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Abstract: The analysis of the physico-chemical parameters of quality of olive oil is still carried out in
laboratories using chemicals and generating waste, which is relatively costly and time-consuming.
Among the various alternatives for the online or on-site measurement of these parameters, the
available literature highlights the use of near-infrared spectroscopy (NIRS). This article intends to
comprehensively review the state-of-the-art research and the actual potential of NIRS for the analysis
of olive oil. A description of the features of the infrared spectrum of olive oil and a quick explanation
of the fundamentals of NIRS and chemometrics are also included. From the results available in the
literature, it can be concluded that the four most usual physico-chemical parameters that define
the quality of olive oils, namely free acidity, peroxide value, K232, and K270, can be measured
by NIRS with high precision. In addition, NIRS is suitable for the nutritional labeling of olive oil
because of its great performance in predicting the contents in total fat, total saturated fatty acids,
monounsaturated fatty acids, and polyunsaturated fatty acids in olive oils. Other parameters of
interest have the potential to be analyzed by NIRS, but the improvement of the mathematical models
for their determination is required, since the errors of prediction reported so far are a bit high for
practical application.

Keywords: chemometrics; olive oil; near-infrared spectroscopy; quality parameters

1. Introduction

The International Olive Council defines olive oil as the oil obtained solely from fruits
of the olive tree (Olea europaea L.), with the exclusion of oils obtained by solvents or by
re-esterification procedures and any mixture with oils of another nature. As stated by this
international intergovernmental organisation, the olive oils with the highest quality (so-
called virgin oil oils) are those obtained ‘solely by mechanical or other physical means under
conditions, particularly thermal conditions, that do not lead to alterations in the oil, and
which have not undergone any treatment other than washing, decantation, centrifugation
and filtration’ [1]. Virgin olive oils are classified, in turn, into extra virgin olive oils (EVOO),
virgin olive oils (VOO), ordinary virgin olive oil, and lampante virgin olive oil [1,2], where
EVOO is the olive oil of the highest quality. While the first three virgin olive oils are fit for
consumption, lampante virgin olive oil must undergo processing prior to consumption.

Olive oil is regarded as one of the healthiest food oils due to its high content in
triglycerides with unsaturated acids, mainly oleic acid, and its phenolic composition. The
former is related to a decrease in LDL-cholesterol fraction, while the latter is responsible
for the antioxidant properties and the bitter taste of olive oil. Triglycerides account for
almost all the saponifiable fraction of the olive oil (roughly 98 wt.%). On the contrary, the
phenolic compounds belong to the unsaponifiable fraction, which represents about 2 wt.%
of total olive oil. The most representative phenolic compounds in olive oils are oleuropein
and hydroxytyrosol. In addition to phenolic compounds, the unsaponifiable fraction is
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composed of a wide variety of compounds, such as triterpenic alcohols, α-tocopherol
(vitamin E), γ-tocopherol, β-carotene (precursor substance of vitamin A and responsible
for the yellow–orange colour of olive oil), phytosterols, sterols, hydrocarbons, chlorophylls
(responsible for the green colour of olive oil), and volatile compounds responsible for the
aroma of olive oil.

Due to the current popularity of the Mediterranean diet and its use in a wide range
of different recipes, the nutritional value of olive oil is internationally recognized today.
EVOO is mainly used as a salad dressing and food to be eaten cold due to its flavour and
taste. The rest of the edible olive oils are used mostly for cooking.

The most common physico-chemical parameters that define the quality of olive oils
are the free acidity (FA), the peroxide value (PV), and the absorbency in ultraviolet (at
232 and 270 nm). These three physico-chemical parameters, along with the organoleptic
characteristics (odour and taste, defects, fruity attributes, and colour), are used by producers
for the determination of the quality of virgin olive oils. Notwithstanding, the International
Olive Council establishes additional quality criteria for the designation of olive oils (both
edible and non-edible), namely moisture and volatile matter (wt.%), insoluble impurities in
light petroleum (wt.%), flash point (◦C), trace metal content (mg/kg of iron and copper),
fatty acid ethyl esters content (mg/kg), and biophenols content (mg/kg) [1]. Generally, olive
oil producers do not regard them as quality parameters, but as composition parameters.
Additional physico-chemical parameters such as oxidative stability (h), chlorophyll and
carotenoid pigment profiles, and the bitterness index are often included [2]. Regarding
organoleptic characteristics, the absence (EVOO) or weak presence (VOO) of sensory defects
and the presence of three positive attributes, namely fruitiness, bitterness, and pungency,
must be evaluated by skilled tasters.

The determination of the aforementioned physico-chemical parameters is currently
carried out in a laboratory using chemicals and generating waste, which is relatively costly
and time-consuming. In addition, the online determination of the quality parameters
of olive oil during the olive oil extraction process in olive mills is not possible using
conventional methods. Among the various alternative, non-destructive methods for these
analyses, the use of near-infrared (NIR) spectroscopy stands out. Its aim is to correlate
the signal of the olive oils in the NIR spectrum with the quality parameters through the
use of chemometrics. This article intends to show the state-of-the-art research and the
actual potential of near-infrared spectroscopy (NIRS) for the analysis of olive oil, not only
its main four quality parameters, but also other parameters of interest for the olive oil
industry. For a better understanding, the following three sections include, in the following
order, the fundamentals of NIRS, a description of the main features of the NIR spectrum of
olive oil, and a brief explanation of what chemometrics is and how it is applied to NIRS,
while the last three sections illustrate the results obtained by various authors on the quality
parameters, other compounds of interest and sensory attributes, respectively.

2. Near-Infrared Spectroscopy (NIRS)

NIR spectroscopy is a vibrational spectroscopy, like Raman spectroscopy. A molecule
absorbs NIR radiation (from 800 to 2500 nm) if the energy of the radiation corresponds to
the energy difference between two vibrational levels and, in addition, a change occurs in
the dipole moment of the molecule [3]. This is similar to what happens in the mid-infrared
region. However, the bands of fundamental vibrations (∆n = ±1, where n is the vibra-
tional quantum number) do not appear in the NIR spectrum, while absorptions due to the
overtones and combination bands are observed. The overtone bands are due to ∆n >±1.
Depending on the type of bonds, only the first (∆n = ±2) and second (∆n = ±3) overtones
are likely to be observed. Combination bands occur only in polyatomic molecules and
are due to simultaneous changes in the energy of two or more modes of vibration [3,4].
Therefore, the near-infrared spectrum is the result of the change in the molecular dipole
moment during vibration. For example, the stretches of C=O in the CO2 molecule and of
O–H in the water molecule, which are polar functional groups, have great absorption in the
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NIR spectrum [5]. Since the NIR spectrum of an analysed sample is the result of the combi-
nations and overtones of the functional groups of its chemical constituents, the absorption
peaks and bands found in the NIR spectrum are generally broad and weak. This makes
NIRS more suitable for quantitative analysis than for compound identification (although
NIRS can provide some information on functional groups). Hence, NIRS is regarded as
a powerful analytical technique for the non-destructive, low-cost, rapid determination of
compounds and parameters in food. Since NIR spectroscopy neither requires reagents nor
generates waste, other advantages are providing a safe working environment and a huge
potential for online measurement.

An NIR spectrometer is composed of a radiation source (the most common is a
tungsten–filament–fire halogen lamp with quartz window), a wavelength selector (gen-
erally a dispersive equipment), a sample holder, and a detector (generally built with
semiconductors such as InGaAs and PbS). There are many sample holders depending
on how the NIR spectrum is acquired [4]: transmittance, reflectance, and transflectance
(Figure 1).

Figure 1. Main configurations to acquire NIR spectra: (a) transmittance; (b) reflectance;
(c) transflectance [4].

The use of cuvettes of different path lengths for transmittance and probes for trans-
flectance is best for homogeneous liquids, while reflectance is generally used for solid,
heterogeneous samples.

FTIR (Fourier-transform infrared) spectroscopy is an analytical technique generally
used to identify functional groups in organic and inorganic compounds by obtaining their
infrared spectra in the range of 2500–25,000 nm [6]. FTIR spectrometers acquire infrared
spectra from solid, liquid, or gaseous samples in absorption, total, attenuated, and diffuse
reflectance, and photoacoustic modes [6]. The raw signal is first Fourier-transformed by the
equipment. FTIR spectrometers generate a unique type of signal called an interferogram
that has all of the infrared wavelengths encoded into it [7]. Some authors regard the
Fourier transform as a type of wavelength selector [4]. Although it is not the most common,
FTIR spectroscopy can be applied to the NIR region, i.e., FTNIR spectroscopy, resulting
in a faster NIR spectra acquisition with a higher signal-to-noise ratio than conventional
NIRS [8]. Some works can be found in the literature on the use of FTNIR with olive oils for
quantitative or discriminating purposes [9–14].

Since the 1980s, several works have addressed the determination of the main properties
of olives of interest to the farmer. An industrial development of NIRS equipment to
measure the internal properties of intact olives occurred about 15 years ago, so nowadays
it is easy to find commercial equipment to non-destructively measure the moisture and
fat content of olives, such as the OliveScan™2 and Olivia™ equipment (FOSS, Hilleroed,
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Denmark), the Luminar 5030 olive and olive paste analyser (Soluciones Integrales de
Laboratorio, S.L., El Casar de Talamanca, Spain), and the NIT-38 olive analyser (NIR
Technology Systems, Sidney, Australia). In addition, portable NIR spectrophotometers
can be purchased for roughly EUR 6000 (e.g., Flame-NIR spectrometers, Ocean Optics,
Inc., Orlando, FL, USA) and could be used at any stage of the olive oil production process.
Although they have not been recognized as official methods by the International Olive
Council, the determinations of fat content and moisture in olives by NIRS have been
accredited as official methods by the pertinent authority of diverse countries. Thus, the
accreditations 684/LE937 and 1335/LE2481 issued by the ENAC (Spanish Accreditation
Bureau, Madrid, Spain) to various laboratories according to the criteria included in the
UNE-EN ISO/IEC 17025:2017 standard [15], officially allow the determination of total
fat and moisture in intact olives by NIRS following an internal method based on the
manufacturer’s method FOSS for the OliviaTM equipment (FOSS, Hilleroed, Denmark).
Notwithstanding, and despite the large available literature, such industrial development
does not exist for the measurement of the quality parameters of olive oil.

At the beginning of the twentieth century, several works have addressed the use of
NIRS to determine the olive oil quality’s parameters at different points in the oil extrac-
tion process in olive mills [16–18]. Thus, NIRS equipment was installed on an olive oil
production line, in order to take samples at the exit of the clarifying centrifuge and from
the hopper where the oil is continuously weighed, as shown in Figure 2 [18]. Furthermore,
NIRS has been applied to design a quality control system for the identification of adul-
terated olive oils with other oils such as sunflower oil, corn oil, and raw olive waste [19],
and to the differentiation of olive oils that belong to different denominations of origin [20].
Comprehensive reviews on these latter topics can be found elsewhere [21].

Figure 2. Schematic diagram of the proposed NIRS sensor in the last pass in the olive oil extraction
process: (1) oil from horizontal centrifuge decanter; (2) vertical centrifuge for oil clarification; (3) tank
for oil sedimentation; (4) continuous oil weigher; (5) to oil storage container; (6) NIRS equipment [18].

Once experts in the olive oil production process have been consulted, three points
within the process, which can be found in Figure 2, seem to be the most suitable for the
sampling of olive oils and the on-site determination of their quality parameters by NIRS.
The first is at the exit of the horizontal decanter (2- or 3-outlet decanter). However, the
samples taken at this point would be more intended for experimental purposes and the
enhancement of the process (assessment of temperature of the olive oil in the decanter, etc.),
and the values of the quality parameters could not match those of the oil once bottled. The
second and third would be at the exit of the vertical centrifuge for oil clarification (or the
sedimentation tank if available in the olive mill) and at the olive oil storage containers,
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respectively. Nevertheless, considering that NIRS is a rapid, non-destructive, technique
that requires minimal sample preparation (no reagent) and relatively small amounts of a.
sample (a few mL of olive oil), experts consider that the most suitable location for the NIRS
equipment would be at the bottling plant. In this way, after filling a bottle with olive oil,
a small sample would be immediately taken and its NIR spectrum acquired, which would
provide the actual values of the quality parameters of the olive oil contained in the bottle.
This would also speed up and make the olive oil labelling process more precise, as long as
the International Olive Council (or the national quality bureaus) accepts NIRS as an official
method for the determination of the olive oil’s quality parameters.

However, such types of online proposals have not been, or have been installed only to
a limited extent, in olive mills. This is because the development of robust mathematical
models is the key to the industrial application of NIRS for online monitoring. These models,
previously obtained by using chemometrics, could be the starting point for designing
and installing an online tool for the determination of the quality parameters of olive oil
on process lines at olive mills, but a full-scale application requires a huge number of
samples, not only from the different varieties of olives that the olive mill works with but
also over several harvestings in order to develop mathematical models that can be used in a
production context. In addition, the chemometric tools of NIRS equipment should provide
self-learning model calibration systems. That is to say, the just-acquired spectra directly
from the oils in the process line should be automatically included in the calibration data
set to strengthen the models by expanding the data sets over time [16]. In this sense, FOSS
annually updates the calibration models of their NIRS equipment to measure properties in
intact olives and olive pastes, and customers have to pay to update their equipment if they
apply for it.

3. Near-Infrared Spectrum of Olive Oils

The sample temperature has a great influence on the NIR radiation that it reflects and
absorbs, which makes temperature a parameter of paramount importance in NIRS. For olive
oils (and other oils), a sample temperature of approximately 32 ◦C is usually chosen [22–28].
At this temperature, olive oil is a homogeneous liquid, with a non-important loss of
volatile compounds occurring. Therefore, the only sample preparation required in NIRS
is heating and maintaining olive oil at that temperature during spectrum acquisition. On
the other hand, near-infrared radiation penetrates deeper into organic samples than other
electromagnetic radiations, such as ultraviolet (UV), visible, far-infrared, and mid-infrared
radiations [29]. Therefore, the optical path length chosen when acquiring NIR spectra
has a significant influence on the radiation absorption intensity at different wavelengths.
Figures 3–6 show the visible-NIR spectra of 127 olive oils from the variety ‘Picual’ acquired
using a Labspec Pro 350-2500P visible/NIR spectrophotometer (Analytical Spectral Devices
Inc., Boulder, CO, USA) equipped with three detectors and an operating in transmittance
mode. This equipment was used for the spectral acquisition of olive oils in the range
350–2500 nm using quartz cuvettes with different path lengths (from 0.5 to 10 mm) as
sample holders. The reflectance was transformed into absorbance. As shown in these
figures, the use of cuvettes with higher path lengths for spectral acquisition leads to higher
absorbance in the NIR region, thus providing smoother NIR spectra that are more suitable
for further building mathematical models for the determination of quality parameters [22].
In this sense, small differences in path length (0.2 and 0.5 mm) when acquiring the spectra
of South African EVOO in the transflectance mode with quartz cuvettes as sample holders
have been reported not to have a significant effect on regression model performance [9].
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Figure 3. Mean-normalized visible/NIR spectra of 127 olive oils obtained with 0.5-mm path-length
quartz cuvette [22].

Figure 4. Mean-normalized visible/NIR spectra of 127 olive oils obtained with 2-mm path-length
quartz cuvette [22].
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Figure 5. Mean-normalized visible/NIR spectra of 127 olive oils obtained with 5-mm path-length
quartz cuvettes [22].

Figure 6. Mean-normalized visible/NIR spectra of 127 olive oils obtained with 10-mm path-length
quartz cuvette [22].

The NIR spectrum of olive oil has previously been described in the literature by
various authors [21,22,27,29,30]. In fact, the NIR spectrum of olive oil is quite similar to
that of triglycerides, as olive oil is mainly composed of triglycerides [31]. What is more, as
triolein is the main triglyceride and therefore the major component of olive oil, the highest
absorption band in the NIR spectrum of olive oil is the same as that of the triolein spectrum,
which is observed at 1725 nm [29]. The two regions of the NIR spectrum that are of great
importance [31] can be clearly observed in Figures 3–6. One is the absorption band near
1720 nm, which is related to the first overtone of the C-H vibration of several chemical
groups such as –CH3, –CH2 and =CH2, and the other is the absorption peaks at 1660 and
2145 nm, which are related to the C-H vibration of cis-unsaturation. When the degree
of cis-unsaturation increases, the absorption peak at 1725 nm (cis-C18:l) shifts to lower
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wavelengths, i.e., to 1717 nm and 1712 nm for cis-C18:2 and cis-C18:3, respectively [31]. The
high adsorption peak at 2145 nm makes the main peaks related to saturated and trans fatty
acids, usually observed at 2128 and 2131 nm, respectively, hardly noticeable in the olive
oil spectrum [29]. Wavelengths close to 1800 nm have also been related to the saturated
fatty acids [29]. Finally, a broad absorbance band can be observed at 1210 nm as a result of
second overtones of C–H and CH=CH– stretching vibrations [27].

Besides the bands and peaks corresponding to molecules that compose the fatty acids
of the olive oil, a broad band at 1400 nm and a broader one at around 1950 nm are also
observed in these figures. These bands have been related to the presence of water, to be
specific to its first overtone, and to a combination band, respectively [25].

As observed in Figures 3–6, the absorbance in the 2300–2500 nm region is out of the
range of the detector used (a holographic fast scanner InGaAs detector, cooled at 25 ◦C,
and coupled with a high-order blocking filter) when increasing the path length of the
cuvette (lower radiation transmission and therefore higher absorbance by the olive oil).
This problem has also been reported when disposable borosilicate vials were used for the
spectral acquisition of olive oil between 400 and 2500 nm in the transmittance mode [32].
This problem was attributed to the high absorbance of this material. For this reason, quartz
cuvettes are the most used and appropriate sample holders for NIRS, since quartz does
not absorb radiation in the NIR region [21]. However, since neither of the two regions of
major importance in the NIR spectrum of olive oil falls in this region, the absorbance at
wavelengths between 2200 and 2500 nm can be discarded when working with olive oil NIR
spectra without losing important information on the sample.

Regarding the visible spectrum, it is sometimes used together with the NIR spectrum
for the determination of olive oil’s quality parameters. There are three main absorption
peaks of olive oil in the visible spectrum. The first is found at 415 nm (dark blue coloured
light) and is related to carotenoids, pheophytin a, pheophorbide a, and pyropheophytin
a [33]. The second absorption peak can be observed at 450 nm (blue light), which is
characteristic of carotenoids [33]. The third absorption peak is found at 670 nm, and
is related to chlorophylls [27]. It is worth noting that the two former peaks (between
350 and 500 nm) were easier to differentiate with the 0.5-mm and 2-mm quartz cuvettes
(Figures 3 and 4, respectively) than with the 5-mm path-length cuvette (Figure 5). They
could not be clearly distinguished using the 10-mm path-length cuvette (Figure 6), which
could indicate that increasing the path length when working in the transmittance mode
reduces the quality of the visible spectrum of olive oil. This is contrary to what was found
in the NIR spectrum.

The features of the visible and NIR spectra of olive oil have been exploited in different
ways. For example, the absorbances in the 470–690 nm, 1145–1265 nm, and 1355–1500 nm
visible/NIR ranges have been related to olive pomace oil, so these spectral ranges have been
used to determine the amount of olive pomace adulterating EVOO with a low standard
error of prediction (SEP = 3.27 wt.%) [5]. Besides, two minor carbonyl absorptions at
1894 and 1930 nm have been used to assess the authenticity of EVOO based on the ratio
of absorption intensity at these wavelengths, which are related to the loss of volatiles
from EVOO, and therefore to the loss of quality of olive oils [11]. On the other hand, the
use of wavelengths in which the absorption of NIR radiation is related to the structure
of fatty acids (aliphatic chains), and therefore responsible for the free acidity of olive oil,
resulted in more reliable mathematical models for the determination of free acidity in edible
olive oils [22].

4. Chemometrics Coupled with NIRS

Chemometrics is defined as ‘the science of relating measurements made on a chemical
system or process to the state of the system via application of mathematical or statistical
methods’, according to the International Chemometrics Society [34]. It started to be applied
to spectroscopic data about five decades ago. Chemometrics coupled with NIRS can be
defined as the application of statistics and mathematical models to extract the desired
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information from the NIR spectra. The NIR spectra of olive oils are difficult to interpret
since they are the result of overlapped overtones and combination bands, which can
contain different baselines or noise. The combination of NIRS and chemometrics provides
calibration models for olive oil spectra analysis and both classification and discrimination
tools. Chemometrics coupled with NIRS are also suitable to handle the dimensional
overload, collinearity, spectral interferences, and spectral noise on olive oil NIR spectra. To
do this, several specific software has been developed, such as The Unscrambler (CAMO
Software AS, Oslo, Norway) or the Chemometrics Toolbox (Eigenvector Research, Inc.,
Manson, WA, USA) for MatLab (The MathWorks, Inc., Natick, MA, USA), which allow
obtaining results with great precision, speed, and comfort.

To speed up data evaluation and to increase the precision of the mathematical mod-
els, pre-treatments are generally applied to raw spectra, consisting of classical methods
for spectral normalization, smoothing, and differentiation [35,36]. Spectra pre-treatments
include data spectra derivatization, normalization, baseline correction, standard normal
variate, mean centring, Savitzky and Golay smoothing, first and second derivatives and
multiplicative scatter corrections [8,36–38]. The use of spectra pre-treatments, which at
first is an advantage for the use of NIRS for the determination of quality parameters of
olive oil, can result in a huge hindrance to the implementation of NIRS for online moni-
toring or on an industrial scale. For example, when applying a normalization (generally
maximum normalization or mean normalization) to olive oil spectra, all available spectra
are selected for that normalization, and the normalized spectra are subsequently used to
build a calibration method for the determination of one or more olive oil properties via
chemometrics. As mentioned above, the chemometric tools coupled with NIRS should
provide self-learning calibration models. That is to say, spectra acquired later (e.g., olive
oils from next harvestings) must be included in the calibration data set to expand data sets
and strengthen models over time [16]. The problem is that the current set of spectra has
already been normalized. The new added spectra cannot be normalized in the same way.
At most, all the spectra (old and newly acquired) could be normalized together, but this
normalization would be different from the normalization done with the old spectra, thus
affecting the later selection of outliers, the developed calibration model, etc. As a result,
this kind of pre-treatments would be difficult to implement for an online measurement of
olive oil’s quality parameters during olive oil extraction at the olive mills.

For olive oils, chemometrics coupled with NIRS are generally used for oil classification
(including adulterations) or property quantification. To do this, there are mathematical
algorithms that explore the correlation structure within a single data block. For olive
oil classification, unsupervised pattern recognition such as principal component analysis
(PCA) and supervised pattern recognition such as partial least squares (PLS) combined
with discriminant analysis (DA) is the most used chemometric technique [36,39]. Many
works can be found in the literature for the detection of adulteration in olive oils using
NIRS. Thus, PCA has been applied to detect corn, sunflower, or raw olive residue oils in
the range 0–30 wt.% in VOO and EVOO [19], to detect between 5 and 50 wt.% sunflower,
soybean, and sesame oils in VOO [40], and to detect corn, sunflower, soybean, and canola
oils in EVOO, with lower limits of adulteration detection of approximately 20, 20, 15, and
10 wt.%, respectively [41], all of them in the laboratory. The good results obtained in the
determination of adulteration in EVOO using PCA and NIRS have led to testing the use of
portable NIR spectrometers, which could provide in situ information on adulteration. In
this sense, it was proven that the use of PCA and a portable spectrometer, which collected
spectra in the range 908−1676 nm, resulted in a reliable tool to identify, classify, and
quantify the content of different vegetable oils (canola, corn, soybean, and sunflower oil) in
EVOO at a confidence level of 95% [42]. On the other hand, PLS-DA has been applied, for
example, to detect corn, hazelnut, soya, and sunflower oils in olive oils [43]. Furthermore,
PCA and PLS-DA of olive oil NIR spectra have also been applied to predict the geographical
origins of olive oils. For example, 57 EVOO were successfully classified according to their
geographical origin (Chianti Classico or Maremma) using different pre-treatments and
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chemometric methods; among them, PCA stood out [44]. Both PCA and PLS-DA were
used to discriminate between 135 VOO (10 commercial VOO and 125 VOO from 5 French
Protected Designation of Origin) based on their NIR spectra features [45].

In order to correlate the NIR or visible/NIR spectra of olive oils with the quantifiable
parameters of interest, multivariate calibration methods are applied, namely multiple linear
regression (MLR), principal component regression (PCR), and partial least squares (PLS)
regression. Regarding the determination of olive oil quality parameters by NIRS, few
papers can be found in the literature that apply MLR or PCR [46]. In contrast, in almost all
the published articles available in the literature dealing with NIRS and the determination
of the quality parameters of olive oil, the building of predictive models is based on PLS
regression [9,18,22–25,28,30,46,47].

The parameter of interest (acidity, peroxide value, etc.) must be previously analysed
by the traditional, official method (i.e., the reference method according to the International
Olive Council standard), to use the obtained values for building the mathematical model
with which this parameter will be measured in the future by NIRS. That is to say, the spectra
of the olive oils will be correlated with the values of the parameter of interest measured
with the reference method.

For a quick explanation of these three regression methods, R will be defined as the
matrix i × j of the absorbances of the i samples at the j wavelengths of the NIR spectrum
and C as the matrix i × 1 of the different values of the olive oil’s parameter to be analysed
by the NIRS for each sample.

Multiple linear regression (MLR) is a method that directly establishes a linear combina-
tion of the variables of R (absorbances at different wavelengths) that reproduces the values
of C (values of the olive oil’s parameter measured by the reference method) minimising the
error (Equation (1)).

C = (R × S) + E (1)

where S stands for the matrix of coefficients that, multiplied by the values of R, provides the
matrix of values of the analysed parameter (C), and E is the residual error matrix [4,38,48].
This method is the least used and is applied when the number of samples is greater than
the number of variables [37].

Principal component regression (PCR) is a method in which the matrix V of the
principal components (PC) of R is first determined. The first principal component (PC1)
is the vector in the column space of R that describes the maximum amount of variation
within the spectra of the olive oils. The second principal component (PC2) describes the
maximum residual variation not described by PC1, and so on. The minimum number of
PC that minimises the information not explained is selected. Then, the projection of R
in V is performed, thus obtaining the matrix of scores U (Equation (2)). Finally, a linear
combination of U provides the values of C that minimise the error (Equation (3)).

U = (R × V) (2)

C = (U × S) + E (3)

Thus, to determine by NIRS the value of the parameter C of an olive oil sample,
different from those used for PCR, the scores matrix Uunk is obtained from the absorbance
matrix Runk by multiplying it by the matrix of principal components V. Then, the value of
the parameter C of that sample is obtained by introducing Uunk in Equation (3) [4,38,48].

Finally, partial least squares (PLS) regression is the most used method, and the most
suitable when the number of samples is smaller than the number of variables [37,49].
Furthermore, PLS regression provides a better approach to quantitative modelling than
MLR, because the correlations among the noise in R are more realistic [49].
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In this method, the projection of both R and C is performed in the space V defined by
the PC, i.e., the projection of R in V provides a matrix of scores U, and the projection of C in
V leads to the score matrix T (Equation (4)).

T = C × V (4)

From these score matrices, the following equations are obtained:

R = (U × P) + E (5)

C = (T × Q) + F (6)

T = (b × U) + G (7)

where P stands for the loadings matrix of R, Q is the loadings matrix of C, b is a constant
and E, F and G are the residual matrices (error matrices). The ideal situation to relate R to C
is when U and T are very similar. That is, b should be close to 1.

Therefore, for an olive sample not used in the PLS regression of which the value of the
parameter C is unknown, the scores matrix Uunk is calculated from the values of its NIR
spectrum matrix Runk using Equation (2), which in turn will allow one to obtain the scores
matrix Tunk using Equation (7). Once Tunk has been calculated, the matrix C, that is, the
parameter of olive oil to be calculated by NIRS, is obtained [4,38,48].

Once the calibration model is built by MLR, PCR, or PLS, it is necessary to assess its
predictive capacity when applied to samples not used in the calibration process. In other
words, validation is necessary to determine the extent to which the results obtained can
be extrapolated from samples different from those used to build the calibration method,
so the model can be used to determine the parameter desired by NIRS in olive oils from,
for example, future harvestings [4,38]. Therefore, in the research papers available in the
literature for the determination of the olive oil’s quality parameters by NIRS, the samples are
usually divided into calibration and validation sets, so that some of the well-characterized
samples are reserved to validate the accuracy of the model. In most cases, the calibration
set is made up of two thirds of the samples and the validation set of the remaining third,
the selection from the samples of each set being random [9,23–25,47]. Other authors have
selected one out of four olive oils for the validation set, the remaining olive oils forming the
calibration set [30]. However, this does not guarantee a good spread of spectral variability
within both sets, so samples for the calibration set should not be selected primarily as a
function of their number, but rather for their variability [34]. This means that increasing
the number of samples for the calibration set does not always result in a more accurate and
robust model.

The simplest solution is to distribute samples uniformly within both calibration and
validation sets, taking into account the highest and the lowest values of the parameter of
interest of olive oil (measured in the samples with the reference method) to be analysed
by NIRS. However, with this solution, only the variability in the analysed parameter is
distributed, while the distribution of the variability in the spectral information remains
uncertain. The most used method in NIRS that takes into account the variability among
spectra is the Kennard–Stone method [50]. The Kennard–Stone algorithm is applied to
the spectra (not to the values of the parameter of interest). To select the samples for the
calibration set, the algorithm starts by searching for the two samples with the largest
Euclidean distance. The following samples for this set will be those that maximise the
Euclidean distance from previously selected samples, and so on. This will guarantee that
all the variation within the spectral information is contained in the calibration sample
set. The Kennard–Stone method has been applied, for example, in the determination of
the acidity of olive oil by NIRS [22]. When there is not a validation set of samples, an
internal validation method is used, which uses the same samples of the calibration set to
validate the mathematical model. The most commonly used internal validation method
is full cross-validation (CV). It consists of creating models using all samples except one
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and validating the model with the excluded sample (leave-one-out method). Therefore,
n calibration models are built from n samples. The standard error of cross validation is
obtained from the arithmetic mean of the error values obtained in the n models [51].

The robustness of the PLS calibration models is usually evaluated by the multiple
correlation coefficient of calibration (r2

c), while their ability to predict the parameter of
interest is assessed by the standard error of prediction (SEP) or the root mean square error of
prediction (RMSEP). Both SEP and RMSEP describe the error between the results from the
reference method and the results from the NIRS equipment for a set of unknown samples
not used for the building of the PLS calibration model. SEP is related to the precision of
the model, while RMSEP is related to its accuracy. If the samples were not divided into
calibration and validation sets, then the standard error of cross-validation (SECV) or the
root mean square error of cross-validation (RMSECV) is used instead.

Generally, an ideal PLS model should have a very high r2
c and a value of SEP close to

the standard error of laboratory (SEL) of the reference method. The closer SEP is to SEL,
the greater the precision of the PLS model and the probability of this to provide roughly
the same values of the parameter of interest as the reference method. Table 1 summarises
the criteria proposed by Shenk and Westerhaus to assess the statistical results of the PLS
calibration models and their validations.

Table 1. Criteria for the assessment of PLS models in NIRS [52].

Calibration (r2
c) Prediction (SEP)

r2
c ≥ 0.90 Excellent precision SEP = 1–1.5 SEL Excellent precision

r2
c = 0.70–0.89 Good precision SEP = 2–3 SEL Good precision

r2
c = 0.50–0.69 Good separation between low, medium, and high values SEP = 4 SEL Medium precision

r2
c = 0.30–0.49 Correct separation between low and high values SEP = 5 SEL Low precision

r2
c = 0.05–0.29 It is better than no analysing

r2
c: correlation coefficient of calibration; SEP: standard error of prediction; SEL: standard error of laboratory.

Usually, the larger the number of samples used for building the calibration model,
the better the predictive capacity of the model, and the smaller the error of prediction.
There is not a rule about how many samples should contain the calibration set, but it is
informally accepted that at least 100 samples should be used for building the calibration
models. However, this number of samples is not mandatory and robust calibration models
can be built with fewer samples.

The number of principal components used in the PLS model is also related to the
performance of the model. The lower the PC number, the better. Normally, the minimum
number of PC that maximises the explained information of the PLS model is chosen.

The performance of the PLS models is also assessed by the ratio of performance to
deviation (RPD), also called the residual predictive deviation. This parameter is defined
as the ratio of the standard deviation (σ) of the reference data from the validation set to
the SEP. It is assumed that PLS models with RPD values higher than 3 can be suitable for
routine analysis. This parameter is very popular in the literature but, in the opinion of the
author, is a tricky parameter. For example, consider that a parameter of food must have a
value less than 1 unit to be accepted for human consumption. Imagine that the samples to
validate a PLS model have values in this parameter from 0 to 10 units used, the average
value of the samples is 5 units, the standard deviation is 2.5 units, and the achieved SEP
is 0.5 units. As RPD is defined as σ/SEP, then RPD = 2.5/0.5 = 5, the method will thus be
regarded as a method of great precision. In the opinion of the author, a new PLS model
for determining a parameter in food (based on the data obtained from a reference method)
which must be less than 1 unit and of which the SEP is 0.5 units (i.e., the average difference
between the values provided by the new method and the reference method is 0.5 units), is
not a very good one, regardless of its acceptable RPD value. The next section will provide
some examples on this matter.
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Unfortunately, although PLS regression is a powerful tool for building calibration
models from NIR full-spectrum, even noise, background and uninformative wavelengths
have the possibility of being included in the models [22,37,53]. In the literature, several
mathematical methods can be found to remove these wavelengths and only let those
wavelengths that actually contribute to the PLS model remain, such as Monte Carlo uninfor-
mative variable elimination (MCUVE) [22,53–55], moving window variable importance in
projection [56,57], the successive projections algorithm (SPA) [22,55,58], etc. Other authors
perform the selection of the spectral variables involved in the models by consecutive cycles,
removing those which contribution to the model (regression coefficient) close to zero in
each cycle [24,28].

Another interesting option to improve the performance of PLS models is to remove
outliers. If the prediction sample is inconsistent with the calibration data, it is regarded
as a prediction outlier [59]. They can be removed manually or by applying multivariate
outlier detection methods. However, wavelength selection and outlier removal must be
carefully performed or avoided at early stages due to the risk of eliminating important
spectral information related to the quality parameter of interest. As mentioned above, NIRS
equipment should provide self-learning model calibration systems, i.e., spectra from new
samples (new harvestings, different geographical origins, etc.) should be automatically
included in the calibration data set to strengthen the PLS models by expanding the data sets
over time [8]. Only once a robust PLS model is created for determining a quality parameter
from hundreds (or thousands) of olive oils of different varieties, harvestings, geographical
origins, etc., should the selection of variables and removal of outliers be performed, and
the resulting PLS validated with new samples from next harvestings, etc.

5. Determination of Olive Oil’s Quality Parameters by NIRS
5.1. Free Acidity (FA)

The acidity value or free acidity of an oil is a measurement of its free fatty acids
content, which is released from the hydrolysis of oil triglycerides by lipolytic enzymes.
These enzymes are normally present in the seed and pulp cells of olives. When the integrity
of the fruit is damaged, the enzymes react with the oil contained in vacuoles. Unhealthy,
damaged, or bruised olives, along with unsuitable storage conditions, are responsible for
olive oils with high acidity values [2].

FA is expressed as a percentage of grams of oleic acid per 100 g of oil. The conventional
determination of FA is carried out in the laboratory using chemicals according to the Official
Methods of Analysis of the European Commission [60], being relatively costly and time-
consuming. Briefly, the method consists of placing a few grams of olive oil into wide-mouth
Erlenmeyer flasks, along with an ethyl alcohol:ethyl ether solution (1:1 v/v) and a few drops
of phenolphthalein, to neutralize the free fatty acids with NaOH until pink in colour [22].

Olive oils with FA greater than 2% are not regarded as fit for consumption and must
be refined prior to consumption [1]. With regard to edible olive oils, according to the
European Regulation, the maximum levels of free acidity for EVOO and VOO are 0.8%
and 2%, respectively, while the FA threshold for olive oils (blends of refined olive oil and
VOO fit for consumption) and olive pomace oils (obtained by treating olive pomace with
solvents) is 1%.

The estimation of FA by NIRS has been previously assayed by several authors (Table 2),
achieving significantly good results in general. Thus, the average FA values for ‘Arbequina’
and ‘Picual’ olive oils were 0.49 ± 0.01 and 0.33 ± 0.00, respectively, by means of the refer-
ence method [60], while the average values were 0.54 ± 0.15 and 0.37 ± 0.16, respectively,
using the 1100–2500 nm NIR spectrum [18]. For the calibration set, these authors used olive
oils with acidity between 0.12 and 15.1%, while for the validation set, the olive oils had
FAs ranging between 0.16 and 12.2%. Using 15 PC, these authors achieved a R2

cal of 0.998
and a SEP of 0.16% (Table 2). This error was very close to the SEL estimated by the authors
(0.1%), which accounts for the robustness of the PLS model. As illustrated in Table 2, by
reducing the free acidity range of olive oils for creating the PLS models, lower SEP was
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achieved. It is worth noting that an SEP of 0.35% [27] and an RMSEP of 0.34% [61] led to an
RPD greater than 3. As indicated in the previous section, these values of RPD could make
one think that these PLS models have good precision. However, these predictive errors
seem to be slightly too high to be suitable for measuring FA or discriminating between
edible olive oils, of which the maximum allowed FA is 2% (0.8% for EVOO). Besides, these
errors are much higher than SEL for the reference method reported by several authors:
0.1% [18], 0.048% [22], and 0.032% [9]. In Table 2, it can be observed that PLS models with
low RPD such as [47] showed low prediction errors, because the FA range chosen to build
the calibration model was more appropriate.

Table 2. PLS statistics obtained for free acidity (FA) of olive oils using different FA ranges, visible/NIR
spectral intervals and optical path lengths.

FA Range
(%)

Spectral
Acquisition

Spectrum
(nm) ncal nval

Path
Length
(mm)

PC r2
cal SEP RPD Reference

0.25–4.5 Transmittance 1100–2500 72 35 0.2 7 0.69 0.12 1.8 [9]
0.25–4.5 Transflectance 978–2500 72 35 0.6 8 0.58 0.15 1.5 [9]
0.15–1.3 Reflectance 1961–2212 62 17 8.0 12 0.99 0.060 - [12]

0.12–15.1 Transmittance 1100–2500 131 45 1.0 15 0.99 0.16 - [18]
0.10–1.3 Transmittance 800–2200 87 40 10.0 15 0.94 0.075 2.6 [22]
0.16–0.5 Reflectance 1100–2300 38 19 - - 0.89 0.023 - [24]
0.10−8.7 Transmittance 350–2500 222 47 5.0 - 0.86 0.35 3.1 [27]
0.10–5.7 Transflectance 400–2500 359 100 0.1 - 0.99 0.060 1 7.7 [30]
0.06–8.0 Transmittance 400–2250 208 - - - 0.97 0070 2 8.4 [32]
0.10–1.1 Transmittance 800–2500 60 37 8.0 - 0.76 0.080 3 1.5 [47]
0.36–3.3 Transmittance 400–1100 34 14 3.0 2 0.88 0.34 3 3.1 [61]
0.11–1.7 Transmittance 800–2500 14 10 6.5 13 0.99 0.048 3 - [62]
0.15–2.2 Transmittance 1000–2222 49 11 - 8 0.98 0.088 4 4.9 [63]

ncal = number of samples in the calibration set; nval = number of samples in the validation set; PC = number of
principal components; r2

c = multiple correlation coefficient of calibration; SEP = standard error of validation;
RPD = ratio of performance to deviation. 1 bias-corrected standard error of prediction; 2 standard error of cross
validation; 3 root mean square error of prediction; 4 root mean square error of cross validation.

All in all, it can be concluded that the free acidity of olive oils can be measured by
NIRS with great precision. This precision can be graphically observed when plotting the
predicted values against the FA measured by the reference method (Figure 7).

Figure 7. Validation exercise for the determination of the free acidity of olive oil by PLS-NIRS using
all the wavelengths between 400 and 2500 nm [30].
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In a previous work, the elimination of noise and uninformative spectral variables
affecting a PLS model for the determination of FA of olive oils by NIRS was assayed by
the Monte Carlo uninformative variable elimination (MCUVE) method and the successive
projections algorithm (SPA) [22]. When using the 1401 wavelengths from 800 to 2200 nm,
the achieved SEP was 0.75%. The PLS model built with the 314 wavelengths selected
by MCUVE led to SEP = 0.064%, while the MLS model built with the 85 wavelengths
selected by SPA was 0.051%, quite close to the SEL (0.048%) reported by the author. This
improvement in the goodness in the prediction can be visually observed when plotting
the FA values predicted by the PLS calibration model built with the full NIR spectrum
(Figure 8) and by the MLS calibration model built with the 85 selected wavelengths by SPA
(Figure 9) against the FA values obtained using the reference method.

Figure 8. Validation exercise for the determination of the free acidity of olive oil by PLS-NIRS using
all the wavelengths between 800 and 2200 (FA values retrieved from [22]).

Interestingly, only 12 of the 80 wavelengths selected by SPA were among the 314 wavelengths
selected by MCUVE. This accounted for the difficulty of interpreting the NIR spectra and
PLS models obtained from them. It was found that most of the selected wavelengths
by MCUVE were related to the main NIR absorption bands of free fatty acids. On the
contrary, most of the wavelengths selected by SPA were correlated with triacylglycerols [22].
A tentative assignment of the wavelength ranges selected by each method has been carried
out by the author (data not previously published) and illustrated in Table 3. Several years
later, the author tried to predict the FA of waste cooking oils with the PLS models obtained
for olive oils, with the wavelengths selected by MCUVE and SPA. The statistics were quite
poor (hence the prediction error was very high), which could be due to impurities in the
waste cooking oils used or the premature removal of wavelengths when creating the PLS
models. In the end, the author had to build a specific PLS model to determine the free
acidity of waste cooking oils by NIRS [64].
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Figure 9. Validation exercise for the determination of the free acidity of olive oil by PLS-NIRS using
85 wavelengths from the NIR spectrum (FA values retrieved from [22]).

Table 3. Spectral bands’ tentative assignments correlated to FA of olive oil obtained by the
Monte Carlo uninformative variable elimination (MCUVE) method and the successive projections
algorithm (SPA).

MCUVE (nm) SPA (nm) Bond Vibration Molecule/Compound Reference

1202–1221
- C–H First overtone –CH=CH– [29]

C–H Second overtone –CH2 [65]
1484–1506 - O–H stretch First overtone Cellulose [65]
1531–1569 - O–H stretch First overtone Starch [65]
1582–1603 - - - - -
1613–1644 - C–H stretch First overtone =CH2 [65]

- 1717–1729
C–H stretch First overtone –CH3 [29,65]C–H stretch First overtone

- 1751–1763 C–H stretch First overtone –CH2 [29,65]
1915–1934 - C=O stretch Second overtone CONH [65]

1957–1973 - O–H stretch O–H bend
combination

Starch and
cellulose [65]

2154–2192 -
C–H

Asym C–H stretch
C–H stretch

Combination –CH2 [29]
C–H deformation

combination –HC=CH– [65]

C=O stretch
combination Protein [65]

Combination
bands –COOH [66]

Finally, some works can be found in the literature on the determination of FA in other
IR spectral regions different from the NIR range. For example, the use of FTIR spectroscopy
in the infrared spectral region from 5800 to 6075 nm and the wavelength 3308 nm resulted in
an R2

cal of 0.99 and a root mean square error of cross-validation of 0.0107% [13]. However,
the calibration model was built with solely a set of 15 samples with FA between 0 and 1%,
which were prepared by the gravimetric addition of oleic acid to deodorised olive oil.
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5.2. Peroxide Value (PV)

Peroxides are the primary products of the oxidation of olive oil. The peroxide value is
a measure of the total peroxides in olive oil expressed as mEq O2/kg oil, and therefore a
major quality guide. EVOO and VOO cannot exceed the maximum value of 20 mEq O2/kg,
the limit fixed by the International Olive Council [1].

The reference method consists of dissolving the oil sample in acetic acid and chlo-
roform, adding potassium iodide and subsequent titration with sodium thiosulphate of
the liberated iodine [60]. The precision of the reference method was determined from the
results of collaborative tests by the International Olive Council [28], the reproducibility and
repeatability coefficients of variation being 7.1% and 1.9%, respectively, for EVOO, and
13.8% and 3.4% for ordinary olive oils. The standard error of laboratory was reported to be
1.41 meq O2/kg [9].

Table 4 illustrates the errors of prediction of PV by NIRS achieved by several authors.
As can be seen, most of the SEP values are close to the reported SEL, even though the RPD
values are not too high. Therefore, it can be concluded that PV is another olive oil’s quality
parameter that can be predicted by NIRS.

Table 4. PLS statistics obtained for peroxide value (PV) of olive oils using different PV ranges,
visible/NIR spectral intervals, and optical path lengths.

PV Range
(meq O2/kg)

Spectral
Acquisition

Spectrum
(nm) ncal nval

Path
Length
(MM)

PC R2
cal SEP RPD Reference

2.2–74.0 Transmittance 1100–2500 90 44 0.2 6 0.92 4.15 3.5 [9]
2.2–74.0 Transflectance 1100–2500 90 44 0.6 8 0.87 5.28 2.8 [9]
3.0–32.0 Reflectance 1333–1587 65 14 8.0 12 0.98 1.0 - [12]
5.6−43.9 Transmittance 350–2500 199 46 5.0 - 0.87 3.82 2.8 [27]
1.6–44.5 Transflectance 400–2500 359 100 0.1 - 0.83 1.31 1 2.0 [30]
2.6–18.0 Transmittance 400–2250 125 - - - 0.92 1.34 2 2.7 [32]
7.1–75.4 Transmittance 800–2500 60 37 8.0 - 0.92 2.65 3 1.6 [47]
3.6–8.0 Transmittance 400–1100 34 14 3.0 2 0.83 2.25 3 3.1 [61]
2.5–17.2 Transmittance 800–2500 14 10 6.5 10 0.94 1.87 3 - [62]
0.0–26.7 Transmittance 1000–2222 49 11 - 8 0.84 3.0 4 1.8 [63]

ncal = number of samples in the calibration set; nval = number of samples in the validation set; PC = number of
principal components; r2

c, = multiple correlation coefficient of calibration; SEP = standard error of validation;
RPD = ratio of performance to deviation. 1 bias-corrected standard error of prediction; 2 standard error of cross
validation; 3 root mean square error of prediction; 4 root mean square error of cross validation.

However, when comparing Figure 7 with Figure 10, it can be observed that the
precision of the determination of the peroxide value by NIRS seems to be lower than that
of the free acidity.

Figure 10. Validation exercise for the determination of the peroxide value of olive oil by PLS-NIRS
using all the wavelengths between 400 and 2500 nm [30].
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5.3. K270 and K232

The determination of UV-specific extinctions permits an approximation of the oxida-
tion process in unsaturated oils. At 232 nm, primary oxidation products show an absorption
(conjugated dienes) that increases due to the defective storage of olive fruits or faulty oil
extraction. Secondary oxidation products, such as carbolynic compounds (aldehydes and
ketones), are detected at 270 nm, indicating an advanced oxidation process. The maximum
permitted values are 2.5 for K232 and 0.20 for K270 [1]. The extinction coefficients K232
and K270 are measured by UV spectrophotometric analysis at the specific wavelengths
of 232 and 270 nm and are expressed in absorbance units (AU). Notwithstanding, their
determination has been assayed by NIR and visible/NIR spectroscopy (Tables 5 and 6).

Table 5. PLS statistics obtained for K232 of olive oils using different K232 ranges, visible/NIR spectral
intervals, and optical path lengths.

K232
(AU)

Spectral
Acquisition

Spectrum
(nm) ncal nval

Path
Length
(mm)

PC r2
cal SEP RPD Reference

1.7–20.4 Transmittance 1100–2500 70 34 0.2 6 0.94 0.94 3.6 [9]
1.7–20.4 Transflectance 978–2500 70 34 0.6 4 0.87 1.3 2.6 [9]
0.9−5.0 Transmittance 350–2500 223 55 5.0 - 0.82 0.32 2.6 [27]
1.4–5.4 Transflectance 400–2500 359 100 0.1 - 0.75 0.10 1 1.5 [30]
1.2–2.0 Transmittance 800–2500 60 37 8.0 - 0.40 0.090 2 1.2 [47]
1.5–3.5 Transmittance 1000–2222 49 11 - 8 0.84 0.27 2,3 1.6 [63]

ncal = number of samples in the calibration set; nval = number of samples in the validation set; PC = number of
principal components; r2

c = multiple correlation coefficient of calibration; SEP = standard error of validation; RPD
= ratio of performance to deviation. 1 bias-corrected standard error of prediction; 2 root mean square error of
prediction; 3 root mean square error of cross validation.

Table 6. PLS statistics obtained for K270 of olive oils using different K270 ranges, visible/NIR spectral
intervals and optical path lengths.

K270
(AU)

Spectral
Acquisition

Spectrum
(nm) ncal nval

Path
Length
(mm)

PC r2
cal SEP RPD Reference

0.10–2.0 Transmittance 1100–2500 70 34 0.2 6 0.87 0.094 2.5 [9]
0.10–2.0 Transflectance 978–2500 70 34 0.6 3 0.71 0.13 1.8 [9]

0.07–0.41 Transflectance 400–2500 359 100 0.1 - 0.67 0.012 1 2.2 [30]
0.06–0.17 Transmittance 800–2500 60 37 8.0 - 0.54 0.020 2 1.2 [47]
0.08–0.21 Transmittance 1000–2222 49 11 - 10 0.74 0.019 3 1.6 [63]

ncal = number of samples in the calibration set; nval = number of samples in the validation set; PC = number of
principal components. 1 bias-corrected standard error of prediction; 2 root mean square error of prediction; 3 root
mean square error of cross-validation.

The standard errors of laboratory for these methods have been reported to be 0.42 and
0.048 for K232 and k270, respectively [9]. These SEL have been calculated for ranges of
values exceeding, by far, the limits established by the International Olive Council. Thus,
SEL for K232 (0.42) was provided for samples in the range 1.7–20.4, while the maximum
permitted value is 2.5. Similarly, SEL for K270 (0.048) was calculated for samples in the
range 0.10–2.0, while the maximum permitted value is 0.2. This could make the comparison
between the errors of prediction and SEL difficult. In any case, some of the statistics
illustrated in Tables 5 and 6 show the feasibility of using NIRS to determine K232 and
K270. Reference [30] and, to a lesser extent, reference [47] show bias-corrected SEP and
RMSEP, respectively, suitable for predicting the extinction coefficients by visible/NIR or
NIR spectroscopy, respectively. Figures 11 and 12 show the relation between K232 and
270 predicted by NIRS and K232 and 270 analysed by the reference method, as reported in
Reference [30]. Similarly to what was observed for PV, the determination of the specific
extinction coefficients by NIRS has lower precision than the determination of FA. It is
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noteworthy that all but one of the RPD values reported in Tables 5 and 6 are less than 3,
which accounts for the poor practical application of this parameter.

Figure 11. Validation exercise for the determination of K232 of olive oil by PLS-NIRS using all the
wavelengths between 400 and 2500 nm [30].

Figure 12. Validation exercise for the determination of K270 of olive oil by PLS-NIRS using all the
wavelengths between 400 and 2500 nm [30].

6. Other Compounds

In addition to the four basic quality physico-chemical parameters of olive oil, several
other compounds and parameters of olive oil have been assayed to be quantified by NIRS
(Table 7). The RPD values reported by the different authors on the various parameters
are generally low, but RPD is not considered in the discussion of the statistics collected
in Table 7 to the problems that its interpretation presents, as has been pointed out in the
previous sections. For most of these parameters, the authors did not provide SEL, so the
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most suitable approach to assess the feasibility of NIRS to predict these parameters is then
to compare the error of prediction with the unit range of these parameters for olive oils.

Table 7. PLS statistics obtained for different compounds and parameters of olive oils using different
unit ranges, visible/NIR spectral intervals, and optical path lengths.

Parameter Units Range Spectral
Acquisition

Spectrum
(nm) ncal nval

Path
Length
(mm)

PC r2
cal SEP RPD Reference

K225 AU 0.06–0.66 Transmittance 1100–2500 149 30 1.0 13 0.87 0.058 - [18]
Carotenoids mg/kg 1.6–18.1 Transmittance 450–2500 151 32 1.0 4 0.985 0.66 - [17]
Carotenoids mg/kg 0.12–13.1 Transmittance 1100–2500 64 32 0.2 5 0.66 1.1 1.7 [9]
Carotenoids mg/kg 0.12–13.1 Transflectance 978–2500 64 32 0.6 3 0.52 1.4 1.4 [9]
Carotenoids mg/kg 2.1–38.5 Transmittance 1100–2500 205 50 5.0 - 0.62 - - [46]
Carotenoids mg/kg 2.1–38.5 Transmittance 350–2500 205 50 5.0 - 0.95 1.8 3.9 [46]
Chlorophylls mg/kg 0.7–27.5 Transmittance 450–2500 151 32 1.0 4 0.993 0.96 - [17]
Chlorophylls mg/kg 0.082–25.2 Transmittance 1100–2500 65 32 0.2 8 0.56 3.6 1.5 [9]
Chlorophylls mg/kg 0.082–25.2 Transflectance 978–2500 65 32 0.6 3 0.31 4.4 1.2 [9]
Chlorophylls g/kg 0–14.5 Transmittance 400–2250 168 - - - 0.98 0.51 1 5.6 [32]
Chlorophylls mg/kg 1.4–88.1 Transmittance 1100–2500 205 53 5.0 - 0.56 - - [46]
Chlorophylls mg/kg 1.4–88.1 Transmittance 350–2500 205 53 5.0 - 0.96 3.5 4.1 [46]
Alkyl esters mg/kg 3–610 Transflectance 400–2500 359 100 0.1 - 0.79 19.5 2 1.9 [30]
Ethyl esters mg/kg 1–461 Transflectance 400–2500 359 100 0.1 - 0.80 14.2 2 1.9 [30]

Moisture wt.% 0.01−0.63 Transflectance 400–2500 283 66 0.1 - 0.71 0.04 2 1.5 [30]
Total

polyphenols mg/kg 44.5–738.8 Transmittance 1100–2500 67 31 0.2 2 0.21 89.7 1.1 [9]

Total
polyphenols mg/kg 44.5–738.8 Transflectance 978–2500 67 31 0.6 2 0.34 82.1 1.2 [9]

Total
polyphenols mg/kg 110.7–594.0 Transmittance 800–2500 60 37 0.8 - 0.85 44.5 3 1.7 [47]

Squalene g/kg 1.0−10.1 Transflectance 1100–2300 118 59 - - 0.86 1.2 2.3 [23]
Squalene g/kg 1.0−10.1 Transmittance 350–2500 118 59 10.0 - 0.76 1.0 1.9 [23]

α-tocopherol mg/kg 54.5–755.9 Transflectance 1100–2300 218 109 10.0 0.95 47.2 2.4 [25]
α-tocopherol mg/kg 54.5–755.9 Transmittance 350–2500 218 109 10.0 0.94 58.3 1.9 [25]
α-tocopherol mg/kg 91.0–249.3 Transmittance 800–2500 60 37 0.8 - 0.71 15.2 3 1.3 [47]
β-tocopherol mg/kg 0.5–14.1 Transflectance 1100–2300 218 109 10.0 0.64 1.4 1.0 [25]
β-tocopherol mg/kg 0.5–14.1 Transmittance 350–2500 218 109 10.0 0.66 1.3 1.1 [25]
β-tocopherol mg/kg 9.11–17.2 Transmittance 800–2500 60 37 0.8 - 0.42 1.5 3 1.0 [47]
γ-tocopherol mg/kg 1.8–103.8 Transflectance 1100–2300 218 109 10.0 0.92 6.3 1.9 [25]
γ-tocopherol mg/kg 1.8–103.8 Transmittance 350–2500 218 109 10.0 0.87 8.1 1.5 [25]
γ-tocopherol mg/kg 10.7–36.6 Transmittance 800–2500 60 37 0.8 - 0.63 2.2 3 1.2 [47]

Total
tocopherol mg/kg 63.1–1078.0 Transflectance 1100–2300 218 109 10.0 0.92 61.8 2.0 [25]

Total
tocopherol mg/kg 63.1–1078.0 Transmittance 350–2500 218 109 10.0 0.91 76.2 1.6 [25]

Total
tocopherol mg/kg 110.8–278.8 Transmittance 800–2500 60 37 0.8 - 0.61 19.3 3 1.2 [47]

Oxidative
stability h 15.2−90.6 Transmittance 350–2500 133 43 5.0 - 0.94 7.4 3.0 [27]

ncal = number of samples in the calibration set; nval = number of samples in the validation set; PC = number of
principal components; r2

c = multiple correlation coefficient of calibration; SEP = standard error of validation;
RPD = ratio of performance to deviation. 1 standard error of cross validation; 2 bias-corrected standard error of
prediction; 3 root mean square error of prediction.

The UV absorbance at K225 is an index of oil bitterness. High bitterness in olive
oils is not well accepted by consumers [18]. Using 13 PC, an R2

cal of 0.870 and an SEP of
0.058 were obtained for this parameter (Table 7), with SEL = 0.026 [18].

For carotenoid and chlorophyll pigments in VOO, Jiménez Marquez [17] concluded
that his results showed similarities between visible-near infrared transmittance spec-
troscopy and reference laboratory methods. The SEL for chlorophylls was 0.25 mg/kg,
while SEL for carotenes was 0.35 mg/kg for the ranges indicated in Table 7, with SEP
being slightly superior to SEL [17]. The standard error of the laboratory depends on many
factors. The range of concentrations used can be highlighted. In this sense, other authors
have found that SEL was 0.23 mg/kg for carotenoids in the range 0.12–13.13 mg/kg, and
0.47 mg/kg for chlorophylls in the range 0.082–25.23 mg/kg [9]. Of note is that β-carotene
is the precursor substance of vitamin A and is responsible for the yellow–orange colour
of olive oil, while chlorophylls are responsible for the green colour of olive oil. Therefore,
both absorb radiation mainly in the visible spectrum.

One could ask why one would determine these compounds by NIRS, since they
absorb mainly in the visible spectrum and, as for the K225, K232 and K270 parameters,
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ultraviolet radiation. As stated in Section 3, the peaks observed at 420 and 460 nm in the
olive oil spectrum correspond mainly to carotenoids, while the peak at approximately
670 nm corresponds to chlorophyll absorption [33]. This was the reason why the PLS
models built solely with the NIR spectrum (Table 7) achieved maximum R2

cal of 0.66
and 0.56 for carotenoids and chlorophylls, respectively, which are too low for practical
use [9,46]. For this reason, NIRS (or visible/NIR spectroscopy) should be implemented
as a multiparametric tool, i.e., not only to determine a property of olive oil, but as many
parameters as possible from its NIR (or visible/NIR) spectral information. The idea is
to find out the composition and quality parameters of olive oil by simply acquiring its
NIR or visible/NIR spectrum in a few seconds. This is the main advantage of NIRS when
compared to the laborious, time-consuming reference methods that have to be individually
carried out in the laboratory for each quality parameter of olive oil.

Alkyl esters in olive oils are derived from the non-desired fermentation of the fruit,
normally when overripe or incorrectly stored, thus suffering damage in the cell structure
prior to entering the olive oil processing. The most important quality of olive oil is the
number of ethyl esters, which is regarded as a quality criterion by the International Olive
Council. The content of fatty acid ethyl esters must be ≤35 mg/kg for an oil to be classified
as EVOO [1]. The SEP illustrated in Table 7 for ethyl esters (14.2 mg/kg) [30] seems to be a
bit excessive to meet the requirements of the International Olive Council.

Moisture, which can promote the rancidification of olive oil, leading to an unpleasant
taste and an unpleasant odour, has been determined by PLS-NIRS to achieve an r2

cal of
0.71 and a bias-corrected SEP of 0.04 wt.% [30]. Taking into account that the moisture and
volatile matter content is another quality criterion of the International Olive Council, and it
must be ≤0.2 wt.% for edible olive oils [1], this prediction error should be lowered a bit.
The relation between analysed and predicted values obtained by these authors is illustrated
in Figure 13. It is worth noting that the determination of water content in olive oils by NIRS
has not been assayed to date by using only the wavelengths where the broad absorption
bands of water are found (at 1400 and 1950 nm).

Figure 13. Validation exercise for the determination of the moisture and volatile matter content of
olive oil by PLS-NIRS using all the wavelengths between 400 and 2500 nm [30].

Parameters such as total polyphenols have not been successfully predicted by NIRS.
In this sense, SEPs of 82.10 and 89.66 mg/kg were obtained when analysing total polyphe-
nols in EVOO using two spectrometers, SEL being 9.24 mg/kg for samples in the range
44.49–738.76 mg/kg [9]. Other authors achieved a good correlation coefficient of calibration
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(r2
cal = 0.85) and a lower error of prediction (RMSEP = 44.5 mg/kg) [47], but these were

still a bit high for practical use.
Squalene is a hydrocarbon that can be found in relatively high quantities (between

60 and 75 wt.%) within the unsaponifiable fraction of olive oil, accounting for between
0.2 and 7.5 g/kg of olive oil [67]. In spite of the multiple pieces of scientific evidence of the
beneficial effects of squalene on human health, its determination is generally not performed
in the olive oil industry, as squalene is neither considered a quality nor a purity parameter
in olive oil regulation [1]. The only attempt found in the literature to determine squalene in
olive oil by NIRS or visible/NIR spectroscopy used EVOO, VOO, ordinary oil oils, pomace
oils, and lampante oils of different varieties for the calibration and validation exercises [23].
The best results were obtained with the NIR spectra (Table 7). However, the SEP achieved
(1 g/kg) is too high for its use in the olive oil industry since, as aforementioned, the
concentration of squalene in olive oils ranges between 0.2 and 7.5 g/kg olive oil.

Olive oil is a notorious source of vitamin E (α-tocopherol). EVOO and VOO contain
about 207.3 mg α-tocopherol per kg of olives. Pomace olive oils contain higher amounts
of vitamin E, up to 981.6 mg/kg [68]. The determination of α-tocopherol, β-tocopherol,
γ-tocopherol and total tocopherols of olive oils has been assayed using their NIR and
visible/NIR spectra [25]. In that work, lampante and pomace olive oils were used in the cal-
ibration PLS models along with EVOO and VOO to increase the diversity of tocopherols, so
that the range of concentrations of α-tocopherol (Table 7) was much higher than the content
of α-tocopherol reported for EVOO and VOO [68]. Models using only NIR wavelengths
predicted the content in α-, γ- and total tocopherols better than those using all wavelengths
from the visible/VIR spectrum [25]. The PLS-NIR model for α-tocopherol achieved a good
correlation coefficient of calibration (0.95), but SEP (47.2 mg/kg) seems to be quite high for
practical application, taking into account that the average content of vitamin E in olive oils
is 207.3 mg/kg [68]. The statistics found by other authors did not improve the ability of
NIRS to determine α-tocopherol in olive oils [47].

Finally, other parameters of interest for the quality of olive oil, such as the oxidative sta-
bility, for which the units are time-based, have been predicted by visible/NIR spectroscopy
with relatively good precision [27], as illustrated in Table 7.

On the other hand, olive oil is practically composed of fat (the saponifiable fraction
accounts for roughly 98 wt.% olive oil). The fatty acid profile of olive oils is one of the most
suitable and with the highest precision analysis that NIRS can perform [10,18,31,32,69].
The current European regulation settles the obligation of food manufacturers to include
nutritional information on their product labels [26]. Mandatory information on food
labels includes energy value, total fat content, total saturated fatty acids (TSFA), and other
compounds that olive oil does not contain, such as carbohydrates, sugars, proteins, and
salt. As voluntary nutritional information, the European label can contain other nutritional
information, such as monounsaturated fatty acids (MUFA) and polyunsaturated fatty acid
(PUFA) content. Furthermore, food labelling regulations in the USA and Canada also
require a declaration of TSFA content on product labels [10]. Regarding olive oil, the
most frequently included information on its nutritional label is total fat, saturated fat,
monounsaturated fat, and polyunsaturated fat [26]. It has been reported that the first
overtone of MUFA can be observed at 1724 and 1766 nm, with the combination bands at
2358 nm [29]. As for PUFA, 1660, 1698, and 1730 nm wavelengths have correlated with the
first overtone, 1162 and 1212 nm with the second overtone, and 2136, 2176, 2224, 2310, 2348,
and 2434 nm with combination bands [29]. Some works available in the literature have
shown the feasibility of NIRS for determining TSFA, MUFA, and PUFA in the American,
Canadian, Spanish, and Portuguese EVOO, VOO, and ordinary olive oils [10,14,26,47].
Hence, NIRS is suitable for the nutritional labelling of olive oil.

7. Sensory Attributes

The sensory parameters of olive oil are of equal importance as the physico-chemical
quality parameters described in Section 5. Notwithstanding, scarce information can be
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found in the literature on the use of NIRS for the determination of the sensory parameters
of olive oil. The prediction of the minor composition of VOO, in particular its phenolic
and volatile compounds, as well as its organoleptic attributes, has been assayed in the
800–2500 nm NIR spectrum. Acceptable multivariate algorithms based on the multiple
coefficient of determination were obtained for some minor components, such as hydroxyty-
rosol derivatives (r2 = 0.86–0.88) and C6 alcohols (r2 = 0.69–0.80), and for positive sensory
attributes such as ‘fruity’ (r2 = 0.87) and ‘bitter’ (r2 = 0.85) [47]. More research is needed to
correlate the NIR spectra of olive oil with its sensory parameters before regarding NIRS as
a potential tool for the determination of these parameters.

8. Conclusions

The information available in the literature illustrates that the application of NIRS
to olive oil could undergo an industrial development similar to that of olives and olive
pastes, which have commercial, available NIRS equipment for assessing some of its main
parameters of interest. A sampling system of olive oils and NIRS equipment for the
acquisition of their NIR spectra could be implemented in the olive oil mill or in the bottling
plant, thus allowing the on-site determination of their main quality parameters.

The four primary olive oils’ quality parameters (FA, PV, K232 and K270) can be
accurately determined by NIRS spectroscopy, based on promising results reported by
different authors. In addition, NIRS is suitable for the nutritional labelling of olive oil, since
its feasibility for determining TSFA, MUFA, and PUFA has been demonstrated. Therefore,
all these parameters in an olive oil could be measured by NIRS, as a multiparametric
analytical technique, simply by acquiring the NIR spectrum of the oil and using the PLS
model developed for each parameter.

Other parameters such as α-tocopherol (vitamin E), fatty acid ethyl esters, squalene
and K225 show potential to be determined by NIRS, but the prediction errors reported
by the various authors are still a bit high for practical application. Furthermore, by ex-
panding the wavelength range to which spectra are acquired to the visible region, other
compounds such as carotenoids and chlorophylls, which absorb radiation mainly in the
visible spectrum, could be quantified by visible/NIR spectroscopy. However, visible/NIR
spectrophotometers are more expensive than NIR spectrophotometers, so the implementa-
tion of one or another will depend on the robustness of the PLS models for each parameter
and, hence, their practical application.

NIRS equipment at olive oil mills or bottling plants should provide self-learning
model calibration systems, so that samples from new harvestings, different designations,
geographical origin, and varieties, etc. are automatically added to the calibration set to
strengthen the PLS models over time. Validation exercises with samples not used to build
the PLS models are mandatory to assess their performance.

Spectra pre-treatments (derivatisation, normalisation, baseline correction, standard
normal variate, mean centring, Savitzky and Golay smoothing, first and second derivatives,
multiplicative scatter corrections) enhance the handling of the spectra and the building of
the PLS calibration models. Similarly, the selection of actual contributing spectral variables
and the removal of outliers can improve the performance of the PLS models. Notwithstand-
ing, these latter two procedures must be carefully performed or avoided at early stages
of the model building (when there is not a large calibration sample set) due to the risk of
removing important spectral information related to the quality parameter of interest.

The ultimate goal is to achieve acceptance of NIRS as an official method for the
determination of the quality parameters and the nutritional parameters for the labelling
of olive oil by the relevant national authorities and, as a priority, the International Olive
Council, which will greatly contribute to the industrial development of NIRS equipment
for the olive oil industry.
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