1/2,j

∣∣∣
2

, (12)

Following this, the adjoint variable is obtained from Equation (9), with a finite differ-
ence scheme and gradient, as follows:

c̃ = −(I − v∆)−1
(

1
c3 ∑ λ

)
, (13)

After determining the adjoint variable and gradient, we adopted the L-BFGS method
for numerical optimization. The L-BFGS algorithm can mitigate the computational cost
in the inversion part by replacing the approximate Hessian matrix with updated values
for the model and its gradient. The L-BFGS algorithm is of importance for realizing fast
tomography for non-destructive testing. The iteration of inversion starts with a given initial
velocity model c0, and the iterative process can be formulated as follows

ck+1 = ck − αkc̃k, (14)

where c̃k represents the exploration direction of the model in a single iteration, and αk is
the iteration step size, determined by an inaccurate linear search based on Wolfe–Powell
conditions. The exploration direction c̃k is estimated by the following:

c̃k = A−1
k L′

(
ck
)

, (15)

where Ak is a positive definite operator satisfying the following condition:

Ak+1

(
ck+1 − ck

)
= L′

(
ck+1

)
− L′

(
ck
)

, (16)

L-BFGS is one of the quasi-Newton methods, so it has an approximate second-order
convergence rate. As for the quasi-Newton method, the positive definite operator Ak is
obtained by iterative calculation to approximately replace the Hessian matrix, which not
only has a super linear convergence speed, but also effectively saves the required memory.

When the observations are not accurate enough, or the initial model is far from the
real model, the algorithm may not find the correct descent direction, or cannot calculate the
iterative step size. Therefore, in each iteration, proper regularization is necessary, which
helps keep the algorithm stable.

AE tomography testing consists of the following three steps, and is shown in Figure 1:

1. Establishing the initial model and its grid size according the region of interest;
2. Collecting AE signal data, such as arrivals of AE events, source and receiver

coordinates;
3. Calculating the inversion result from the initial model, based on FSM and L-BFGS,

until it satisfies the convergence requirement. The convergence requirement is set so
that when the difference of the updated value of the model is smaller than a certain
value, or the iteration reaches a certain value, the inversion process is regarded as
satisfying the convergence.
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Figure 1. Flowchart of tomography testing for cavity damages. The proposed method utilizes FSM
and L-BFGS as the forward modeling and inversion algorithm, respectively.

3. Experiments

To verify the feasibility of the proposed method for detecting cavity damage sources,
we conducted numerical and laboratory experiments, which are described in this section.
The numerical experiments were assumed for a 40 cm× 40 cm two-dimensional plane,
where the background velocity was set as 3000 m/s. Forty sensors were evenly arranged
on the two sides, and the sensors on the top side were used as the AE sources. Four
hundred AE signals were received by the sensors on the bottom side. The coordinates
of the sensors were known, and each AE event could be received by the sensors. In
the first numerical experiment, there was a single cavity damage source, whose size
was 15 cm× 15 cm. The second numerical experiment contained multiple cavity damage
sources, each 7.5 cm× 7.5 cm in size. The numerical experiments were conducted to verify
the performance of the proposed method for detecting cavity damage sources in an ideal
situation. The laboratory experiment was conducted with a 40 cm× 40 cm two-dimensional
steel plate containing a 16 cm× 10 cm cavity damage source. There were sixteen sensors
arranged on the two opposite sides, and sixty-four arrivals were received and used to
reconstruct the velocity field from the initial model.

3.1. Numerical Experiments

To validate the AE tomography method for detecting cavity damage sources under
theoretical conditions, the first numerical experiment and its ray-tracing paths are shown
in Figure 2. It can be observed from Figure 2 that the red rhombuses represent the AE
signal sources and the white rhombuses represent the receivers. The background velocity
was set as V = 3000 m/s. Since the velocity in the cavity damage region is lower than
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the background velocity, the ray-tracing paths tend to pass around the cavity damage
region. This apparent diffraction phenomenon is shown in Figure 2b. The background
velocity was set as the initial model for the iteration, and the iteration results are shown in
Figure 3. It can be observed that, with an increasing number of iterations, a low-velocity
region gradually appears in the inversion region. The velocity difference between the
inversion region and the actual cavity damage region demonstrates a significant uptrend.
In addition, the ray-tracing paths in the inversion regions also tend to bend and diffract
with the increase in iterations. This is because the actual cavity damage region limits the
velocity of the first arrival wave through the receivers on the bottom sides, and the first
arrival wave has to travel around the boundaries to the receivers. Thus, the arrivals of
the receivers in the real model are generally slower than those in the initial model. The
difference generally increases with the difference in velocity between the real and initial
models, and then remains unchanged. This is because when the velocity in the damaged
regions is lower than a certain value, rays do not passed, and, as a result, the variation in
velocity will not further increase the difference. Since the optimization of tomography can
be regarded as a solution to an ill-posed equation, the amount of available data is always
less than the velocity cells of the model. The difference between the obtained and actual
low-velocity regions can only be minimized when the difference is large enough to affect
the received arrivals. Thus, the obtained results might be relatively different compared
with the actual low-velocity regions. The final tomography result in Figure 3 shows that
the proposed method can realize the reconstruction of a single cavity damage source in the
inversion region.
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cavity damage source. The red rhombuses represent the AE signal sources and the white rhombuses
represent the receivers.

The second numerical experiment and its ray-tracing paths are shown in Figure 4.
In contrast to the first numerical experiment, the real model contains two cavity damage
sources, and its ray-tracing paths are more complex. The cavity damage sources block
the propagation of signals between the left diagonal sensors. The background velocity
was set as V = 3000 m/s for the initial model, and the tomography results are shown in
Figure 5. There is no diffraction in the initial model, and the rays travel directly from the
sources to the receivers at iter. = 0. As the iteration number increases, the low-velocity
regions become apparent, where the rays travel around the damage regions. The sizes
of the low-velocity regions become larger with each iteration. It can be observed from
Figure 5f that the low-velocity regions correspond to the actual cavity damage sources.

The numerical experiments demonstrated the feasibility of the proposed AE tomog-
raphy method for detecting cavity damage sources from the initial model. The inversed
low-velocity regions were located at the position of actual cavity damage sources, sur-
rounded by the diffracting ray-tracing paths.
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3.2. Laboratory Experiments

Compared to theoretical numerical experiments, there are unavoidable errors and
factors in laboratory AE tomography experiments, such as the uniform real velocity distri-
bution, arrival errors, and so on. Therefore, it was necessary to validate the performance of
the proposed method in the laboratory.

The experimental platform for detecting cavity damage is shown in Figure 6a. The
inversion region was a steel plate with a cavity region. The sensors were arranged on the
steel plate, and the received wave belonged to the surface wave. The AE signals were
activated by the pulse transmitted function of the active AE source, and were detected by the
receivers. Figure 6b shows the 80× 80 mesh grids for the laboratory experiments. The red
mesh grid represents the steel plate and the white mesh grid represents the cavity region.

The results of AE tomography in the laboratory experiments are shown in Figure 7.
The initial model was established based on the average velocity obtained from the sig-
nals excited and received by sensors on the same side. The initial model was set with a
background velocity of V = 3000 m/s. As the iterations increased, it can be observed that
the velocity of the middle region begins to decrease, and the diffraction of rays increased.
When the iterations reached 40, there was an apparent rectangular low-velocity region,
corresponding to the cavity region. Due to the impact of error factors, there were artifacts
along the direction between the sensors. This was mainly because the velocity gradient
along the direction between the sensors was often higher than other areas, and the velocity
tended to change. inevitably. In addition, cutting the steel plate could have caused invisible
damage to the uncut parts around it. Although no cracks were observed on the surface, the
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internal wave velocity field had changed. While the results were affected by these artifacts,
to some extent, the actual distribution of the cavity region could still be clearly identified.
This proves the feasibility of the proposed AE tomography for detecting cavity damage
sources in automated machines.
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4. Conclusions

Acoustic emission tomography is a new kind of non-destructive testing technology.
This paper proposes an AE tomography method for detecting cavity damage sources in
automated machines. It utilizes FSM as the forward modeling method, to calculate the
arrivals in the inversion region. Subsequently, the misfit function between the observed
and calculated arrivals is iteratively minimized with an optimization algorithm, based
on the L-BFGS method. To validate the feasibility of the proposed method for detecting
cavity damage, numerical and laboratory experiments were conducted. The reliability
and feasibility of the proposed method were proved by the tomography results. The
proposed method can realize the detection of cavity damage in theoretical and laboratory
situations. The position of the low-velocity region accurately indicates the actual cavity
damage sources. Therefore, the proposed method satisfies the requirement of accuracy for
the detection of cavity damage sources in automated machines.

The proposed method was verified by the detection of cavity damage sources in the
paper, but it may be suitable for other damage sources, such as cracks and corrosion. This is
because the proposed method is based on the variation in wave velocity after the damage.
The proposed AE tomography method offers promising insights into damage detection
in automated machines, based on non-destructive testing technology. This study not only
provides a theoretical and technical basis for the application of this technology in steel-made
equipment, but also it could be extended to detect damage in other composite materials.

Author Contributions: Conceptualization, Y.S. and L.D.; methodology, Z.P.; software, Z.P.; validation,
Y.S., L.D. and Z.P.; formal analysis, Y.S.; data curation, Z.P.; writing—original draft preparation, Y.S.;
writing—review and editing, Z.P.; visualization, Y.S.; supervision, Z.P.; project administration, L.D.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (2021YFC2900500)
and the Hunan Province Academic Degree and Postgraduate Education Reform Research Project
(2020JGZD014).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cerrada, M.; Sánchez, R.-V.; Li, C.; Pacheco, F.; Cabrera, D.; Valente de Oliveira, J.; Vásquez, R.E. A review on data-driven fault

severity assessment in rolling bearings. Mech. Syst. Signal Process. 2018, 99, 169–196. [CrossRef]
2. Goyal, D.; Choudhary, A.; Pabla, B.S.; Dhami, S.S. Support vector machines based non-contact fault diagnosis system for bearings.

J. Intell. Manuf. 2020, 31, 1275–1289. [CrossRef]
3. Lei, Y.; Lin, J.; He, Z.; Zuo, M.J. A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst.

Signal Process. 2013, 35, 108–126. [CrossRef]
4. Hamzeloo, S.R.; Shamshirsaz, M.; Rezaei, S.M. Damage detection on hollow cylinders by Electro-Mechanical Impedance method:

Experiments and Finite Element Modeling. Comptes Rendus Mécanique 2012, 340, 668–677. [CrossRef]
5. Zolfaghari, A.; Zolfaghari, A.; Kolahan, F. Reliability and sensitivity of magnetic particle nondestructive testing in detecting the

surface cracks of welded components. Nondestruct. Test. Eval. 2018, 33, 290–300. [CrossRef]
6. Tout, K.; Meguenani, A.; Urban, J.-P.; Cudel, C. Automated vision system for magnetic particle inspection of crankshafts using

convolutional neural networks. Int. J. Adv. Manuf. Technol. 2021, 112, 3307–3326. [CrossRef]
7. Zhang, M.; Zhang, X.; Li, M.; Cao, J.; Huang, Z. Optimization Design and Flexible Detection Method of a Surface Adaptation

Wall-Climbing Robot with Multisensor Integration for Petrochemical Tanks. Sensors 2020, 20, 6651. [CrossRef] [PubMed]
8. Wang, X.; Wong, B.S.; Tan, C.; Tui, C.G. Automated Crack Detection for Digital Radiography Aircraft Wing Inspection. Res.

Nondestruct. Eval. 2011, 22, 105–127. [CrossRef]
9. Rifai, D.; Abdalla, A.; Ali, K.; Razali, R. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy

Current Testing Applications. Sensors 2016, 16, 298. [CrossRef]

http://doi.org/10.1016/j.ymssp.2017.06.012
http://doi.org/10.1007/s10845-019-01511-x
http://doi.org/10.1016/j.ymssp.2012.09.015
http://doi.org/10.1016/j.crme.2012.07.001
http://doi.org/10.1080/10589759.2018.1428322
http://doi.org/10.1007/s00170-020-06467-4
http://doi.org/10.3390/s20226651
http://www.ncbi.nlm.nih.gov/pubmed/33233597
http://doi.org/10.1080/09349847.2011.556543
http://doi.org/10.3390/s16030298


Sensors 2022, 22, 2201 11 of 11

10. Dong, L.; Zou, W.; Li, X.; Shu, W.; Wang, Z. Collaborative localization method using analytical and iterative solutions for
microseismic/acoustic emission sources in the rockmass structure for underground mining. Eng. Fract. Mech. 2019, 210, 95–112.
[CrossRef]

11. Dong, L.; Zhang, Y.; Ma, J. Micro-Crack Mechanism in the Fracture Evolution of Saturated Granite and Enlightenment to the
Precursors of Instability. Sensors 2020, 20, 4595. [CrossRef] [PubMed]

12. Ma, J.; Dong, L.; Zhao, G.; Li, X. Focal Mechanism of Mining-Induced Seismicity in Fault Zones: A Case Study of Yongshaba
Mine in China. Rock Mech. Rock Eng. 2019, 52, 3341–3352. [CrossRef]

13. Krause, T.; Ostermann, J. Damage detection for wind turbine rotor blades using airborne sound. Struct. Control Health Monit.
2020, 27, e2520. [CrossRef]

14. Dong, L.; Chen, Y.; Sun, D.; Zhang, Y. Implications for rock instability precursors and principal stress direction from rock acoustic
experiments. Int. J. Min. Sci. Technol. 2021, 31, 789–798. [CrossRef]

15. Zhao, P.; Sun, Y.; Jiao, J.; Fang, G. Correlation between acoustic emission detection and microstructural characterization for
damage evolution. Eng. Fract. Mech. 2020, 230, 106967. [CrossRef]

16. Dong, L.; Hu, Q.; Tong, X.; Liu, Y. Velocity-Free MS/AE Source Location Method for Three-Dimensional Hole-Containing
Structures. Engineering 2020, 6, 827–834. [CrossRef]

17. Wei, X.; Chen, Y.; Lu, C.; Chen, G.; Huang, L.; Li, Q. Acoustic emission source localization method for high-speed train bogie.
Multimed. Tools Appl. 2020, 79, 14933–14949. [CrossRef]

18. Dong, L.; Tao, Q.; Hu, Q. Influence of temperature on acoustic emission source location accuracy in underground structure. Trans.
Nonferrous Met. Soc. China 2021, 31, 2468–2478. [CrossRef]

19. Dong, L.; Tao, Q.; Hu, Q.; Deng, S.; Chen, Y.; Luo, Q.; Zhang, X. Acoustic emission source location method and experimental
verification for structures containing unknown empty areas. Int. J. Min. Sci. Technol. 2022. [CrossRef]

20. Pei, N.; Shang, J.; Bond, L.J. Analysis of Progressive Tensile Damage of Multi-walled Carbon Nanotube Reinforced Carbon Fiber
Composites by Using Acoustic Emission and Micro-CT. J. Nondestruct. Eval. 2021, 40, 51. [CrossRef]

21. Yang, J.; Mu, Z.-L.; Yang, S.-Q. Experimental study of acoustic emission multi-parameter information characterizing rock crack
development. Eng. Fract. Mech. 2020, 232, 107045. [CrossRef]

22. Al-Jumaili, S.K.; Eaton, M.J.; Holford, K.M.; Pearson, M.R.; Crivelli, D.; Pullin, R. Characterisation of fatigue damage in composites
using an Acoustic Emission Parameter Correction Technique. Compos. Part B Eng. 2018, 151, 237–244. [CrossRef]

23. Jiang, Y.; Xu, F.; Xu, B. Acoustic Emission tomography based on simultaneous algebraic reconstruction technique to visualize the
damage source location in Q235B steel plate. Mech. Syst. Signal Process. 2015, 64–65, 452–464. [CrossRef]

24. Dong, L.; Tong, X.; Hu, Q.; Tao, Q. Empty region identification method and experimental verification for the two-dimensional
complex structure. Int. J. Rock Mech. Min. Sci. 2021, 147, 104885. [CrossRef]

25. Brantut, N. Time-resolved tomography using acoustic emissions in the laboratory, and application to sandstone compaction.
Geophys. J. Int. 2018, 213, 2177–2192. [CrossRef]

26. Zhao, H. A fast sweeping method for Eikonal equations. Math. Comput. 2004, 74, 603–627. [CrossRef]
27. Leung, S.; Qian, J. An adjoint state method for three-dimensional transmission traveltime tomography using first-arrivals.

Commun. Math. Sci. 2006, 4, 249–266. [CrossRef]

http://doi.org/10.1016/j.engfracmech.2018.01.032
http://doi.org/10.3390/s20164595
http://www.ncbi.nlm.nih.gov/pubmed/32824347
http://doi.org/10.1007/s00603-019-01761-4
http://doi.org/10.1002/stc.2520
http://doi.org/10.1016/j.ijmst.2021.06.006
http://doi.org/10.1016/j.engfracmech.2020.106967
http://doi.org/10.1016/j.eng.2019.12.016
http://doi.org/10.1007/s11042-019-08580-3
http://doi.org/10.1016/S1003-6326(21)65667-4
http://doi.org/10.1016/j.ijmst.2022.01.002
http://doi.org/10.1007/s10921-021-00780-y
http://doi.org/10.1016/j.engfracmech.2020.107045
http://doi.org/10.1016/j.compositesb.2018.06.020
http://doi.org/10.1016/j.ymssp.2015.04.013
http://doi.org/10.1016/j.ijrmms.2021.104885
http://doi.org/10.1093/gji/ggy068
http://doi.org/10.1090/S0025-5718-04-01678-3
http://doi.org/10.4310/CMS.2006.v4.n1.a10

	Introduction 
	Methods 
	Forward Modeling 
	Inversion 

	Experiments 
	Numerical Experiments 
	Laboratory Experiments 

	Conclusions 
	References

