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Abstract: The most traditional sites for electrodermal activity (EDA) data collection, palmar locations
such as fingers or palms, are not usually recommended for ambulatory monitoring given that subjects
have to use their hands regularly during their daily activities, and therefore, alternative sites are
often sought for EDA data collection. In this study, we collected EDA signals (n = 23 subjects,
19 male) from four measurement sites (forehead, back of neck, finger, and inner edge of foot) during
cognitive stress and induction of mild motion artifacts by walking and one-handed weightlifting.
Furthermore, we computed several EDA indices from the EDA signals obtained from different sites
and evaluated their efficiency to classify cognitive stress from the baseline state. We found a high
within-subject correlation between the EDA signals obtained from the finger and the feet. Consistently
high correlation was also found between the finger and the foot EDA in both the phasic and tonic
components. Statistically significant differences were obtained between the baseline and cognitive
stress stage only for the EDA indices computed from the finger and the foot EDA. Moreover, the
receiver operating characteristic curve for cognitive stress detection showed a higher area-under-the-
curve for the EDA indices computed from the finger and foot EDA. We also evaluated the robustness
of the different body sites against motion artifacts and found that the foot EDA location was the best
alternative to other sites.

Keywords: electrodermal activity; SCR; statistical test; cognitive stress

1. Introduction

In recent years, there has been a tremendous increase in the popularity of wearable
devices, which has greatly increased the feasibility of non-invasive and continuous physio-
logical data collection [1,2]. Electrodermal activity (EDA) is one example, which has been
used as a non-invasive surrogate marker of the autonomous nervous system in several psy-
chophysiological applications, such as emotional arousal [3–6], stress [7–10], pain [11–13],
panic disorder [14], autism [15], and decision making [16]. EDA refers to the change in
electrical conductivity of the skin in response to eccrine sweat gland activity. Usually, EDA
is collected by applying a low constant voltage between two closely placed electrodes and
then measuring the change in skin conductance [7,17,18]. Typically, EDA electrodes are
placed on the fingers of the subject. However, fingers may not be practical locations for
long-term data collection. Therefore, alternative body sites should be explored for EDA
data collection when fingers are not available. The objective of this study is to determine
alternative sites for EDA collection other than fingers by quantitative comparison of the
EDA indices derived from other body locations. In addition, the other aim is to deter-
mine the effect of common motion artifacts on the fidelity of EDA data for various body
locations examined.
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The most widely used and the most responsive sites for EDA signal measurement are
the finger pads and palmar surfaces [17–19]. However, neither are feasible for applications
in which subjects have to use their hands. For example, a recent study has shown promising
results on the prediction of seizures due to central nervous system oxygen toxicity in rats
using indices derived from EDA [20]. Given that divers use their hands regularly for
performing many different tasks, the palmar surface is not the best site for collecting EDA
signals. Moreover, there could be some conditions for which the finger EDA may not
provide the best response. For example, Sano et al. [21] reported that while monitoring
non-REM sleep storm activity, they found that larger and more frequent skin conductance
responses were observed in the EDA records collected from wrists than from the palm.

Skin conductance at a particular body site depends on several factors, such as the
density of sweat glands and their relative sizes, the sweat output of the individual glands,
and also the nerves that control the sweat glands of the site [22,23]. Palmar and plantar
surfaces have the highest eccrine sweat gland density (600 to 700 glands/cm2) and are often
considered the best sites for EDA recordings [24–26]. Another high sweat gland density site
is the forehead (eccrine gland density of 181 glands/cm2), which has also been explored by
researchers for EDA data collection [22,26].

As an alternate measurement site, the wrists were suggested by many researchers
in the past few years [21,27,28]. However, contradictory results were reported by the
researchers for this measurement site. While some of the studies showed high correlations
between the EDA signals collected from the wrist and the palmer sites [22,28], others
found lower correlations [29,30]. Researchers have also considered several other sites, such
as shoulders [22,31] and the lower calf [22,31,32], for EDA data collection. For example,
Hedman et al. [33] collected EDA data from the lower calf of children with attention deficit
hyperactivity disorder and reported that this particular location was beneficial for them
since it did not interfere with their activities and movements. Fedor et al. [34] compared
EDA signals from a forearm and the back of the lower calves and found significant corre-
lations. The participants in this study rated the lower calf as more comfortable than the
distal forearm location. However, several other studies found relatively low correlations
between the EDA signal obtained from the lower calf and the gold standard finger EDA
signals [22,32].

Another important factor to be considered about the EDA for finding alternate sites is
the hydration time [32]. Depending on the location, a hydration time of 25 to 120 min might
be necessary for obtaining accurate skin conductance responses (SCR) [29,32]. For example,
Kasos et al. [32] reported that pedaling on a stationary ergometer for approximately 20 min
has improved the absolute response frequency of the left shoulder to 96%. All of these
studies suggest that for the alternative sites to be electrodermally active, enough hydration
time or physical activity is needed.

While previous studies [22,32] have explored the feasibility of several alternate sites
for EDA signal collection, their analysis was mostly based on morphological correlations
with the gold standard finger EDA. They did not compare the EDA indices calculated from
different sites. While correlation with the finger EDA is a practical way of evaluating the
EDA signals at alternative sites, it can be misleading sometimes because of the trend of
both signals. For example, EDA signals having similar trends (increasing or decreasing)
may show high correlation even without similar SCR responses. Moreover, many of the
studies did not consider the effect of motion artifacts and how they can negatively affect
the EDA records obtained from different body sites.

In this study, we considered four different body sites (forehead, back of neck, finger,
and foot) that have high sweat gland density, and these sites were also previously reported
to have highly correlated EDA signals when compared to the finger EDA [22,30,32,35].
While comparing the signals obtained from alternative sites to the finger EDA, we also
analyzed the usability of the EDA signals under daily activities such as walking or grabbing
something. We computed EDA indices and compared their efficacy at classifying cognitive
stress for all data collected from the four different body sites.
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2. Materials and Methods
2.1. Data Collection

We collected four channels of EDA signals from different body locations, namely the
forehead, neck, fingers, and foot. Figure 1 shows the measurement sites for this study. In the
study, 23 subjects aged 20–35 (19 male, 4 female) participated. We used the non-dominant
side for placing electrodes on the index and middle fingers and the inner foot.
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Similar to most studies [22,30,32,35], we collected EDA data using an exosomatic ap-
proach, where an external constant voltage or current is applied between two electrodes. A
constant DC/AC voltage/current is applied between the electrodes, and the corresponding
current/voltage is measured, from which skin conductance (SC) is calculated using the
Ohm’s law. The variation of the SC represents the EDA signal. We used commercially avail-
able wearable Shimmer 3 devices [36] with Ag/AgCl electrodes. The Shimmer 3 device
uses a constant small DC voltage across the electrodes, measures the corresponding cur-
rent, and computes the SC. The SC is amplified to provide EDA data within a standard
range. This device is easy to handle and worn as a wearable device [37]. The experimental
protocols were described to the subjects by the experimenter and written consent was
obtained from the subjects before starting the experiment. The experimental protocols were
reviewed and approved by the institutional review board (IRB) for human subject research
at the University of Connecticut.

The experimental protocols for this study are shown in Table 1. The experimental
protocols consisted of two parts. Part I was designed to compare the EDA collected under
no movement as subjects were resting in the supine position for two minutes, and then
subjects performed the Stroop test in the same position (supine position). The experimental
phases were performed one after another with no pause in between. For each phase, we
considered 2 min, which is sufficiently enough to contain many SCRs. The Stroop color
and word test (SCWT) is a neurophysiological test to assess a person’s ability to handle
cognitive stimuli [38]. We used the most common version of SCWT. Subjects were shown
various color-words printed in an inconsistent color ink (for instance, the word “red” is
printed in green ink) and were required to name the color of the ink instead of reading the
word. We designed part II of the protocol to evaluate the signal quality during movements
that emulated realistic scenarios: we considered two basic movements such as walking and
lifting a weight in their hand. While the movements we considered may seem limited, our
main focus was on how the EDA signal can be affected at the fingers and the foot due to
common movements. Since walking is one of the most common activities that may affect
the EDA signal at the foot, and we often use our hands for holding or lifting objects that may
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affect the EDA signals at the fingers, we considered these two movements to particularly
explore the signals at the fingers and the foot during movements or regular activities.

Table 1. Experimental protocol.

Duration (s) Activity Description

120 Relax, supine, with eyes closed
120 Perform Stroop test
120 Walk at 3 mph
120 Dumbbell deadlift, one handed; release between each repetition

2.2. Data Processing

The EDA data collected were resampled at 8 Hz from 100 Hz. We then used a Butter-
worth lowpass filter of order six and cutoff frequency of 0.6 Hz (which is well above the
frequency range of EDA dynamics) [39]. Since typically the autonomous nervous activities
are captured within the frequency range (<0.4 Hz) [40,41], the choice of a cutoff frequency
of 0.6 Hz was a relatively conservative approach to remove redundancy in the data while
keeping the essential information. We decomposed the EDA signal into phasic and tonic
components using the cvxEDA algorithm [42], which is one of the popular methods for
EDA signal decomposition. The cvxEDA models the EDA signal as a summation of phasic
and tonic components, and an additive white Gaussian noise term which incorporates the
prediction as well as the measurement error. This method then uses Bayesian statistics,
convex optimization, and sparsity constraint to solve the optimization problem to mini-
mize the prediction errors to estimate the tonic and phasic components. Phasic and tonic
components are the two most salient characteristics of an EDA signal, where the phasic
components (SCRs) represent the rapid and smooth transient events present in the EDA
signals, and the tonic component represents the overall conductance as a measure related
to the slow shifts of the EDA [43].

We then used the comments noted during the experiment to segment the data into
different stages, where each segment corresponds to a particular phase of the experiment
(e.g., baseline, Stroop test, walking, and weightlifting). We computed traditional EDA
indices, such as the number of skin conductance responses, mean and variance of skin
conductance level, and the mean and variance of phasic signals, from each segment of the
four EDA locations [43]. Since the EDA signals collected from different locations may have
different signal amplitudes while containing the SCRs, we hence used 0.05 of the maximum
peak amplitude of the respective phasic signal as the threshold to compute the number of
skin conductance responses.

2.3. Statistical Analysis

Many of the previous publications reported Pearson’s correlation to compare the EDA
signals from different body sites. However, as mentioned in [32], correlations may overesti-
mate or underestimate the relationship between two measurement sites, depending on the
trends of the signals. While the trends may represent important information about the skin
conductance, such as how the overall activity changes over time, they can be misleading in
certain cases. For example, Figure 2 left shows a segment of the four simultaneous EDA
records collected from different body sites. While from the raw EDA signal it seems that
the neck and forehead EDA follow the same trend as the finger EDA for the first half of the
time series, the phasic components derived from them look quite different than those of the
finger EDA for all time points.
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Figure 2. EDA signals collected from different body sites (left side), Corresponding phasic signals
(right side).

The phasic signal, which is believed to contain most of the information, does not
always match very well to the corresponding finger phasic signal (especially in the first
half). Therefore, for a more comprehensive comparison between the measurement sites,
we computed correlations for the phasic and tonic components among the signals from
different measurement sites.

While within-subject correlation has been reported in most of the previous studies,
none of them compared EDA-derived indices that are typically used for the identification
of sympathetic stimuli. We computed EDA indices from each body location’s signals and
compared their efficacy at differentiating between the baseline stage and the cognitive
stress stage (SCWT). To check the statistical difference of the EDA indices between the
baseline and the cognitive stress stages, we performed a pairwise t-test if the data of two
groups were normally distributed. Otherwise, we used the two-sided Wilcoxon rank sum
test [44]. We used a 0.05 level of significance for rejecting the null hypothesis. A significant
difference between the two groups indicated the sensitivity of the EDA from a particular
body site to an external stimulus.

2.4. EDA Data Quality Assessment

One of the significant motivations behind exploring alternative sites for EDA data
collection is to find a comfortable body site for electrode placement that is also robust
against motion artifacts. Since a major focus is on ambulatory EDA monitoring, it is
essential to analyze the effect of daily movements on the EDA collected from different
measurement sites [45,46]. In this study, we considered two common motion artifact
scenarios (walking and a grabbing motion using hands) for EDA data collection.

To compare the data quality among different body locations, we first computed the
power spectrum of the EDA signal using the Welch periodogram with 50% data overlap,
and then defined a noise band (frequency > 0.4 Hz). The reason we choose 0.4 Hz is
that most of the ANS activity (sympathetic and parasympathetic) is captured within the
frequency range of 0.04 to 0.4 Hz [39,40]. Therefore, we can attribute the spectral power in
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the frequency > 0.4 Hz to either noise or dynamics not related to the EDA signal. Thus, we
defined a metric Pn, which is the fraction of the total power present in the noise band:

Pn =
Power in noise band(f > 0.4)

Total power
(1)

The higher the Pn, the higher the motion artifacts or noise that is present in the signal.
We compared the EDA signals obtained from different body sites in terms of Pn.

3. Results
3.1. Correlation with the Finger EDA

We computed the Pearson correlation between the finger EDA and EDAs from other
body sites during the “no movement” phases (i.e., baseline and SCWT). Since during the
first two phases of the protocol there is no significant motion artifact, for accurate correlation
we used continuous 4 min data (baseline and SCWT) for calculating the Pearson correlation.
Table 2 shows the within-subject correlations (correlation is computed among the EDA
channels of the same subject) between the finger EDA and the EDAs from the alternate sites.
Similar to most previously reported articles, we also obtained a high correlation between
EDA signals from the finger and the foot. However, unlike many other published reports,
we did not observe a high correlation of the neck and forehead EDA with the fingers.

Table 2. Mean and standard deviation of the correlation coefficients between EDA signals from the
finger and other body sites.

Location
Raw Data Phasic Tonic

Mean
Pearson r

SD
Pearson r

Mean
Pearson r

SD
Pearson r

Mean
Pearson r

SD
Pearson r

Forehead 0.3194 0.4510 0.2833 0.2650 0.3077 0.4643
Neck 0.4405 0.4601 0.2530 0.1920 0.4532 0.4200
Feet 0.8466 0.1851 0.7895 0.1118 0.8261 0.1704

We also observed a larger between-subjects variability (higher variability across the
subjects: evident from the higher standard deviation value), which suggests that even
though for some subjects the forehead and neck EDA were highly correlated with the finger
EDA, for others this was not the case. As mentioned earlier, the correlation using only the
raw data could be misleading because of the underlying trends in the data; hence, we also
computed correlation for the phasic and the tonic components of the EDA. As shown in
Table 2, compared to other locations, feet EDA also showed a higher correlation with finger
EDA when the phasic and tonic components from these two sites were compared separately.
On the other hand, the neck and forehead again showed low correlation with the finger
EDA for both tonic and phasic components. It can also be seen that the tonic components
have slightly higher correlation (with high variability, though) when compared to phasic
components for all body locations. This suggests that EDA at the forehead and neck are
less responsive compared to EDA obtained from either the finger or the foot.

3.2. Separation of Cognitive Stress from the Baseline

We evaluated the efficacy of the EDA calculated from each measurement site to
determine its responsiveness to cognitive stress. In this experiment, cognitive stress was
induced by the SCWT, which can be considered a mild stress. We first performed the
one-sample Kolmogorov–Smirnov test [47] on the data, and if normality was found, we
performed the statistical t-test between baseline and the SCWT stage for each EDA index.
Otherwise, we used the Wilcoxon rank sum test [44]. All the statistical tests were performed
across the subjects over 23 samples. We used the 0.05 level of significance for rejecting the
null hypothesis. Table 3 shows the summary results for each measurement site.
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Table 3. Statistical t-test between the resting and SCWT stages.

Measurement Site EDA Index Resting Mean SCWT Mean p-Value

Forehead

No. of SCR 12.3478 12.3478 0.4896
Phasic mean 0.2839 0.4378 0.7634

Phasic variance 0.3040 0.3497 0.9761
Tonic mean 25.7738 25.6239 0.8692

Tonic variance 0.9782 1.6313 0.1559

Neck

No. of SCR 5.2609 4.5652 0.5065
Phasic mean 0.0373 0.0786 0.3799

Phasic variance 0.0512 0.1030 0.3182
Tonic mean 4.1619 3.6539 0.1851

Tonic variance 0.5426 0.4944 0.8788

Finger

No. of SCR 6.0869 11.8696 0.0017 **
Phasic mean 0.1353 0.2762 0.0016 **

Phasic variance 0.1362 0.2047 0.0248 *
Tonic mean 6.5960 6.6051 0.9802

Tonic variance 1.0982 0.8353 0.1306

Foot

No. of SCR 8.3478 15.0870 0.0006 ***
Phasic mean 0.1435 0.3562 0.0154 *

Phasic variance 0.0434 0.1065 0.0091 **
Tonic mean 5.5115 6.3622 0.0192 *

Tonic variance 0.5430 0.6312 0.4273
* p < 0.05, ** p < 0.01, *** p < 0.001.

It can be seen from Table 3 that none of these EDA metrics showed significant differ-
ences between the baseline and the SCWT for the forehead and neck EDA. In the case of
finger EDA, the number of SCR, mean, and standard deviation of the phasic signal showed
significant differences between the baseline and SCWT. Four of the five metrics showed
significant differences in the foot EDA signal.

We also evaluated EDA metrics for classifying differences between the baseline and
the SCWT stages. We computed the receiver operating characteristic (ROC) curves for EDA
metrics to classify between the baseline and the cognitive test stages. We first computed the
true positive rate and the false positive rate for each feature at a variety of thresholds. The
ROC curve was then obtained by plotting the true positive rate against the false positive
rate. In this case, the positive class refers to the cognitive stress stage and the negative class
represents the baseline stage. Figure 3 shows ROC curves for the number of SCR and the
mean of the phasic signal. As expected, the finger and foot EDA exhibited the top two lines in
both figures, with higher areas-under-the-curves than those of the forehead and neck EDAs.
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3.3. Effect of Motion Artifacts

In order to evaluate the effect of motion artifacts on EDA signals from different
measurement sites, we computed the power spectrum of the EDA signals during motion
artifact and the fraction of total power in the noise band (frequency > 0.4), Pn, as defined
earlier. As during the first two stages (baseline and SCWT) there was no significant motion,
we only compared the Pn during walking and weightlifting stages.

Figure 4 shows the comparison of Pn values among the four different measurement
sites. As can be seen from Figure 4 left, during walking, the EDA signals obtained from the
foot had the highest power in the noise band, which is expected, since the foot is subjected
to higher movement compared to other locations during walking. However, the motion
artifacts in the foot EDA during walking are largely high-frequency noise that can be easily
filtered out (as shown in Figure 5), which is why there was a high correlation (correlation
between finger and foot raw EDA, tonic, and phasic components were found to be 0.6517,
0.6758, and 0.6971, respectively) between foot and finger EDA after lowpass filtering.
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During weightlifting, the neck EDA was affected the most by motion artifacts, which
could be because of the periodic contraction and expansion of the muscles in the neck. Since
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the subjects used their hands for lifting weights, the finger EDAs were distorted on many
occasions, as expected. Figure 5 shows an example of the finger EDA during weightlifting,
where it is evident that the finger EDA was highly distorted because of the movement of
electrodes while holding and lifting the weight. We only showed the finger and foot EDA
in Figure 5 since they are the only locations that were highly correlated.

As can be seen from Figure 4, the forehead is the most robust site against motion
artifacts, as evidenced by the relatively low spectral power in the noise band compared to
other measurement sites. The neck, on the other hand, was found to be highly sensitive to
motion artifacts.

4. Discussion

In this study, we collected EDA signals from four measurement sites (namely forehead,
neck, finger, and the foot) that are known to have high eccrine gland density. This study is
one of the first studies to compare popular EDA indices obtained from different measurement
sites. We also compared the robustness of different body sites against measurement noise.

Unlike many studies that only computed correlations between raw EDA signals, we
computed within-subject correlations for the raw EDA and tonic and phasic components,
which eliminated the risk of false correlations due to the trends in the signal. The within-
subject correlation was the highest between the finger and the foot. The forehead and
neck EDA showed moderate correlation with the finger EDA. However, for the phasic
component, the correlation was rather low. This could be due to a lack of sufficient
hydration time, which is required for the sweat glands to be innervated.

The effect of hydration time on the forehead EDA can be seen when we examine the
number of subjects that showed a correlation higher than 0.5 between the finger and the
forehead or the neck in different stages starting from the baseline. Figure 6 shows the
progression of the number of subjects showing a correlation greater than 0.5 in different
stages. As shown, as time progressed, more subjects had higher correlations between the
forehead and finger EDA, which indicates that with sufficient hydration, the forehead may
become more responsive and provide more accurate SCRs. It should be noted that, during
weightlifting, the finger EDA was distorted on several occasions, which is why we did not
compute the correlation during weightlifting.
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Figure 6. Effect of hydration time on forehead EDA.

We computed several key EDA indices from different body sites and compared their
efficacy to differentiate between the baseline and cognitive stress (in this case, SCWT)
stages. We observed that none of the EDA indices showed significant differences between
the baseline and cognitive stress for the forehead and neck EDA. On the other hand, EDA
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indices computed from the finger and foot showed significant differences between the
baseline and SCWT stages. The ROC curve computed using the EDA indices from the
finger and the foot had a higher area-under-the-curve. SCWT induces mild cognitive stress
and for some subjects, they may not experience any stress, which explains why the EDA
from the finger and the foot showed moderate accuracy to differentiate stress from the
baseline condition.

The effect of motion artifacts on the EDA signals obtained from different measurement
sites shows that the neck is the most sensitive to motion artifacts, while the forehead is
the most robust. However, the forehead needs a prolonged amount of hydration time for
producing meaningful EDA responses, which could be an issue for short-term applications.
Moreover, we observed a high variability in correlation between the forehead and the
finger EDA among subjects, which means that for some subjects, the forehead EDA did not
produce similar responses to the finger EDA. In cases where finger or palmar sites are not
available, we recommend the foot location, because good signals can be obtained from it.
The use of the feet may be preferred in the case where hands are required for other daily
tasks. For example, divers use their hands for many diving-related tasks, so placing EDA
sensors on the feet may be more preferable. We have previously shown that the EDA signal
may be used to predict seizures due to oxygen toxicity [20,48]. Hence, a more reliable site
other than fingers is needed for applications such as underwater seizure detection.

Limitations

The first limitation of the study is the lack of sufficient female subjects, which may limit
the generalizability of this study. Second, the motion artifacts we considered were limited
to a mild level. There could be specific cases where one of the body sites examined might
be affected more or less depending on the situation (e.g., diving). We considered walking
and weightlifting because these two cases are the most common daily activities. Human
subjects typically walk every day and use their hands to perform daily tasks. Moreover,
since fingers and feet are two of the best sites to collect EDA signals, we wanted to explore
how motion artifacts affected those two locations. For signals with higher motion artifacts,
our recently developed convolutional autoencoder-based model may be applied to recover
motion artifact-free clean EDA signals [49]. Another limitation of this work is that we did
not consider footwear that is placed over the electrodes. The subjects walked barefoot
with electrodes, but we obtained good-quality data despite the movements. As shown in
Figure 1, subjects can wear socks over the electrodes, which should hold the electrodes
in the attached placements. Hence, while socks will result in less movement artifacts, the
humidity buildup may lead to some erroneous EDA signals. This is the issue we will
examine in future studies.

5. Conclusions

This study collected wearable EDA signals from four different measurement sites and
compared them in terms of the within-subject correlations with the finger EDA, which is
considered the reference. To the best of our knowledge, this is the first study to examine
EDA indices from different measurement sites and compare their efficacy to differentiate
induced cognitive stress in subjects. Finally, the study compared the robustness of EDAs
obtained at different sites against motion artifacts. Based on the results, we recommend
the foot be used as an alternative site for EDA data collection, especially when palmar
sites or fingers are not available or suitable for placing EDA electrodes. The forehead is
a potential alternative site for EDA data collection because of its comparative robustness
against motion artifacts, however its low sensitivity to stimuli, prolonged duration of
hydration time, and high variability among subjects all suggest that it is not an optimal site;
thus, the foot is preferred.
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