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Abstract: The detector is an integral part of the device for receiving and processing radio signals.
Signals that have passed through the ionospheric channel acquire an unknown Doppler shift and are
subject to dispersion distortions. It is necessary to carry out joint detection and parameter estimation
to improve reception quality and detection accuracy. Modern hardware base developing makes
it possible to implement a device for joint detection and evaluation of signals based on standard
processors (CPU) and graphic processors (GPU). The article discusses the implementation of a signal
detector that allows for real-time operation. A comparison of implementations of algorithms for
estimating the Doppler frequency shift through multiplication by a complex exponent and the fast
Fourier transform (FFT) is performed. A comparison of computational costs and execution speed on
the CPU and GPU is considered.
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1. Introduction

Ionospheric radio communication is a highly reliable and cost-effective solution for
organizing communication with outlying regions, as well as with regions whose infras-
tructure has been disrupted due to natural disasters. Currently, development of decameter
ionospheric radio communication systems is on the way to increasing the speed of infor-
mation transmission [1–6]. When using broadband signals in the decameter range, the
frequency dispersion has a significant effect on the signal [7–14]. Thus, due to the frequency
dispersion, at different frequencies wideband signals have different propagation delays.
Such a difference leads to a synchronization error and affects the quality of signal detection
and the quality of information reception [15–17]. A separate problem is the detection of
long signal preambles with a duration of about several seconds long, with a spectrum
wider than 100 kHz [18–20] and with a coherent accumulation of the detected signal energy
throughout its duration. In this case, the signal base reaches a value exceeding 50 dB, and
the required accuracy of estimation and compensation of the Doppler frequency shift is in
the tenths and in some cases hundredths of a hertz. Otherwise, the coherent accumulation
of signal energy over time intervals of units or even tens of seconds becomes impossible.
Simultaneously, with the evaluation of the Doppler shift [21–26], it is also required to
evaluate and compensate for the dispersion distortions of the detected signals.

In this paper, we show the possibility of constructing a device for the joint detection
and estimation of the parameters of signals with dispersion distortions on graphic pro-
cessors. Implementations proposed in this paper allow for the simultaneous detection of
signals and estimation of dispersion distortions, delay, Doppler shift, and initial phase in
real time.

Sensors 2022, 22, 3105. https://doi.org/10.3390/s22093105 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22093105
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2812-6724
https://orcid.org/0000-0002-4165-9421
https://orcid.org/0000-0002-6695-6297
https://doi.org/10.3390/s22093105
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22093105?type=check_update&version=1


Sensors 2022, 22, 3105 2 of 15

2. Related Work

Stein, Tolimieri, and Winograd are the founders of research on algorithms for cal-
culating uncertainty functions. Stein has described a processing approach for obtaining
joint delay and frequency offset (DTO/DFO) estimates for continuous signals based on the
efficient calculation of complex ambiguity functions [27]. Typically, it involves a two-mode
process called coarse and fine modes. Coarse mode is used to greatly reduce the time
delay and frequency offset uncertainty, after which fine mode calculations are performed.
Precise mode uses product/filter mixing interpretation, greatly reducing the processing
load. Tolimieri and Winograd proposed an algorithm for the discrete ambiguity function
calculation in [28]. They rely on the fact that, in most basic applications, it is necessary to
calculate the limited parts of the DFT of a discrete ambiguity function. To do this, they first
pass a long sequence through a decimated FIR filter, and then they use the FFT algorithm.
Additionally, computationally efficient algorithms for the joint estimation of the Doppler
shift and time delay are considered in [29,30]. These papers propose a new method based
on a pre-weighted Zoom FFT with a cascaded filter algorithm to minimize the processing
load of cross-ambiguity functions without compromising performance. The weighting
process in the Zoom FFT method provided an opportunity for the researchers to get rid of
redundant calculations. The multi-stage filtering method was used to reduce complexity
and to obtain a high-performance system. A method for processing segments was also
proposed, adapted to calculate the ambiguity function when imposing input data frames.
By considering the calculation of the cross-ambiguity functions of overlapping data frames
as the calculation of the FFT of the overlapping data, the redundancy of the calculations
can be eliminated.

Modern techniques for reducing the complexity of the cross-ambiguity function (CAF)
are based on numerical fitting for CAF [31]. These algorithms make full use of the property
that the CAF is symmetrical in the frequency domain. Simulation results show that, com-
pared to the method that looks for the CAF peak, the proposed algorithm can significantly
reduce computational complexity while meeting the accuracy requirements of the joint
time-frequency estimate.

In paper [32], the authors propose a method for solving the problem of determining
the mutual delay time of ultra-wideband signals. A modified algorithm, which can be
implemented by parallel calculation of the cross-ambiguity function, was used to compen-
sate Doppler shift of the recorded signals. This algorithm was based on the division of an
ultra-wideband signal into separate frequency channels. An increase in the computational
efficiency of the proposed algorithm was achieved by parallel calculation of the convolution
function and cross-ambiguity.

However, all the above works do not take into account the problem of compensating
for dispersion distortions and processing signals with a base over 50 dB. There are also
no computationally efficient solutions implemented on the GPU that allow for the real-
time detection of signals with a base of more than 50 dB (the signal spectrum width is
hundreds of kHz, the duration is a few seconds) with the simultaneous estimation of
dispersion distortions, delay, Doppler shift, and initial phase. Given these features, the
joint detection and estimation of signal parameters requires large computational resources.
The modern technology level makes it possible to consider the possibility of developing a
computationally efficient implementation of various algorithms on GPUs. For example,
such GPU implementation allows you to build systems for parallel simulation of MIMO
radars [33] and build digital downconverter [34]. Additionally, GPUs are very often used
in deep learning [35]. Thus, computing on GPUs is becoming more and more efficient.
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3. Analytical Formulation of the Problem

The complex envelope of the signal at the joint detection and signal parameters
estimation device input can be represented as a composition of the useful signal complex
envelope, distorted by the frequency dispersion of ionospheric channel, and the complex
envelope of white Gaussian noise:

.
yi(ϕ, τ = l · ∆t, fd, s) = e−jϕej2π fd(i−l)∆t .

xi−l(s) +
.
ni,

i = 0÷ Np − 1,
(1)

where
.
x(s) =

.
x ∗

.
h(s) is distorted by the ionospheric channel useful signal complex en-

velope,
.
hi(s) is the ionospheric channel impulse response (IR) complex envelope,

.
xi is

the complex envelope of useful undistorted signal, fd is the doppler frequency shift, τ
is the delay in seconds, l is the delay in samples, ∆t is the sample time, s is the slope of
the dispersion characteristic (parameter that characterizes dispersion distortions), ϕ is the
unknown phase shift,

.
n(t) is the complex envelope of white Gaussian noise with zero mean

and variance σ2
W , and Np is the number of samples.

The ionospheric channel impulse response (IR) complex envelope connects with fre-
quency response of the ionospheric channel

.
H(j2π f ) through Fourier transform

.
H(j2π f ):

.
h(t, s) =

∞∫
−∞

.
H(j2π f )ej2π f d f , where x(t) is a transmitted signal that is known at

the receiving side.
The ionospheric channel model, which takes into account frequency dispersion, is

proposed in [8]. We consider version of this model with a linear dispersion characteristic.
Then frequency response of the ionospheric channel in the absence of multipath signal
propagation can be described as

.
H(j2π f ) = e−jπs f 2

, f ∈ [−∆ f /2; ∆ f /2], (2)

where ∆ f is the bandwidth of the ionospheric channel.
The decision statistic can be found as:

.
λi(ϕ, τ, fd, s) =

Np−1

∑
n=0

.
yn(ϕ, τ = l · ∆t, fd, s)

.
g∗i−n( fd, s), (3)

where the matched filter impulse response
.
g is defined as

.
gNp−1−i( fd, s) =

Np−1

∑
n=0

.
xnej2π fdn∆t

.
h
∗
i−n(s). (4)

Then, the parameter estimates can be found as:

ϕ̂, τ̂,
ˆ
fd, ŝ = argmax

ϕ,τ, fd ,s

.
λi(ϕ, τ, fd, s), (5)

where ϕ̂, τ̂,
ˆ
fd and ŝ are estimates of ϕ, τ, fd and s, respectively.

4. Implementation of a Matched Filter

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, and the experimental conclu-
sions that can be drawn. From Equation (2) it can be seen that the number of matched filters
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to obtain a complete set of decision statistics
.
λi(ϕ, τ, fd, s) is determined by the number of

possible Doppler frequency shifts fd and slopes of the dispersion characteristic s:

Nm f = N fd
Ns, (6)

where Nm f is the number of matched filters, N fd
is the number of possible Doppler fre-

quency shifts fd, and Ns is the number of possible slopes of the dispersion characteristic
s. A large number of matched filters imposes high requirements on the computing plat-
form. Doppler frequency shift fd consideration (for its estimation) can be carried out after
matched filtering, then Equation (2) can be represented as:

.
λi(ϕ, τ, fd, s) = ej2π fdi∆t

Np−1

∑
n=0

.
yn(ϕ, τ = l · ∆t, fd, s)

.
gi−n(s), (7)

where
.
gNp−1−i(s) =

Np−1

∑
n=0

.
xn

.
h
∗
i−n(s). (8)

The above transformation reduces number of required matched filters to Nm f = Ns,
which can significantly reduce computational costs. However, in the conditions of an iono-
spheric channel, due to the presence of a Doppler frequency shift during the observation of
the complex envelope at the input of the matched filter, a phase drift occurs, which leads
to losses in the SNR at the output of the matched filter. To minimize these losses, we will
convolve not with a reference signal of duration Np, but with signals (see Figure 1):

.
xm,n =

.
xn+m·Npp , n = 0÷ Npp − 1, m = 0÷M− 1, (9)

where Npp =
Np
M , and M is the number of splits of the original sequence.
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In this case, matched filtering can be performed using a series-matched filter, which is
a set of filters matched with sequences

.
xm,n.

4.1. Estimation Algorithm via Complex Exponents

A filter matched with a series of sequences is shown at Figure 2. The signal at the
output of each matched filter can be written as:

.
λm,n(s) =

Npp−1

∑
l=0

.
ym,l

.
g∗m,n−l(s), n = 0÷ Npp − 1, m = 0÷M− 1, (10)

where
.
gM−1−m,Npp−1−n(s) =

Np−1

∑
k=0

.
xk+mNpp

.
h
∗
n−(k+mNpp)(s) is the complex impulse response

envelope of the filter matched to the m-th sequence.
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Doppler frequency shift is taken into account:

.
λm,n( fd, s) =

.
λm,n(s) · ej2π fd(n+mNpp)∆t. (11)

The decision statistics at the matched filter output can be obtained as:

.
λn( fd, s) =

M−1

∑
m=0

.
λm,n( fd, s). (12)

The interval of allowable values of the Doppler frequency shift is
[
− fs

2Npp
: fs

2Npp

]
,

where fs is the sample rate. Within this interval, value of the estimated Doppler frequency
shift can be arbitrary. A significant drawback of this implementation is the requirement for
the amount of RAM to store arrays with complex exponents.

Joint detection and signal parameters estimation device scheme is shown in Figure 3.
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4.2. Algorithm with Doppler Estimation via FFT

Multiplication by complex exponents and the subsequent summation to further esti-
mate the Doppler frequency shift can be done using the FFT.

Let fd = k fs
N , then Equation (10) can be represented as:

.
λn,k( fd = k · ∆ f , s) =

M−1

∑
m=0

.
λm,n(s) · ej2πkm, (13)

where
.
λm,n(s) =

Npp−1

∑
l=0

.
ym,l

.
g∗m,n−l(s),

n = 0÷ Npp − 1, m = 0÷M− 1.
(14)

Equation (11) can be calculated using FFT algorithms from
.
λm,n(s) for each k. This algo-

rithm, in contrast to the algorithm with multiplications by complex exponents, makes it pos-
sible to estimate the Doppler frequency shift only for fd = k · ∆ f , where k = [−Npp

2 : Npp
2 ].

The scheme of the filter matched with a series of sequences with searches for Doppler
frequency shifts through the FFT is shown in Figure 4.
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5. GPU Implementation

A matched filter with a series of sequences on the GPU is implemented using the fast
convolution algorithm “Overlap and Save” [36] and the FFT and IFFT parallel computation
library on the GPU–clFFT, implemented on OpenCL [37] (see Figure 5). The clFFT library is
developed by clMathLibraries, an OpenCL library implementation of discrete fast Fourier
transforms. The input data are loaded into the GPU in blocks of Npp samples. Loading is
performed into a circular buffer Binput, size Npp(M + 1). After loading the next block of
samples, the buffer Binput is fed to the calculation of the FFT with the size of 2Npp with an
overlap in Npp samples. FFT results are written to a buffer BFFT , size 2Npp M. Post-FFT
samples are multiplied with frequency response samples Hi(s), i = 0, 1, . . . , M− 1 . The
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multiplication result is written to the buffer BMUL and fed to the calculation of the IFFT,
size 2Npp. Samples after this IFFT are placed in the BIFFT buffer. The second half of each

2Npp sample is the response of the filter
.
λm,n(s) matched to the m-th sequence.
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Received responses are transferred to the module for taking into account Doppler
frequency shifts and obtaining the total decision statistics. This module is made in two
versions. The first option is to directly multiply by complex exponents and then sum
the filter responses. Multiplication operations by complex exponents are performed by
calculating different samples of decision statistics using different GPU work items (WI).

The work items set wi,j of the graphic processor is represented as a matrix W, dimen-
sion R1 × R2 (see Figure 6). Where R1 and R2 are numbers of work items in the 1st and 2nd
dimension, respectively. These values determined by GPU implementation and have to be
taken into account in the parallelization of the algorithm adaptation for GPU.

Within the available number of work items, it is proposed to parallelize the calculation
of all samples of the decision statistics for all possible values of the Doppler frequency shifts
fd. The required number of work items to compute decision statistic samples

.
λn( fd, s) for

a single Doppler frequency shift value is Npp. The maximum number of work items per
calculation of the decision statistic samples for one value of the Doppler frequency shift
can be calculated as:

Nmax_items_ exp =

⌊
R1R2

N fd

⌋
. (15)
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Then, the actual number of work items is defined as:

Nitems_ exp = min(Nmax_items_ exp, Npp). (16)

In the case when required number of work items exceeds number of available GPU
items, some work items will calculate several samples of decision statistics

.
λn( fd, s).

When performing calculations on the GPU, work items are combined into work groups
(WG). The best performance is achieved by setting the work group size Nsize_work_group to
the maximum, which is determined by the specific GPU implementation. The number of
work groups for computing decision statistics samples

.
λn( fd, s) for one value of Doppler

frequency shift:

Nwork_group =

⌈
Nitems_ exp

Nsize_work_group

⌉
. (17)

The distribution of calculations between work items and GPU work groups is shown
in Figure 7. This figure shows that the decision statistics values calculation

.
λn(ϕ, τ fd, s)

is divided into N fd
groups by Nwork_group × Nsize_work_group work items. Each of these

groups performs the calculation of the decision statistics samples
.
λn(ϕ, τ fd, s) for one of

the possible values of the Doppler frequency shift fd. This improves the performance of the
algorithm by performing parallel computations.
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The second option for building a module for taking into account Doppler frequency
shifts and obtaining the total decision statistics was performed using the FFT through
the clFFT library. According to Equation (11) and Figure 4, the FFT must be taken from
the n-th samples of all responses

.
λm,n(s). The clFFT library allows you to perform all the

necessary FFTs using a buffer BIFFT without additional memory operations. Figure 8 shows
that the clFFT library allows you to perform an FFT from all n-th samples for all

.
λm,n(s),

n = 0÷ Npp − 1, m = 0÷ M − 1 that were in the buffer BIFFT without additional data
copies. The number of these FFT operations is M.
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The FFT results are written to the buffer Bm f in such a way that the decision statistics
.
λn( fd, s) for different values of the Doppler frequency shift are sequentially stored in
the memory.

6. Comparison of Algorithms Computational Complexity

Computational complexity is affected by the number of possible values fd and s, which
are defined as Ns and N fd

, respectively. Computational complexity is given in the number
of complex multiplications per one input sample. Computational complexity of the device
for joint detection and estimation of signal parameters for two implementations of the
algorithm is defined as:

Ncm =
(

2M
(
log2(2Npp)− 1

)
+ MN fd

)
Ns, (18)

Ncm_ f f t =

(
2M
(
log2(2Npp)− 1

)
+

N fd

2

(
log2(N fd

)− 2
))

Ns. (19)

Thus, computational complexity of the proposed algorithm depends on the number
of partitions of the original sequence M, the duration of one part of the original sequence
Npp, the number of possible values of Doppler shifts in frequency N fd

, and slopes of the
dispersion characteristic of the ionospheric channel Ns.

7. Test Results on CPU and GPU

For the experiment, a six-core Intel Core i7-8700 CPU with a clock frequency of 3.2 GHz
and a Geforce RTX 3060 GPU with 3584 CUDA cores, a base clock frequency of 1.32 GHz,
and a 192-bit memory bus were used. The experiment was run on a computing platform of
32 GB of RAM with a speed of 2400 MT/s. The experiment was carried out in the operating
system Linux Ubuntu 20.04 with Nvidia GPU driver version 460.73.01. The used clFFT
library version was 2.12.2. For algorithm implementation, compilation was used with a
gcc 9.4.0 compiler with compiler flags set to o2. To execute calculations, five cores and
10 threads of Intel Core i7-8700 CPU were used. One core and two threads were left for
the needs of the operating system. Testing was performed on a signal with a bandwidth
∆F = 400 kHz and a duration T = 7 s. The base of this signal was 64.5 dB. These parameters
were chosen based on the results of field experiments carried out on single-hop ionospheric
paths up to 3000 km long. The search ranges for the Doppler frequency shift and the slope
of the dispersion characteristic of the ionospheric channel were also selected based on the
results of field experiments. Dependence of the computational complexity on the number
of possible values of Doppler shifts in frequency N fd

for a different number of slopes of
the dispersion characteristic of the ionospheric channel Ns for Npp = 32768 and M = 86 is
shown in Figure 9.

This graph shows that an increase in the number of possible values N fd
leads to a slight

increase in computational complexity compared to an increase in the number of possible
values Ns. The dependence of the number of complex multiplications on the number of
possible values fd for a different number of splits M of the original signal at is shown in
Figure 10.

The number of experiments performed to obtain averaged results was 1000. Increasing
the number M leads to an increase in computational complexity.

Table 1 shows the dependence of the algorithm running time on the block duration for
fd = −5 : 0.05 : 5 N fd

= 201 .
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Table 1. Experimental running time of the algorithms per one input sample, with different block durations.

Algorithm Implementation
Type

Block Length
10.24 ms

µs

Block Length
20.48 ms

µs

Block Length
40.96 ms

µs

Block Length
81.92 ms

µs

Block Length
163.84 ms

µs

Doppler without FFT on CPU 251.1 124.4 62.59 31.3 15.91
Doppler with FFT on CPU 17.83 9.17 5.88 3.98 2.51

Doppler without FFT on GPU 7.36 4.21 2.49 1.61 1.19
Doppler with FFT on GPU 3.91 2.03 1.29 0.91 0.55

Table 2 shows how many times RTX 3060 GPU is faster than base Intel i7-8700 pro-
cessor. It can be seen that the performance gain of the RTX 3060 GPU in the algorithm
without FFT decreases with increasing block duration, while in the algorithm with FFT, it
remains constant.

Table 2. GPU RTX 3060 Performance Boost vs. CPU Intel Core i7-8700.

Algorithm Implementation
Type

Block Length
10.24 ms

Block Length
20.48 ms

Block Length
40.96 ms

Block Length
81.92 ms

Block Length
163.84 ms

Doppler without FFT 34.12 29.55 25.14 19.44 13.37
Doppler with FFT 4.56 4.52 4.56 4.37 4.56

The TDP of the RTX 3060 GPU is 170W, while the TDP of the Intel Core i7-8700 is 65W.
Thus, the increase in power consumption when using the RTX 3060 GPU compared to the
Intel Core i7-8700 CPU is 2.62 times, and the minimum performance increase is 4.37 times.
Therefore, it is advisable to use a GPU, since the increase in performance exceeds the loss
in power consumption.

Dependence of the response level of the matched filter on the block duration at the
Doppler shift fd = 3 is shown in Figure 11.
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Implementation with Doppler shift estimation via FFT on the GPU is the most efficient
and allows for processing one sample in less than 2 µs with a loss of no more than 0.5 dB.
With a block duration of less than 80 ms, the loss does not exceed 0.5 dB.

8. Conclusions

This paper proposes two implementations of the joint detection and estimation of the
parameters of signals with dispersion distortions on the CPU and GPU. In the first method,
the estimation of the Doppler frequency shift is performed in a direct way, by multiplying
by complex exponents. In the second method, estimation of the Doppler frequency shift
is performed through the FFT. All FFTs in the proposed implementations are performed
through the “Overlap and Save” fast convolution algorithm. The computational complexity
of the proposed implementations of joint detection and estimation of signal parameters is
calculated. It is shown that the method based on the estimation of the Doppler frequency
shift through the FFT is the most computationally efficient. Implementation of this method
on the GPU allows for the joint detection and estimation of signal parameters in real time.
It is shown how the duration of a block in a matched filter with a series of sequences affects
the response level. Reducing the block duration results in a reduction in matched response
level loss but results in an increase in computational complexity.

Author Contributions: Conceptualization, V.I.L. and E.M.L.; methodology, formal analysis, and
investigation V.I.L.; software, writing—original draft preparation, and writing—review and editing,
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published version of the manuscript.
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