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Abstract: Accurate fire identification can help to control fires. Traditional fire detection methods
are mainly based on temperature or smoke detectors. These detectors are susceptible to damage or
interference from the outside environment. Meanwhile, most of the current deep learning methods
are less discriminative with respect to dynamic fire and have lower detection precision when a fire
changes. Therefore, we propose a dynamic convolution YOLOv5 fire detection method using a video
sequence. Our method first uses the K-mean++ algorithm to optimize anchor box clustering; this
significantly reduces the rate of classification error. Then, the dynamic convolution is introduced into
the convolution layer of YOLOv5. Finally, pruning of the network heads of YOLOv5’s neck and head
is carried out to improve the detection speed. Experimental results verify that the proposed dynamic
convolution YOLOv5 fire detection method demonstrates better performance than the YOLOv5
method in recall, precision and F1-score. In particular, compared with three other deep learning
methods, the precision of the proposed algorithm is improved by 13.7%, 10.8% and 6.1%, respectively,
while the F1-score is improved by 15.8%, 12% and 3.8%, respectively. The method described in this
paper is applicable not only to short-range indoor fire identification but also to long-range outdoor
fire detection.

Keywords: YOLOv5; deep learning; detection; dynamic convolution

1. Introduction

Currently, temperature or smoke detectors are mainly used to detect fire. One disad-
vantage of these sensor-based fire detection methods is that they are expensive. Further-
more, these sensor-based methods can only detect indoor fires. Cameras, on the other hand,
are found everywhere in China, and they have been used to detect objects [1] and track
targets [2,3]. Several methods have been proposed to detect fires or smoke using traditional
video-surveillance cameras.

Image-based fire detection methods mainly include the traditional color-based and
deep learning methods. Color-based methods need to consider the color of the flames,
and different types of fires produce different flame colors. The popular color-based object
detection methods mainly include color spaces, HSV [4], L*a*b [5], YUV [6] and YCbCr [7].
Meanwhile, the conventional fire detection algorithm uses flame features to conduct fire
identification. However, it is difficult to define flame features. Recently, convolutional
neural networks (CNNs) [1] have been widely used in object detection. In view of this,
Luo et al. [8] used a CNN for video fire and smoke detection. In the early stages of fire
detection, the researchers trained fire images by using a constructed CNN based on scale
constraints [9]. However, the CNN requires a huge amount of data to train and takes a lot of
time [10,11]. In view of this, transfer learning was utilized to design neural networks, and
the AlexNet-based CNN [12] and YOLO-based CNN [13] have been proposed to conduct
fire detection.
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At present, the task of object detection mainly functions by selecting the appropriate
detection algorithm according to different application scenarios. Object recognition meth-
ods include one-stage and multi-stage algorithms. However, for existing deep learning
object recognition methods, it is difficult to obtain high precision and speed in a small
model. Considering the dynamic characteristics of fire, we propose a dynamic convolution
YOLOv5 algorithm. First, we propose using the K-mean++ algorithm to optimize anchor
box clustering so as to be suitable for a small target dataset and improve detection accu-
racy. Second, dynamic convolution is introduced into the convolution layer of YOLOv5
to conduct the adjustment of convolution parameters to further improve detection accu-
racy. Finally, the neck and head layers in YOLOv5 are pruned to remove the large target
detection layer. Consequently, the inference speed is improved while maintaining high
detection accuracy.

The main contents of this paper include:

(1) The K-mean++ algorithm is proposed to optimize anchor box clustering and signifi-
cantly reduce the rate of error of the classification results.

(2) Dynamic convolution is introduced in the convolution layer of YOLOv5 based on the
determination of the candidate region box by K-means++.

(3) The network heads of YOLOv5’s neck and head are pruned to improve detection
speed and further achieve the objective of real-time detection while ensuring accuracy.

The remainder of this paper is organized as follows: Section 2 introduces related work
on fire detection based on image color and CNN methods. Section 3 constructs our dynamic
convolution YOLOv5 fire detection method, and Section 4 shows the performance com-
parison between our proposed method and other methods. Finally, Section 5 summarizes
the paper.

2. Related Work

There are various visual methods that have been proposed to detect fire; these mainly
include image color methods and CNN methods. Most of the image color methods use a
combination of different colors to conduct fire detection because this is a simple way to
identify fire pixels. Recently, in addition to successful applications of deep learning (DL)
methods in the fields of natural language processing [14,15] and image classification [16,17],
there has also been considerable progress achieved in DL-based fire detection methods [18].

2.1. Conventional Image-Based Methods

Smoke is the dominant feature of early-stage fires. Some researchers focus on smoke
detection in the early stages of a fire. Calderara et al. [19] used the energy function to
extract smoke color information and achieve fire detection. Their method was suitable
not only for fire detection in the daytime but also at night; it used a camera to detect
fires in an area 80 m2. Yuan used smoke contours and spectral features to conduct fire
detection [20]; this method has better generalization performance and less insensitivity
to geometry transform. Considering that smoke color has the characteristics of semi-
transparency and diffusion, smoke can be detected by the spatio-temporal variation trends
of color [21]. However, color-based smoke detection is not entirely reliable because some
smoke colors, such as gray and black, are common in daily life. To improve smoke detection
performance, some researchers combined color, texture and dynamic features to implement
smoke identification [22,23]. Ye et al. [24] used a pyramid model to conduct the multi-scale
decomposition of fire images and combined this with the use of an SVM to implement
smoke detection. The advantage of this method is that it considers the spatial and temporal
information of image sequences simultaneously, so the accuracy of fire detection can be
improved. In addition, fire and smoke have common motion characteristics. Therefore,
Shiping et al. [25] took advantage of this characteristic to detect smoke. Simultaneously,
Islam et al. used the characteristics of smoke color and dynamics to detect smoke [26].
Their method achieved 97.3% fire classification accuracy; however, it cannot be applied for
accidental fires far away from cameras. Since the fire combustion process involves color,
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shape changing and motion, another real-time fire detection method was constructed by
using a combination of these features [27]. Premal et al. [28] separated flame and high-
temperature fire center pixels by using the statistical parameters of fire, color and space.
Static and dynamic texture characteristics are the main characteristics in the process of
fire combustion. Candidate flame regions can be identified by the YCbCr color space.
From candidate flame regions, forest fires can be detected according to the static and
dynamic texture features [29]. Similarly, Han et al. combined Gaussian-mixture-model-
based background subtraction and multi-color features to obtain the motion features and
color information of fire [30]. Previous fire detection methods based on color information
need to conduct tuning of many parameters, which influences the stability of fire detection.
In order to reduce the impact of parameter tuning, a novel fire detection approach based
on Red Green Blue and CIE L*a*b color models was proposed [31].

2.2. Deep-Learning-Based Methods

The conventional image-based methods are easily influenced by fire-like objects and
are prone to false alarms. To address these false alarms, CNNs have been applied to fire
detection. For example, a DCNN architecture was designed to detect forest fires [32]; the
model demonstrated anti-noise performance in the field of fire detection. A CNN needs
to be trained before it is used for fire detection. Some researchers used many fine-grained
images to train the CNN model and verify that it could be used for fire detection [33].
CNNs demonstrate good performance in object classification, feature extraction and target
recognition. However, they still result in some false positives. To reduce false alarms
in object recognition, the Region of Interest (ROI) was proposed for the process of fire
detection [34]. CNN methods generally cost more computational time and memory when
applied to object identification. Muhammad et al. [35] applied GoogLeNet to construct
a cost-effective deep learning architecture for fire detection. GoogLeNet is significantly
more efficient than VGGNet, with only about five million parameters. In order to improve
dynamic fire detection ability, Chen et al. [36] first segmented the flame features and then
used combining random gradient descent and momentum correction to train the CNN.
Muhammad et al. [37] used adaptive optimization mechanisms to obtain a fine-tuned CNN
for early fire detection. Dunnings et al. [38] improved the GoogLeNet model for detecting
fire; their network architecture was of significantly reduced complexity. Jadon et al. [39]
designed a lightweight, 14-layer CNN to conduct fire and smoke detection. Saeed et al. [40]
first used Adaboost-MLP to forecast fires and then proposed the Adaboost-LBP model and
a CNN to detect fires. Muhammad et al. [41] used a lightweight CNN to detect fires; it
balances accuracy and running time. Zhang et al. [42] utilized a contextual-based CNN for
forest fire detection, and the hyperparameters of the fire detection mode were optimized.
Thus, the accuracy of fire detection has improved. Recently, Ross et al. [43] proposed Faster
R-CNN: this algorithm uses Region Proposal Networks (RPN) to replace the selective
search algorithm, thus reducing calculation time while ensuring accuracy. Faster R-CNN
mainly includes a convolution layer, a candidate box recommendation network, a feature
aggregation layer and a classification layer. The model can realize feature extraction,
candidate box extraction, border regression and classification integration. However, it
needs to classify each candidate box, so it needs to carry out a lot of operations. Meanwhile,
it also has the problem of the registration of the original image and the feature image, which
affects the accuracy of the model. Li et al. [44] compared the performance of Faster-RCNN,
R-FCN, SSD and YOLOv3 in fire detection and analyzed the advantages and disadvantages
of each of these methods. Results show that the performance of YOLOv3 is superior to
the other three methods. The average precision of fire detection is higher than the other
methods, and it has stronger robustness of detection. To detect fires using deep learning, it
is necessary to balance accuracy, model size and speed. In view of this, Li et al. [45] used the
fusion mechanism to balance accuracy, model size and speed. In order to improve the fire
detection efficiency of a convolutional neural network, the convolutional kernel parameters
and dense layers were calculated, and those fires with a low energy impulse response were
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eliminated [46]. Another type of convolutional neural network is YOLO (You Only Look
Once) [47], and it consists of four components: an input terminal, a backbone network, a
neck network and a detection header. This model strengthens the network feature fusion
and reduces the problem of small target feature loss. This type of model saves a lot of
training time and improves detection speed.

3. Proposed Method
3.1. Determination of Anchor Box Based on K-Means++

The YOLOv5 model introduces the use of an anchor box in the object detection process.
An anchor box is a group of initial regions with a fixed size and aspect ratio. In the process
of training, the closer the initial anchor box is to the real boundary box, the more easily the
model will be trained, and the more consistent with the real boundary box the predicted
boundary box will be. Therefore, the anchor parameters in the original YOLOv5 model
need to be adjusted according to the training requirements of different datasets. According
to the characteristics of the YOLOv5 model, the width and height of 9 clustering centers
need to be found; they are then used as the values for the anchor parameters in the network
configuration file. Due to the simple and efficient characteristics of K-means, it has been
used in the field of clustering. The YOLOv5 model uses the K-means clustering algorithm
to obtain k initial anchor boxes. However, the disadvantage of the K-means algorithm is
that the number of clustering centers, k, and the initial clustering center need to be given
in advance. Yet, it is difficult to determine the clustering centers and the initial clustering
center in advance. To address the defects of K-means algorithm, the K-means++ algorithm
is used in this paper to obtain k initial anchor boxes. K-means++ optimizes the selection of
the initial point and can, therefore, significantly reduce the rate of classification error so as
to obtain an anchor box size more suitable for the detection of small objects.

The specific process of determining an anchor box based on K-means++ is as shown below:

(1) A sample is randomly selected as the first clustering center.
(2) The distance between each sample and the nearest cluster center is calculated, and

Equation (1) is used to calculate the probability of each sample being selected as the
next cluster center:

D(x)2

∑x∈X D(x)2 (1)

The next cluster center is selected by the roulette wheel method. Step (2) is repeated
until k clustering centers are selected.

3.2. Dynamic Convolution YOLOv5

The performance of lightweight convolutional neural networks (CNNs) decreases
because their low computational budgets constrain both the depth and the width of CNNs,
resulting in a limited representation ability. To solve this problem, Chen, et al. [48] proposed
dynamic convolution, which increases model complexity without increasing the network
depth or width.

The traditional static perceptron is described by an activation function, which can be
written as:

y = g
(

WTx + b
)

(2)

where W is weight matrix and b is bias vector.
The dynamic perceptron is defined by aggregating multiple linear functions and can

be described as: 

y = g
(

W̃
T
(x)x + b̃(x)

)
W̃(x) =

K
∑

k=1
πk(x)W̃k, b̃(x) =

K
∑

k=1
πk(x)b̃k,

s.t. 0 ≤ πk(x) ≤ 1,
K
∑

k=1
πk(x) = 1

(3)
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where πk is the attention weight for the kth linear function W̃T
kx + b̃k.

According to the dynamic perceptron model, dynamic convolution has k convolution
kernels. They are aggregated by using the attention weights {πk}. To build a dynamic
convolution layer, batch normalization and an activation function are adopted after the
aggregated convolution. The basic idea of dynamic convolution is to adjust the kernel
parameters adaptively according to the different input images. Static convolution uses
the same convolution to perform the same operation for all input images, while dynamic
convolution adjusts different images and uses more appropriate convolution parameters
for different input images, as shown in Figure 1.

Figure 1. Static and dynamic convolution.

Dynamic convolution is a dynamic aggregation method based on multiple parallel
convolution kernels. Attention dynamically adjusts the weight of each convolution kernel
according to the input so as to generate adaptive dynamic convolution. The representation
power is improved by assembling multiple kernels because these kernels are aggregated in
a non-linear way via attention. Dynamic networks introduce two additional computations:
the superposition of the attention model and the convolution kernel. The attention model
is composed of an AVG pool and two-layer full convolution with low computational com-
plexity. The small amount of extra computation combined with the significant expressional
power makes dynamic convolution very suitable for lightweight neural networks.

In this paper, we introduce dynamic convolution into the YOLOv5 fire detection model.
All of the ordinary convolution layers in the YOLOv5 network structure are replaced with
dynamic convolution layers. The structure of this model is mainly composed of module 1,
module 2 and module 3, as shown in Figure 2.

(1) Module 1 is the CBL module, which is the smallest component in the YOLOv5
network structure. The CBL module consists of the Conv + BN + Leaky_relu activation
functions, which are replaced by the Dynamic Conv + BN + Leaky_relu activation
functions, as shown in Module 1 of Figure 2. The role of the CBL module is that it
uses the activation function for convolution.

(2) Module 2 is the CSP1_X module. It is used in the backbone network, which can
increase the residual structure, thus increasing the gradient value of backpropagation
between layers. Thus, the loss of gradient due to deepening is avoided, and finer-
grained features can be extracted. The CSP1_X module consists of a CBL module, a
RES unint module, a Conv and a Concat module, which are replaced by a CBLmodule,
a Res unint module and a dynamic Conv and Concat, as shown in Module 2 of
Figure 2.

(3) Module 3 is the CSP2_X module. It is located in the neck layer of the network
structure. It consists of Conv and X Res unint modules and Concat, which are replaced
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by dynamic Conv and X Res unint modules and Concat, as shown in Module 3 of
Figure 2.

Figure 2. Improved YOLOv5 convolution layers with dynamic convolution.

3.3. Optimization of Network Structure Based on Structure Pruning

Pruning algorithms generally include unstructured and structured pruning. Un-
structured pruning includes fine-grained pruning, vector-level pruning and kernel-level
pruning; it achieves a certain balance between the number of parameters and the model
performance. The disadvantage of this type of pruning algorithm is that when the topology
of the network changes, a special algorithm needs to be designed to support this sparse
algorithm. Structured pruning is mainly filter-level pruning, and the pruning algorithm
only needs to change the filter banks and the number of feature channels in the network.
The advantage of structured pruning is that it does not require the design of a special
algorithm to perform its function, and it can achieve the pruning of the entire network layer.
Therefore, structured pruning is used to prune the structure of the dynamic convolution
YOLOv5 network in this paper.

In the neck part of the YOLOv5 network structure, three different cascade structures
are used to form three detection heads. The output feature scales of the three detection
heads are 76 × 76, 38 × 38 and 19 × 19, respectively; they are used to detect large, medium
and small objects, respectively, in images. For fire detection, the accuracy and speed of small
fire detection both need to be improved. However, the 76 × 76 detection head requires
a lot of time, and it is not suitable for the improvement of inference speed. In this paper,
structural pruning is proposed to prune the YOLOv5 neck part of the network, removing
the large object detection heads, and reserving only the medium and small object detection
heads, as shown in Figure 3.
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Figure 3. Dynamic convolution YOLOv5 network model structure.

4. Results and Discussion
4.1. Experimental Setup

(1) Experiment details: The experimental hardware is a server equipped with an Intel (R)
Celeron (R) CPU N2840 @ 2.16 GHz, 4.00 GB RAM, and a 1080Ti graphics card that
has 4 GB on-chip memory. The improved YOLOV5 network model is trained on the
Pytorch deep learning framework.

(2) Datasets: the experimental dataset consists of three parts, namely a training, a verifi-
cation and a test dataset, as shown in Table 1.

Table 1. Experimental dataset.

Dataset Fire Images Non-Fire Images Total

Train set 8054 6046 14,100
Validation set 2033 1521 3554

Test set 5150 3130 8280
Total 15,237 10,697 25,934

The dataset is divided into fire images and non-fire images. The fire images are
referred to as the positive sample, and the non-fire images are referred to as the negative
sample. One part of the positive sample data in the training dataset is from the public
flame datasets ImageNet and Bow-FIRE, and the other is from the internet. The fire region
of each positive sample in the whole training dataset is manually labeled using the public
labeling system. All sample images are processed and stored in the format of the Pasal
Voc2007 sample set. The negative samples in the training dataset are all crawled from the
internet, as shown in Figure 4. The positive samples in the test set are taken from videos in
the Bilkent University Fire Database, and 2442 images are extracted from the videos. The
negative samples in the test set are all crawled from the internet.
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Figure 4. Training dataset.

4.2. Evaluation Metrics

For fire detection, there are four possible detection results. If the image is fire and it is
detected as fire, then the detection result is true positive (TP); if it is detected as non-fire, the
detection result is false negative (FN). If the image is non-fire and it is detected as non-fire,
the detection result is true negative (TN); if it is detected as fire, then the detection result is
false positive (FP). All four possible fire detection outcomes are listed in Table 2.

Table 2. Four possible outcomes of fire identification.

Negative Positive

False False Negative (FN) False Positive (FP)
True True Negative (TN) True Positive (TP)

The common evaluation metrics for object detection include precision, recall, accuracy
and F1-score.

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

Acc =
TP + TN

TP + FP + TN + FN
(6)

F1-score is the metric that is used to characterize the balance degree between recall
and precision, which can be computed as:

F1-score =
P ∗ R
P + R

(7)

where P is the precision and R is recall.

4.3. Ablation Experiments

In order to verify that the dynamic convolution and structural pruning proposed in
this paper have effects on the accuracy and speed of the YOLOv5 model, two ablation
experiments are designed to verify their effectiveness.

4.3.1. Dynamic Convolution Ablation Experiment

We replace all static convolutions with dynamic convolutions in the three modules
and construct the dynamic convolution YOLOv5 model. In order to verify the detection
effect of dynamic convolution for multiple targets and remote small targets, we select
multi-target and long-range fire images. We use these two models to implement the fire
detection experiment and obtain the fire detection results, as shown in Figure 5.
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Figure 5. Fire detection results of YOLOv5 and the dynamic convolution YOLOv5. (a) YOLOv5. (b)
Dynamic convolution YOLOv5.

In Figure 5, it is clearly visible that the detection accuracies of YOLOv5 are 93% and
90%, while the detection accuracies of dynamic convolution YOLOv5 are 94% and 95%.
Dynamic convolution has high accuracy and stability; the accuracy difference between
the two object boxes is less than 1%, and both are higher than YOLOv5. It illustrates that
dynamic convolution has the ability to adjust parameters adaptively, enabling it to detect
small and long-distance targets with high accuracy.

The four possible outcomes of fire identification, as listed in Table 2, are obtained. Then,
we calculate the precision, recall, accuracy and F1-score according to Equations (4)–(7), as
shown in Table 3.

Table 3. Comparison results of the dynamic convolution experiment.

P R Acc F1-Score Detection Time (ms)

YOLOv5 89.7% 97.4% 91.5% 46.7% 26
Dynamic convolution

YOLOv5 96.4% 99% 96.8% 49.3% 29

From Table 3, it is clearly visible that the precision, recall, accuracy and F1-score of
dynamic convolution YOLOv5 are slightly greater than YOLOv5. After static convolution
is replaced by dynamic convolution in all three modules, the accuracy of fire detection is
improved. Although the detection speed of dynamic convolution YOLOv5 is lower, the
detection time for each image is only 3 ms longer than YOLOv5. The detection precision of
dynamic convolution YOLOv5 can be as high as 96.4%, which is 6.3% higher than that of
YOLOv5 model; detection speed is sacrificed, but precision is greatly improved.

4.3.2. Pruning Experiment

In the dynamic convolution ablation experiment, the precision of fire detection im-
proves, but the detection time also increases. In view of this, the neck portion of the
YOLOv5 network is pruned. The large object detection head is removed, and only the
medium and small object detection heads are retained. Consequently, the computation and
model complexity can be greatly reduced, and the detection speed can be improved. We
use YOLOv5 after pruning to conduct fire detection and compare it with YOLOv5 before
pruning, as shown in Table 4.

Table 4. Comparison results before and after pruning.

P R Acc F1-Score Model Size Detection Time (ms)

YOLOv5 89.7% 97.4% 91.5% 46.7% 13.7 26
YOLOv5

(after pruning) 88.2% 96.6% 89.7% 44.3% 10.8 13
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Table 4 shows that the precision, recall, accuracy and F1-score of YOLOv5 after pruning
are slightly lower than YOLOv5 before pruning. It illustrates that pruning definitely
influences the effectiveness of fire detection. However, pruning has little effect on fire
detection accuracy, according to the comparative analysis in Table 4. After pruning, the
model size of YOLOv5 is reduced from 13.7 to 10.8. Importantly, the detection time for each
image is reduced greatly, from 26 to 13 ms. Therefore, pruning can greatly reduce detection
time with negligible precision loss.

4.4. Performance Comparison
4.4.1. Comparison of Training Results

In this experiment, the size of the input images is set as 640 × 640; the initial learning
rate, moment and weight_decay are set as 0.001, 0.9 and 0.0005, respectively. The batch size
and training epochs are set to 32 and 230, respectively. We use the K-means++ clustering
algorithm to conduct the clustering of the anchor box and obtain six object boxes for two
types of anchor box, described as:

Anchor Box =

{
[10, 14; 23, 27; 37, 58]

[81, 82; 135, 169; 344, 319]
(8)

These two anchor boxes are used for the dynamic convolution YOLOv5 detection
heads with different scales of 38× 38 and 19× 19, respectively, and for predicting the object
bounding box. The training dataset is used to train both the YOLOv5 and our proposed
method under the condition of 200 epochs, and the training results are shown in Figure 6.

Figure 6. Comparison of the change curve between the loss value of the object box and the belief of
the object category.
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After training, the validation set is used to validate the model after epochs. The
IOU threshold on the validation dataset is set to 0.5. Figure 7 shows the recall, precision
and mAP obtained by the YOLOv5 and by our proposed method. It can be seen that the
precision of the proposed method is 20% higher than that of the YOLOv5. The recall of the
proposed method improved from 0.81 to 0.88 and increased by 7% compared with YOLOv5.
mAp@0.5 improved from 0.81 to 0.89 and increased by 8%. mAp@0.5:0.95 improved from
0.52 to 0.62 and increased by 10%.

Figure 7. Changes in recall, precision and mAP of the YOLOv5 and the proposed method.

4.4.2. Comparison in Different Scenarios Based on the Visualization

In order to reflect the reliability of the proposed method in different fire detection
scenarios, fire images at different scales and distances in both outdoor and indoor scenarios
are selected for detection, and the detection results are compared with the SSD, Faster-
RCNN and YOLOv5 algorithms.

(1) Comparison of Different Methods in Outdoor and Indoor Scenarios

Figure 8 shows the fire detection results of the four methods in a bright indoor envi-
ronment. The detection accuracy of the SSD and Faster-RCNN algorithms are 86% and
83%, respectively. Compared with the SSD and Faster-RCNN algorithms, the detection
accuracy of the YOLOv5 algorithm is greatly improved and achieves 92%. Compared with
the YOLOv5 algorithm, the detection accuracy of the proposed method improves by 3%
and achieves 95% detection accuracy.
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Figure 8. Indoor fire detection.

Figure 9 shows the fire detection results for the four methods in an outdoor forest
environment. It is clearly visible that there are two main areas of fire on the mountain,
one higher set of flames in the upper right of the image and another lower set of flames
in the lower middle of the image. All four methods can detect the two main areas of fire.
However, the accuracy of these four methods and the size of the detected areas are not
the same. The SSD algorithm detects two main regions, and its detection accuracies are
85% and 81%, respectively. The bounding box of the SSD algorithm’s detection results
successfully covers the area of the higher flame but only covers a very small area of the
lower flame and misses part of the area of the lower flame. The detection results of Faster-
RCNN are similar to that of the SSD algorithm. For the higher flame detection, the detection
accuracy of Faster-RCNN is slightly higher than that of the SSD algorithm at 89%. Although
the detection accuracy of these two methods is almost the same for the lower flame, the
detection coverage area of Faster-RCNN is larger than that of SSD. The detection accuracy
of YOLOv5 is significantly superior to that of Faster-RCNN and SSD. Additionally, the
bounding box of YOLOv5 and of the proposed method covers almost the entire area of the
lower flame. This illustrates that the two superior methods, YOLOv5 and the proposed
method, both successfully detect almost all on the mountain. However, the detection
accuracy of the proposed method is 94% and superior to that of the YOLOv5 method.
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Figure 9. Outdoor fire detection.

(2) Comparison of Different Methods for Different Distances

For fire detection at a long distance, a camera carried by a UAV is used to detect
fires on the ground, as shown in Figure 10. From the detection results in Figure 10, it
can be seen that the bounding boxes of the four methods successfully cover the fire on
the ground. The detection accuracies of SSD and Faster-RCNN are lower at 87% and
84%, respectively. The Faster-RCNN method has the lowest detection accuracy mainly
because the feature map extracted by Faster-RCNN is single-layer and lower resolution.
The detection accuracy of the YOLOv5 method is better than SSD and Faster-RCNN and
achieves 90%. The detection accuracy of the proposed method is superior to the YOLOv5
and achieves 91% detection accuracy. The accuracy of the proposed method is still above
90%, even when the fire target in the image is very small. The reason for the high detection
accuracy of the proposed method is that the various scale features can be extracted by the
proposed method according to the size of the object. The process of extracting fine-grained
features by dynamic convolution YOLOV5 is enhanced; as a result, the detection accuracy
is improved.

Figure 11 shows fire detection at a short distance; all four methods can accurately
detect the fire on the sofa. The detection accuracies of SSD and Faster-RCNN are more
than 90%; the main reason is that the fire object in the image is larger due to the short
distance. The detection accuracy of YOLOv5 is much higher than SSD and Faster-RCNN
and is similar to that of the proposed method; both are greater than 93%.
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Figure 10. Fire detection at a long distance.

(3) Comparison of Different Methods in the Field of Multi-Objective Detection

Figure 12 shows multiple fires at a garbage dump and the fire detection results for the
four methods. It is clear that there are three main fires at the garbage dump. Each of the
four methods generates the three bounding boxes, and they all cover the three main fires.
However, the detection accuracies of Faster-RCNN, YOLOv5 and the proposed method
are greater than 90% in all three fire regions. The detection accuracy of the SSD method is
lower than 90% in the first fire region, mainly because the SSD model uses a multi-scale
feature map to predict objects. High-level feature information with a large receptive field
is used to predict large objects, and low-level feature information with a small receptive
field is used to predict small objects. For the detection of multiple fires, the detection
accuracy of Faster-RCNN is almost the same as YOLOv5 and the proposed method. Their
detection accuracies are all greater than 90%. However, the proposed method’s detection
accuracy for the three main fires is more stable than that of the Faster-RCNN and YOLOv5
algorithms. In Figure 12, it is difficult to distinguish which of the four methods has the best
detection result. The major reason is that the fires in the three regions are clear and seen at
a short distance.
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Figure 11. Fire detection at a short distance.

Figure 12. Multi-objective fire detection.
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(4) Comparison of Different Methods in Different Weather Conditions

On a rainy day, we use the SSD, Faster-RCNN, YOLOv5 and proposed methods to
detect fire, as shown in Figure 13. The fire detection accuracy of SSD is similar to that
of the Faster-RCNN method; both are lower than 80%. According to the above analysis,
it can be seen that the accuracy of fire detection using these two methods is generally
higher than 80%. The major reason for the worse result in this case is that the rainy day
influences the camera’s resolution and thus affects the ability of these two methods to
extract flame features. As a result, these two methods cannot obtain high fire detection
accuracy. However, the detection accuracies of both YOLOv5 and the proposed method are
greater than 80%. Although the light rain influences the brightness and clarity of the image,
the effectiveness of fire detection is not affected. The reason for this phenomenon is that the
YOLOv5 and proposed methods both have a better ability to extract fine-grained targets
from fire. Therefore, the fire detection performance of these two methods is not affected by
the weather.

Figure 13. Fire detection of different methods on rainy days.

4.4.3. Comparison of Different Methods Based on Quantitative Evaluation

In order to fully verify the performance of the proposed method, we compare the
proposed method with SSD, Fast R-CNN, Faster R-CNN, Cascade R-CNN and YOLOv5.
Table 5 shows the detection results of the six methods using the 8280 images.

Table 5. Detection results of different algorithms.

Different Methods TP TN FP FN

Fast-RCNN 4314 2290 840 836
SSD 4501 2391 739 649

Faster-RCNN 4972 2417 713 178
Cascade R-CNN 5003 2447 683 147

YOLOv5 5020 2554 576 130
Proposed Method 5100 2873 257 50

Fast-RCNN has the lowest TP and TN: almost 1000 fire and non-fire images cannot be
detected, indicating that the method fails to detect many positive and negative samples.
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Additionally, the FP and FN of Fast-RCN are the highest among the six methods. This
indicates that the Fast-RCNN method detects a large number of non-fire images as fire
images and a large number of fire images as non-fire images. From its detection outcomes
(TP, TN, FP and FN), the detection effectiveness of SSD is similar to that of Fast-RCNN. The
SSD method also results in a large number of error detections. From Table 5, it is clearly
visible that the detection capabilities of the Fast-RCNN and SSD methods are inferior
to the other four methods. The TP of Faster-RCNN is similar to Cascade R-CNN and
YOLOv5. However, the FN of Faster-RCNN is higher than those of Cascade R-CNN and
YOLOv5. This illustrates that Faster-RCNN mistakes more fire images for non-fire images
than Cascade R-CNN and YOLOv5. The TP and FN of Cascade R-CNN are almost the
same as those of YOLOv5. However, the TN and FP of Cascade R-CNN are lower than
those of YOLOv5. It shows that the fire identification performance of Cascade R-CNN
is similar to that of YOLOv5. From Table 5, it is clearly visible that the performance of
YOLOv5 is similar to that of the proposed method and superior to that of the SSD, Fast
R-CNN, Faster R-CNN and Cascade R-CNN methods. In particular, the FN of YOLOv5
is much lower than those of Fast-RCNN and SSD. This indicates that a large number of
fires can be detected by YOLOv5. The FN of the proposed method is the lowest, and its TP
is the highest. This indicates that only a few fires cannot be detected; almost all fires can
be detected by the proposed method. The dynamic convolution of the proposed method
takes into account the dynamic characteristic of fire. As a consequence, both the TP and
TN values for the proposed method are high. This indicates that the proposed method
can accurately detect fire and that the detection performance of the proposed method is
superior to that of other methods.

According to the TP, TN, FP and FN, the four evaluation indexes are calculated, as
shown in Table 6. It can be seen that the precision, recall, accuracy and F1-score of Fast-
RCNN are the lowest among the four methods. The precision of SSD is similar to that of
Fast-RCNN, mainly because precision only relates to TP and FP, as indicated by Equation
(1). However, the recall of SSD is greater than that of Fast-RCNN because recall is related
not only to TP but also to FN. As a result, its FN value leads to a higher detection accuracy
for SSD than for Fast-RCNN. Although SSD’s accuracy of fire detection is better than
Fast-RCNN’s, it is inferior to that of Faster-RCNN. The precision and recall of Faster-RCNN
are slightly lower than those of Cascade R-CNN. Similarly, the accuracy and F1-score
of Cascade R-CNN are slightly higher than those of Faster-RCNN. The major reason is
that the TP, FP, TN and FN obtained by these two methods are basically the same. As a
result, the fire identification performance of the two methods is almost the same. By the
same token, the precision, recall, accuracy and F1-score of Cascade R-CNN are slightly
lower than those of YOLOv5. This illustrates that the performance of Cascade R-CNN
is slightly inferior to that of YOLOv5. This is because the number of low-level feature
convolution layers is fewer when the Cascade R-CNN model uses the low-level feature
information of the small receptive field to predict a small object. Compared with Fast-
RCNN and SSD, the precision, recall, accuracy and F1-score of YOLOv5 are all higher
than the scores for those two methods. The reason for this result is that YOLOv5 uses
mosaic data augmentation. The proposed method uses dynamic convolution to replace the
traditional static convolution kernel and extracts various scale features according to the
size of objects. Therefore, the performance of object feature extraction and the accuracy of
object detection are improved. Ultimately, the precision, recall, accuracy and F1-score of
the proposed method are superior to YOLOv5. Compared to YOLOv5, the precision, recall,
accuracy and F1-score of the proposed method are increased by 5.5%, 1.6%, 4.8% and 1.8%,
respectively. In a word, the fire detection effectiveness of the proposed method is better
than the other five deep learning methods. The major reason is that the proposed method
replaces static convolution with dynamic convolution, which can extract features of every
scale according to the object size. The reason for doing this is to increase the fine-grained
feature extraction ability, reducing the number of false positives. Additionally, dilated
convolution can increase the receptive field of the network without changing the network
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resolution and then capture multi-scale context information. Thus, the detection accuracy
for multiple and small objects is improved without affecting the detection speed.

Table 6. Quadri-partite measures of different methods.

Different Methods P (%) R (%) Acc (%) F1-Score (%)

Fast-RCNN 83.7 83.8 79.8 41.9
SSD 85.9 87.3 83.2 43.3

Faster-RCNN 87.5 96.5 89.2 44.8
Cascade R-CNN 88.1 97.1 90.1 45.6

YOLOv5 89.7 97.4 91.5 46.7
Proposed method 95.2 99 96.3 48.5

The processing time of each image in the video stream by different methods is obtained,
as shown in Figure 14.

Figure 14. Processing time of each image by different methods.

Figure 14 shows that the Fast-RCNN method requires the longest processing time for
each image, and the proposed method requires the shortest processing time. The processing
time of each image for the proposed method and the YOLOv5 method is much lower than
for the other four methods. Fast-RCNN takes almost 50 ms to process each image. SSD and
Faster-RCNN method both take about 40 ms to process each image. Cascade R-CNN takes
about 30 ms to process each image. The proposed method takes only 18 ms to process each
image and thus requires the least amount of time.

5. Conclusions

With the gradual development of intelligent monitoring systems, it is important to
detect the initial flames of a fire and then control its spread and avoid casualties. Based on
the advanced YOLOv5 model used in the field of target detection, a dynamic convolution
YOLOv5 model is applied to flame detection and verified on a self-made flame image
dataset. First, the K-means++ algorithm is used to update anchor boxes. Second, dynamic
convolution is introduced to replace the traditional static convolution kernel. The feature
values of various scales are extracted according to the target sizes, which improves the
ability of the network to extract target features and reduces the false detection rate. Finally,
the network structure is pruned to reduce the calculation costs of the model and improve
detection speed. Experiments show that the dynamic convolution YOLOv5 model proposed
in this paper achieves good fire detection effectiveness and, in particular, significantly
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improves the detection of small targets. It not only ensures the accurate detection of fire
but it also realizes real-time detection.
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