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Abstract: Electrohysterogram (EHG) is a promising method for noninvasive monitoring of uterine
electrical activity. The main purpose of this study was to characterize the multichannel EHG signals
to distinguish between term delivery and preterm birth, as well as deliveries within and beyond
24 h. A total of 219 pregnant women were grouped in two ways: (1) term delivery (TD), threatened
preterm labor (TPL) with the outcome of preterm birth (TPL_PB), and TPL with the outcome of term
delivery (TPL_TD); (2) EHG recording time to delivery (TTD) ≤ 24 h and TTD > 24 h. Three bipolar
EHG signals were analyzed for the 30 min recording. Six EHG features between multiple channels,
including multivariate sample entropy, mutual information, correlation coefficient, coherence, direct
partial Granger causality, and direct transfer entropy, were extracted to characterize the coupling
and information flow between channels. Significant differences were found for these six features
between TPL and TD, and between TTD ≤ 24 h and TTD > 24 h. No significant difference was found
between TPL_PB and TPL_TD. The results indicated that EHG signals of TD were more regular and
synchronized than TPL, and stronger coupling between multichannel EHG signals was exhibited as
delivery approaches. In addition, EHG signals propagate downward for the majority of pregnant
women regardless of different labors. In conclusion, the coupling and propagation features extracted
from multichannel EHG signals could be used to differentiate term delivery and preterm birth and
may predict delivery within and beyond 24 h.

Keywords: electrohysterogram; features; term delivery; preterm birth; time to delivery

1. Introduction

Preterm birth, defined as birth before 37 completed weeks of gestation, is a leading
cause of neonatal morbidity and mortality and has long-term adverse consequences for
health [1]. However, the problem lies not only in preterm birth itself but also in threatened
preterm labor (TPL), which is defined as the presence of uterine contractions with no
or limited evidence of cervical change between 20 and 37 weeks gestation and can be
difficult to distinguish from active preterm birth [2]. TPL is the most common cause
for the pregnant woman to seek institutional delivery care and it involves prolonged
hospitalization, unnecessary medical interventions, the associated increase in expense, and
aggravated anxiety for the pregnant woman and her family. In practice, less than half of the
pregnant women with TPL will give birth prematurely. Accurate diagnosis of preterm birth
is therefore clinically important. In addition, assessment of the time to delivery (TTD) is
beneficial for both the healthcare system and the family. Based on TTD, medical resources
could be allocated rationally and prepared in advance. The unnecessary hospital visit will
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be reduced and thus lower the risk of infection in pregnant women, particularly, in the
COVID-19 pandemic.

Various labor prediction techniques and measurements have been proposed, such
as cervical length, the Bishop score, fetal fibronectin, and tocodynamometer [3,4]. None
of these techniques has been demonstrated to diagnose TPL and assess TTD objectively
and precisely. Over the years, electrohysterogram (EHG) has been gaining popularity as
a promising and powerful new tool for characterizing the parturition process mainly for
the diagnosis of preterm birth [5], prediction of imminent delivery [6], and monitoring
of uterine contractions [7,8]. EHG represents the spontaneous myometrial bioelectrical
activity in the form of intermittent bursts of action potentials that trigger the mechanical
contraction of the uterus [9]. EHG signals could be measured non-invasively with electrodes
on the maternal abdominal surface. Throughout pregnancy, EHG signals change from
scarce and poorly coordinated at the early stage to more intense and synchronized as
delivery approaches [10,11].

Although a majority of studies recorded multichannel EHG signals, they usually
selected a single channel for analysis [12,13]. Many features have been extracted from EHG
signals to recognize preterm birth. Time, frequency, and time-frequency features [14] such
as root mean square, median frequency, peak frequency, energy distribution, etc., have
been used to characterize EHG signals. Previous studies found that uterine activities are
nonlinear processes that change with time, and nonlinear signal processing techniques
could thus provide additional information on physiological changes during pregnancy and
close to delivery. Correlation dimension, sample entropy, and Lyapunov exponent [5,15]
have been applied to describe the nonlinear interactions between billions of myometrium
cells. Further, multichannel EHG records were investigated using multivariate sample
entropy and fuzzy entropy [1,16–18] to quantify the underlying dynamical structural
complexity of multivariate physiological systems by taking into account cross-channel
dependencies and to obtain information on the delivery onset.

Studies on the propagation velocity and propagation direction of EHG signals have
significantly increased in the last decade [19,20]. However, no consistent results were
reported. Mikkelsen et al. found that the uterine contractions expressed by EHG signals
propagate both in the downward and upward direction [21]. Lange et al. reported no single
preferred direction of propagation for the contraction bursts [22]. Xu found that uterine
contractions are more likely to spread toward the center of the uterus [23]. A comparison
of these results is not straightforward due to the different approaches and data sources.
However, previous literature on the uterus unanimously reveals a special complexity of
its electrical propagation properties; further studies are therefore necessary to clarify the
mechanisms of the uterine activity for the prediction of delivery.

This paper aims to propose algorithms to characterize the coupling and propagation
of multichannel EHG signals collected by our custom recording device, differentiate term
delivery and preterm birth, and predict the delivery within and beyond 24 h.

2. Materials and Methods

The overall flow chart of the proposed method is shown in Figure 1, including data
acquisition, signal preprocessing, feature extraction, and statistical analysis. Briefly, EHG
signals were collected clinically, and signal preprocessing was carried out to reduce the
interference, downsample EHG signals, and remove the outliers. Six features between
multichannel EHG signals were derived and analyzed statistically.
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Figure 1. Flow chart of the proposed method.

2.1. Data Acquisition

A total of 219 pregnant women between 33 and 41 weeks of gestation participated in
this study. All of them were required to sign an informed consent. The study was approved
by the Local Ethics Committee of Peking Union Medical College Hospital (ZS-1453) and was
conducted following the Declaration of Helsinki (1989) of the World Medical Association.

Using our custom device, eight monopolar EHG signals were recorded simultaneously
for approximately 30 min with a sampling rate of 250 Hz. Figure 2a shows the placement
of the electrodes during the signal recording. As shown in Figure 2b, the electrodes M1 to
M4 were placed at the bottom of the uterus, 3–4 cm above the navel; M5 and M6 were
placed 3–4 cm below the navel; M7 and M8 were placed at the cervix, 6–8 cm below the
navel. M1 and M4 were placed symmetrically at 6–8 cm to the left and right of the midline,
respectively; M2 and M3, M5 and M6, and M7 and M8 were placed symmetrically at 3–4 cm
to the left and right of the midline; the reference electrode R and the ground electrode G
were placed at the left and right iliac bones, respectively.
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Figure 2. Signal recording (a) Electrodes on the abdominal surface of a pregnant woman; (b) Bipolar
signals obtained from the monopolar recordings.

In this study, three bipolar EHG signals (B1, B2, and B3) were obtained from six
monopolar recordings for the following analysis, since this configuration not only largely
reduces the amount of interference present in the monopolar EHG recordings but also
intuitively determines whether the uterine contractions propagate upward or downward.
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A total of 219 pregnant women were grouped according to term delivery (TD), threat-
ened preterm labor with the outcome of preterm birth (TPL_PB), threatened preterm labor
with the outcome of term delivery (TPL_TD), and the EHG recording time to delivery
(TTD). The number of pregnant women is shown in Table 1.

Table 1. Number of pregnant women in different groups.

Group
TTD ≤24 h >24 h Totalrow

TD 164 0 164
TPL_PB 7 15 22
TPL_TD 0 33 33

Totalcolumn 171 48 219

2.2. Signal Preprocessing

EHG signal energy is mainly concentrated in the range of 0.1 to 3–5 Hz [24]; in this
work, we performed a fifth-order Butterworth band-pass filter between 0.34 and 1 Hz [16]
to eliminate the main interferences caused by motion, respiration, and cardiac electrical
signals. Then, EHG signals were downsampled at 25 Hz to reduce the computational cost
of the data analysis [24]. The median absolute deviation (MAD) was computed in a 120 s
window with a sample point overlap.

MAD = median(|Xi −median(X)|), (1)

where Xi denotes the amplitude of the ith point and median(X) denotes the median ampli-
tude of all the points within a window. If |Xi −median (X)|> 3MAD, the Xi is regarded as
an outlier, which was replaced by the linear interpolation of its nearby non-outliers.

2.3. Feature Extraction

We preferred to analyze the whole window analysis rather than the EHG-burst analysis.
This decision was motivated by the lack of robust tools to automatically identify EHG-
bursts in a raw recording which usually requires the supervision of experts, especially
in early gestational ages with the relatively low signal-to-noise ratio. By contrast, the
whole window analysis has been proven to provide relevant information for predicting
preterm birth. In this work, a whole recording analysis with a window length of 120 s and
50% overlap was performed to characterize the EHG signals, which is a trade-off between
computational cost and information loss [25]. We then computed the median value of all the
analyzed windows as a representative feature of each recording. In total, six EHG features
between multiple channels were extracted to reflect their coupling and information flow.

2.3.1. Multivariate Sample Entropy

Multivariate sample entropy [18,26,27] can reveal correlations present in multichannel
data and provide a robust relative complexity measure for multivariate data. The main
advantage of this algorithm is the implementation of joint information embedded in
a multivariate vector of an analyzed signal.

We first normalize the multivariate data with Z-score to cater for multichannel EHG
signals obtained from different positions. Then, the multivariate embedded reconstruction
was based on the composite delay vector.
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We define multivariable time series {x k, i}N
i=1, k = 1, 2, . . . , p, where p denotes the

number of variates or EHG channels, and N denotes the number of samples in each channel.
The composite vector is constructed as follows:

Xm(i) = [x1(i), x1(i + τ1), . . . , x1(i+(m1 − 1)τ1)

x2(i), x2(i + τ2), . . . , x2(i+(m2 − 1)τ2)
. . .

xp(i), xp
(
i + τp

)
, . . . , xp(i + (m p − 1)τp)],

(2)

where M = [m 1, m2, . . . , mp
]

is the embedding vector and T =
[
τ1, τ2, . . . , τp

]
is the

time delay vector. In this study, p = 3, M = [2, 2, 2], T = [1, 1, 1].
The multivariate sample entropy was estimated using the following procedure:

• Create N − n (n = max{M} × max{T}) composite delay vector Xm(i) ∈ Rm, where
i = 1, 2, . . . , N − n. Compute the distance between any two composite delay vectors
as the maximum of the following form:

d[Xm(i), Xm(j)] = max
l=1, ..., m

{|x(i + l − 1) − x(j + l − 1)|}. (3)

• For a given composite delay vector and an assumed similarity threshold r, count
the number of instances Pi where d[Xm(i), Xm(j)] ≤ r, i 6= j, then calculate the
frequency of occurrence,

Bm
i (r) =

1
N − n − 1

Pi, (4)

and define a global quantity,

Bm(r) =
1

N − n ∑N − n
i=1 Bm

i (r). (5)

• Extend the dimensionality of the multivariate delay composite vector from m to
m + 1. For a given vector Xm+1(i), calculate the number of vectors Qi, such that
d[Xm+1(i), Xm+1(j)] ≤ r, i 6= j, then calculate the frequency of occurrence,

Bm+1
i (r) =

1
p(N − n) − 1

Qi, (6)

and define
Bm+1(r) =

1
p(N − n) ∑p(N − n)

i=1 Bm+1
i (r). (7)

• The multivariate sample entropy is calculated as

MSE(M, τ, r, N)= − ln

[
Bm+1(r)

Bm(r)

]
. (8)

2.3.2. Mutual Information

Mutual information is a measure of the amount of information that one random
variable contributes to another variable. Formally, the mutual information is defined
as follows:

MI(X, Y) = ∑x ε X ∑y ε Y p(x, y) log
p(x, y)

p(x)p(y)
, (9)

where X and Y are EHG signals from two channels, p(x, y) is the joint probability distribu-
tion of X and Y, and p(x) and p(y) are the marginal probability distributions of X and Y,
respectively. MI is zero when X and Y are statistically independent; the larger the MI, the
higher the correlation between X and Y.
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2.3.3. Correlation Coefficient

Correlation coefficient can reflect the linear correlation between two EHG signals in
the time domain.

CC(X, Y) =
cov(X, Y)√
Var[X]Var[Y]

=
E[(X − µX)(Y− µY)]

σXσY
, (10)

where σX andσY represent the standard deviation of X and Y, respectively, E[(X − µX)(Y − µY)]
represents the covariance of X and Y. CC(X, Y) is the Pearson correlation coefficient of
X and Y, ranging from −1 to 1. The greater the absolute value of CC, the stronger the
correlation between X and Y. If CC = 0, it indicates that there is no linear correlation
between X and Y. In our study, X and Y are two EHG signals.

2.3.4. Coherence

Coherence can reflect the linear correlation between two time series in the frequency
domain. Briefly, coherence is an extension of Pearson’s correlation coefficient in the frequency
domain, and the coherence between signal X and signal Y can be obtained by normalizing the
square of the cross-spectra by the auto-spectra using the following equation:

Cohxy(f) =

∣∣Pxy(f)
∣∣2

Pxx(f)Pyy(f)
, (11)

where Pxy(f) represents the cross power spectral of X and Y, and Pxx(f) and Pyy(f) are the
power spectra of signals X and Y, respectively, for a given frequency f.

2.3.5. Partial Granger Causality

Partial Granger causality [28,29] takes into account partial correlation compared to
traditional Granger causality to eliminate the exogenous links. We assumed the three-channel
EHG signals X, Y, and Z, in which X and Y are represented by the joint autoregressive model:

Xt = ∑p
i=1 aiXt − i + ∑p

i=1 ciYt − i + ε1t , (12)

Yt = ∑p
i=1 diYt − i + ∑p

i=1 fiXt − i + ε2t, (13)

where Xt is the value of signal X at moment t, Xt − i and Yt − i are the values of signals X
and Y at moment t − i, p is the order of the model, ai, ci, di, and fi are the coefficients of
the joint regression model, and ∈1t and ∈2t are the error of the joint prediction model at
moment t.

The variance/covariance matrix:

S =

[
var(ε1t) cov(ε1t, ε2t)
cov(ε2t, ε1t) var(ε2t)

]
=

[
S11 S12
S21 S22

]
. (14)

To calculate the effect of Yt on Xt in the context of the third time-series Zt, we extend
the concept as follows:

Xt = ∑p
i=1 aiXt − i + ∑p

i=1 biZt − i + ∑p
i=1 ciYt − i + ε3t, (15)

Yt = ∑p
i=1 diYt − i + ∑p

i=1 eiZt − i + ∑p
i=1 fiXt − i + ε4t, (16)

Zt = ∑p
i=1 giZt − i + ∑p

i=1 hiXt − i + ∑p
i=1 kiYt − i + ε5t, (17)

with variance/covariance matrix:

Σ =

[
var(ε3t) cov(ε3t, ε4t)
cov(ε4t, ε3t) var(ε4t)

]
=

[
Σ11 Σ12
Σ21 Σ22

]
. (18)
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Partial Granger causality is then computed as

PGCX→Y|Z = ln(
S11 − S12S− 1

22 S21

Σ11 − Σ12Σ− 1
22 Σ21

)
. (19)

If PGCX→Y|Z > 0, the signal flows from X to Y; if PGCX→Y|Z < 0, the signal flows
from Y to X. To determine the genuine direction of signal flow between X and Y, define the
direct partial Granger causality.

DPGCX→Y|Z = PGCX→Y|Z − PGCY→X|Z (20)

If DPGCX→Y|Z > 0, the signal flows genuinely from X to Y, if DPGCX→Y|Z < 0, the
signal flows from Y to X.

The direct partial Granger causality of the two EHG signals is as follows:

DPGCB1→B2|B3 = PGCB1→B2|B3 − PGCB2→B1|B3, (21)

DPGCB2→B3|B1 = PGCB2→B3|B1 − PGCB3→B2|B1, (22)

DPGCB1→B3|B2 = PGCB1→B3|B2 − PGCB3→B1|B2. (23)

If the majority of DPGCB1→B2|B3, DPGCB2→B3|B1, and DPGCB1→B3|B2 are greater than
zero, we assumed the EHG signals propagate downward along with the uterus. If the
majority are less than zero, then upward.

2.3.6. Transfer Entropy

Transfer entropy quantifies the amount of information transferred from one variable
to the other. Importantly, transfer entropy is nonparametric and can capture nonlinear
coupling effects. It has been shown that transfer entropy is a nonlinear extension of
Granger causality.

Given two concurrently sampled time series X = {x1, x2, . . . , xN} and Y = {y1, y2, . . . ,
yN}, the transfer entropy from X to Y, termed TEX→Y, can be derived from conditional
entropies as follows [30,31]:

TEX→Y = H
(

yi |y
(l)
i − t

)
− H

(
yi |y

(l)
i − t, x(k)i − τ

)
= ∑yi, y(l)i − t, x(k)i − τ

p(y i, y(l)
i − t, x(k)i − τ) log

p(y i, y(l)
i − t, x(k)i − τ)

p(y i, y(l)
i − t)

, (24)

where p(y i, y(l)
i − t, x(k)i − τ) is the conditional probability mass function of past observations

of X and Y (the driving process) for Y (the target process), p(y i, y(l)
i − t) is the conditional

probability mass function of past observations of Y (the driving process) for Y (the target
process), i indicates a given point, τ and t are the time lags in X and Y, k and l are the block
lengths of the past values in X and Y. In this study, τ = t = 2, k = l = 1.

Transfer entropy can exclude the common external environmental influence on two-
time series. According to (24), if TE is infinitely close to 0, there is no obvious transfer
relationship from X to Y. If TE > 0, information flows from X to Y. To determine the genuine
direction of signal flow between X and Y, we defined the direct transfer entropy:

DTEX→Y = TEX→Y − TEY→X. (25)

Direct transfer entropy of the two EHG signals was calculated as follows:

DTEB1→B2 = TEB1→B2 − TEB2→B1, (26)

DTEB2→B3 = TEB2→B3 − TEB3→B2, (27)

DTEB1→B3 = TEB1→B3 − TEB3→B1 (28)
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Among DTEB1→B2, DTEB2→B3, and DTEB1→B3, if no less than two of them are greater
than 0, the preferred direction of uterine contraction is downward. If no less than two of
them are less than 0, the preferred direction is upward.

For both direct partial Granger causality and direct transfer entropy, we computed the
percentage of pregnant women with the upward or downward EHG propagation in TD,
TPL_PB, and TPL_TD, as well as for TTD ≤ 24 h and TTD > 24 h.

2.4. Statistical Method

Statistical analyses were conducted using SPSS 24 (IBM Corp., Armonk, NY, USA). The
box diagram was used to describe the mutual information, correlation coefficient, coherence,
direct partial Granger causality, and direct transfer entropy between any two channels.
The six EHG features between channels were abnormally distributed according to the
Shapiro-Wilk test and Q-Q plot. Therefore, we performed the Mann-Whitney U test to
examine the features differences between the group of TD, TPL_PB, and TPL_TD, as
well as the group of TTD ≤ 24 h and TTD > 24 h. In addition, a chi-square test was
performed to examine the proportion of propagation direction. A significance level of
p < 0.05 (two-tailed) was set for all analyses.

3. Results
3.1. Comparison of Features between TD, TPL_PB, and TPL_TD
3.1.1. Comparison of Multivariate Sample Entropy, Mutual Information, Correlation
Coefficient, and Coherence

Figure 3 shows the box diagrams of multivariate sample entropy, mutual information,
correlation coefficient, and coherence, corresponding to TD, TPL_PB, and TPL_TD from
left to right in each of the subplots. It can be seen from Figure 3a that multivariate sample
entropy in both TPL_PB and TPL_TD is very significantly larger than that in TD (p < 0.01),
indicating that the multichannel EHG signals from TPL are more irregular and more
complex than TD. Figure 3b shows that mutual information in both TPL_PB and TPL_TD
is significantly or very significantly smaller than that in TD (p < 0.05 or p < 0.01). Figure 3c
shows that correlation coefficient of TPL_TD is significantly or very significantly smaller
than TD (p < 0.05 or p < 0.01) between channels, and correlation coefficient of TPL_PB has
similar results for B1&B3 and B2&B3. However, no significant difference was found in
coherence of any two channels between groups (p > 0.05) see Figure 3d. In short, TPL_PB
and TPL_TD have weaker inter-channel correlations than TD, and no significant difference
was found between TPL_PB and TPL_TD (p > 0.05).
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3.1.2. Comparison of Direct Partial Granger Causality and Direct Transfer Entropy

Figure 4 shows the box diagrams of direct partial Granger causality and direct transfer
entropy, corresponding to TD, TPL_PB, and TPL_TD from left to right in each of the
subplots. Both direct partial Granger causality and direct transfer entropy of TPL_PB are
significantly or very significantly smaller than TD (p < 0.05 or p < 0.01) for B1→ B2 and
B2→ B3. Similarly, both direct partial Granger causality and direct transfer entropy of
TPL_TD are very significantly smaller than TD (p < 0.01) between all channels. In short, the
EHG signals flow less in TPL_PB and TPL_TD than TD, and no significant difference was
found between TPL_PB and TPL_TD (p > 0.05).
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Table 2 summarizes the number and percentage of pregnant women with the upward
or downward EHG propagation in TD, TPL_PB, and TPL_TD using direct partial Granger
causality and direct transfer entropy, respectively. Regardless of TD, TPL_PB, and TPL_TD,
EHG signals propagate downward for the majority of pregnant women in terms of both
direct partial Granger causality and direct transfer entropy. No significant difference was
found in the proportion of propagation direction between TD, TPL_PB, and TPL_TD with
both direct partial Granger causality and direct transfer entropy (p > 0.05).

Table 2. Number (%) of pregnant women with upward or downward propagation in the group of
different labors.

Feature Group EHG Propagation
TotalrowUpward Downward

Direct partial Granger causality
TD 29 (18%) 135 (82%) 164

TPL_PB 7 (32%) 15 (68%) 22
TPL_TD 11 (33%) 22 (67%) 33

Totalcolumn 47 172 219

Direct transfer entropy
TD 52 (32%) 112 (68%) 164

TPL_PB 8 (36%) 14 (64%) 22
TPL_TD 15 (45%) 18 (55%) 33

Totalcolumn 75 144 219

3.2. Comparison of Features between TTD ≤ 24 h and TTD > 24 h
3.2.1. Comparison of Multivariate Sample Entropy, Mutual Information, Correlation
Coefficient, and Coherence

Figure 5 shows the box diagrams of multivariate sample entropy, mutual information,
correlation coefficient, and Coh, corresponding to TTD ≤ 24 h and TTD > 24 h from left
to right in each of the subplots. It can be seen from Figure 5a that multivariate sample
entropy of TTD ≤ 24 h is very significantly less than TTD > 24 h (p < 0.01). Figure 5b
shows that mutual information of TTD ≤ 24 h is significantly or very significantly larger
than TTD > 24 h (p < 0.05 or p < 0.01). Figure 5c shows that correlation coefficient of
TTD ≤ 24 h is significantly or very significantly larger than TTD > 24 h (p < 0.05 or p < 0.01).
Figure 5d shows that coherence of TTD ≤ 24 h is significantly larger than TTD > 24 h
(p < 0.05). In short, the closer to delivery, the lower the complexity of the EHG signal and
the stronger the connection between channels.
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3.2.2. Comparison of Direct Partial Granger Causality and Direct Transfer Entropy

Figure 6 shows the box diagrams of direct partial Granger causality and direct transfer
entropy, corresponding to TTD ≤ 24 h and TTD > 24 h from left to right in each of the
subplots. Both direct partial Granger causality and direct transfer entropy of TTD ≤ 24 h
are significantly or very significantly larger than TTD > 24 h (p < 0.05 or p < 0.01), which
indicates the closer to delivery, the stronger the information flow between EHG signals.

Table 3 summarizes the number and percentage of pregnant women with upward or
downward EHG propagation in TTD ≤ 24 h and TTD > 24 h using direct partial Granger
causality and direct transfer entropy, respectively. Regardless of TTD≤ 24 h and TTD > 24 h,
EHG signals propagate downward for the majority of pregnant women in terms of both
direct partial Granger causality and direct transfer entropy. No significant difference was
found in the proportion of propagation direction between TTD ≤ 24 h and TTD > 24 h with
both direct partial Granger causality and direct transfer entropy (p > 0.05).
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Table 3. Number (%) of pregnant women with upward or downward propagation in the group of
different TTDs.

Feature Group EHG Propagation
TotalrowUpward Downward

Direct partial Granger causality TTD ≤ 24 h 33 (19%) 138 (81%) 171
TTD > 24 h 14 (29%) 34 (71%) 48

Totalcolumn 47 172 219

Direct transfer entropy TTD ≤ 24 h 58 (34%) 113 (66%) 171
TTD > 24 h 17 (35%) 31 (65%) 48

Totalcolumn 75 144 219

4. Discussion

In the present work, we obtained three bipolar EHG signals and performed a whole
recording analysis with a 120 s sliding window and 50% overlap to characterize the EHG
signals. Six EHG features were proposed to describe the coupling and information flow
between multiple channels. Significant differences were found between TPL and TD
for multivariate sample entropy, mutual information, correlation coefficient, coherence,
direct partial Granger causality, and direct transfer entropy, and between TTD ≤ 24 h and
TTD > 24 h.

Sample entropy was considered to be particularly appropriate for revealing EHG
changes with pregnancy progression and delivery. Fele-zorz et al. found that univariate
sample entropy significantly decreases as delivery approaches [32], suggesting the signal
complexity decreases and its regularity increases. By contrast, in women with TPL under to-
colytic therapy, no significant difference was found for univariate sample entropy to predict
imminent delivery (TTD < 7/14 days vs. TTD ≥ 7/14 days) [6]. In this work, we assessed
the structural complexity of multichannel EHG signal with multivariate sample entropy
and showed significant differences between term delivery and preterm birth, and between
TTD ≤ 24 h and TTD > 24 h. This result agrees with Ahmed who first characterized the
interaction between the multivariate complex systems to successfully discriminate between
women who finally delivered at term and those who did so prematurely [9]. However, we
did not find any significant results between TPL_PB and TPL_TD when the recording was
conducted far from delivery. The discrepancy between these two works may be because
we conducted EHG recordings in women with TPL under tocolytic therapy. This latter
has been shown to have a significant influence on uterine myoelectric activity [33], thus
masking the subtle changes in uterine myoelectric activity through pregnancy. Previous
studies showed the feasibility of predicting imminent delivery with a time horizon of 7 days
in women with TPL. However, the performance of the model dropped dramatically if the
time horizon was 14 days [6].

Mutual information and correlation coefficient significantly increased for TTD ≤ 24 h
and TD group, suggesting stronger synchronization and association between multichannel
EHG signals as delivery approaches. Similar results were also observed in the previous
study [16]. This finding was physiologically related to the uterine myometrial cell ex-
citability [15,34] and the formation of gap-junction as delivery approaches [35–39], which
results in more intense and coordinated uterine electrical activity [11,39]. Again, we did
not find any significant difference between TPL_PB and TPL_TD, which may be due to
the tocolytic drug effect on the uterine myoelectric activity. In addition, we did not find
any significant difference in coherence between TPL and TD, which may be because coher-
ence was seriously impaired by instantaneous interactions. In this regard, the phase lag
index [40] or weighted phase lag index [41] has been used to determine the true interactions
in multichannel electroencephalography avoiding transient interactions, which may be
more suitable for assessing the strength of cross-channel coupling.

In addition, we also assess the direction of EHG propagation which remains unclear in
the literature. Some studies reported a predominantly downward propagation of the uterine
electrical bursts in delivery women [42]. A study demonstrated that EHG bursts propagate
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both downward and upward, suggesting a multidirectional propagation pattern [21]. The
multidirectional propagation was also reported by Escalona-Vargas using 151-channel
magnetomyogram recordings [43], whereas other studies found no significant or preferred
direction of propagation [22,44]. In this work, we used direct partial Granger causality
and direct transfer entropy to comprehensively describe linear and nonlinear causality
and information transfer at the organ level rather than at the cellular level or local uterine
activity. That is, we used eight electrodes that were strategically positioned on the maternal
abdomen covering practically the whole uterus. We found that the majority of EHG signals
propagate downward to expulse the fetus, particularly, for the imminent delivery within
24 h. Our results agree with Garfield et al., who stated that uterine myoelectric activity
presented a predominantly downward direction in women in the active phase of delivery
using 3D vector myometrogram [20]. Using a 4 × 4 grid electrode with a relatively short
inter-electrode distance, Diab proposed to use a nonlinear correlation coefficient and the
index of general synchronization to determine the uterine myoelectric activity propagation
and found that signals propagate in all directions but dominantly towards the cervix [45].
De Lau et al. also reported cases in which a downward propagating wave of uterine activity
during a contraction was observed using a high-density grid of 64 electrodes. By analyzing
the running cross-correlation of multichannel EHG records, Horoba found that the signal
was generally delayed concerning that from the fundus for both physiological deliveries
and threatened preterm labor [46]. Our results also agreed with Planque who found
propagation in a descending direction in 87% of cases of women at the organ level [47]. We
believe that the downward direction may occur in active phase delivery and at most a few
days before delivery. For this reason, we only found dominant downward directionality in
TPL_TD group and TTD ≤ 24 h, but not in TPL_PB and TD. Our results also stated that
the propagation of uterine electrical activity does not show a preferential direction during
pregnancy which seemed to be characterized by a highly unpredictable and potentially
complex propagation pattern of individual spikes [48]. As far as we know, direct partial
Granger causality and direct transfer entropy were first introduced in the present study to
describe EHG propagation.

Due to the limitation of TPL sample size, more EHG signals from TPL will be collected
in the next study to further validate the proposed algorithm. In this work, we found
multiple multichannel features that could be used to determine delivery proximity. Further
work is still needed to determine if this information is complementary or redundant to
single-channel features for predicting term delivery and preterm birth. We analyzed the
coupling strength and propagation direction in fast-wave high bandwidth which has been
associated with cell excitability [49]. Future works could extend this analysis to fast-wave
low bandwidth related to signal propagation to corroborate the downward propagation
direction. We also noted that the features themselves do not have the prediction capability,
and only the model trained by the features can be applied for prediction. However, the
distinguishable features ensure the performance of the model. Our study attempted to
explore the discriminable features which could be used to train classifiers in further study.

5. Conclusions

EHG is a very promising tool for monitoring uterine electrical activity with a wide
range of applications. We extracted six EHG features between multiple channels from the
bipolar recordings to distinguish term delivery from preterm birth, as well as deliveries
within and beyond 24 h. Significant differences were found for these six EHG features
between TPL and TD and between TTD ≤ 24 h and TTD > 24 h. We demonstrate that
EHG multichannel features can distinguish different labors. Furthermore, stronger syn-
chronization and association between multichannel EHG signals were exhibited as delivery
approaches. Mostly, EHG signals propagated downward regardless of different labors.

In summary, the EHG features between multiple channels can provide coupling and
propagation information to differentiate labors and facilitate the prediction of term delivery
and preterm birth, and imminent delivery.
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