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Abstract: The development of lightweight portable sensors and algorithms for the identification
of gait events at steady-state running speeds can be translated into the real-world environment.
However, the output of these algorithms needs to be validated. The purpose of this study was to
validate the identification of running gait events using data from Inertial Measurement Units (IMUs)
in a semi-uncontrolled environment. Fifteen healthy runners were recruited for this study, with
varied running experience and age. Force-sensing insoles measured normal foot-shoe forces and
provided a standard for identification of gait events. Three IMUs were mounted to the participant,
two bilaterally on the dorsal aspect of the foot and one clipped to the back of each participant’s
waistband, approximating their sacrum. The identification of gait events from the foot-mounted IMU
was more accurate than from the sacral-mounted IMU. At running speeds <3.57 m s−1, the sacral-
mounted IMU identified contact duration as well as the foot-mounted IMU. However, at speeds
>3.57 m s−1, the sacral-mounted IMU overestimated foot contact duration. This study demonstrates
that at controlled paces over level ground, we can identify gait events and measure contact time
across a range of running skill levels.
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1. Introduction

The biomechanical analysis of running outside of the laboratory can be a useful tool
for real-time or session-by-session feedback during training for coaches and athletes [1,2].
The standard in human locomotion research for identification of gait events is the use of
three-dimensional (3D) motion capture and ground reaction force data. These systems
typically utilize multiple cameras and force plates in a controlled laboratory environment.
Despite being the gold standard, these methods require expensive equipment, large indoor
facilities, and technical expertise [3–5], thus limiting their practical use in clinical or sporting
environments. Previous studies have shown the efficacy of utilizing mobile sensing units
for the detection of gait events inside and outside the laboratory, as the baseline information
needed for biomechanical analysis [6,7]. However, there has been a lack of validation of
these algorithms for gait event estimation outside the laboratory. This work expands upon
current validation techniques for the estimation of gait events and foot contact duration
during running in a semi-uncontrolled environment.

Over the past decade, there has been extensive work to understand Inertial Measure-
ment Unit (IMU) data in the development of techniques to evaluate human locomotion
and identify gait events for running in a controlled laboratory setting [8–15]. There are
typically nine sensors in a standard IMU: tri-axial accelerometers (linear acceleration),
tri-axial rate gyroscopes (angular velocity), and tri-axial magnetometers (magnetic field).
These sensors have been used for the measurement of biomechanical variables in several
environments and over different durations in and out of the laboratory [2,16,17]. However,
data from IMUs cannot be used for analysis of biomechanical variables without thorough
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pre-processing of the data and specific algorithms [18]. These algorithms rely explicitly on
expertise of the researcher to understand segmental accelerations and angular velocities
throughout the gait cycle, and then develop rules for the estimation of foot contact, via gait
events: initial contact (IC) and toe off (TO). Some of these approaches have been developed
specifically for running, with sensors on the foot, shank, and the sacrum [11–13,19,20]. The
application of these analyses have led to the measurement of trail running, marathons, and
training runs for athletes ranging in skill from recreational to competitive collegiate ath-
letes [8,16,21,22]. Prior work in this research space has shown that consistent features can be
extracted from data in the laboratory and in the real-world, with modest efforts made to val-
idate the estimated biomechanical outcomes in the real-world environment [23,24]. Force
plates have been used previously to validate the identification of gait events [9,11], as have
force-instrumented treadmills [17,25,26]. However, the validations of these methods did
not account for the possible range of speeds and skill levels in an outdoor semi-uncontrolled
environment.

The purpose of this work was to validate the identification of gait events using data
from IMUs in a semi-uncontrolled environment. Second, this study sought to expand the
range of speeds tested with these algorithms and expand the range of participant skill,
from novice runners who run <5 miles per week to runners who can run a 5k race in
a sub-15 min time. We expected the estimation of gait events and foot contact time to
be more accurate for the foot-mounted IMUs in comparison to the sacral-mounted IMU
across the range of speeds. Portable insoles developed for the measurement of in-shoe
forces [27] were used as the standard for validation of the identification of IC and TO in a
real-world environment. The algorithm developed in this study will be considered valid if
the Root-Mean-Squared Error (RMSE) in overall contact time is less than 0.04 s across the
range of speeds (representing <5–6% total contact time at jogging/running speeds).

2. Materials and Methods

Data were collected from 15 participants (9 male, 6 female, age: 23.6 ± 11.0 years,
height: 178.3 ± 6.3 cm, mass: 73.5 ± 7.5 kg) as part of a larger study (Table 1). The study
protocol was approved by the Institutional Review Board at the University of Oregon
(protocol 10062020.007). Each participant provided written informed consent prior to
enrollment in the study. All analyses were performed using custom Matlab programs
(Mathworks, Natick, MA, USA). Multi-axis IMUs (Casio Computer Co., Ltd., Tokyo, Japan)
were mounted on the dorsal aspect of the participants’ feet and approximately on the
sacrum (clipped to the back of the participants waistband). These sensors recorded 3D
linear accelerations and angular velocities at 200 Hz. Inertial data were postprocessed with
a Kalman filter to orient the vertical axis of the local (IMU) coordinate system to gravity,
for both foot- and sacral-mounted IMUs. Foot-shoe normal force data were recorded
with Loadsol insole force sensors (Novel Electronics, St. Paul, MN, USA) at 100 Hz.
Standard GPS data were measured with a Garmin Forerunner (Garmin, Olathe, KS, USA).
Participants performed progressively faster 400 m running trials (four to five, with the
fastest speed being optional) on a square practice track, based on the self-reported race pace
for a 5 km event. An example of the paces run by a participant is shown in Table 2. The total
range of speeds run by participants was 2.4–5.4 m s−1. The participants monitored their
lap-time with a standard wrist-mounted Garmin GPS display. They were asked to complete
a 400 m trial within two seconds of the given time corresponding to an average pace. If
the participant missed this time by more than 2 s, they were asked to repeat that pace after
suitable rest. These speeds represent typical training and race paces for the majority of
recreational and high-level distance runners [8,28].
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Table 1. Distribution of average running speeds.

Average Running Velocity (m s−1) Number of Participants

2.23 1
2.33 1
2.43 1
2.55 4
2.68 6
2.82 6
2.98 6
3.15 7
3.35 9
3.57 9
3.83 9
4.12 8
4.47 8
4.87 7
5.36 7

Table 2. Exemplar paces for participant with a 7 min per mile, 5 km race pace, and expected average
velocity-corresponding pace in minutes per mile.

Example Paces Average Velocity (m s−1) Minutes per Mile

Pace 1 3.15 8:30
Pace 2 3.35 8:00
Pace 3 3.57 7:30
Pace 4 3.83 7:00

Pace 5 (optional) 4.12 6:30

Foot-shoe normal force data measured from force-sensing insoles were considered
the standard reference for identification of measured gait events [27]. Inertial signals and
force data were time-synced using controlled unilateral ‘foot-stomps’ before and after each
trial. The IMU data were then down-sampled to match the force-sensing insole sampling
frequency (100 Hz) and filtered using a 4th order low-pass zero-lag Butterworth filter
(fc = 35 Hz) (Figure 1). This filter was chosen as it was more conservative in reduction in
noise for the accurate identification of gait events, using peak accelerations [8]. Force data
<50 N were set to zero.

Algorithms used in this study are briefly described here. A more thorough treatment
of the algorithms can be found in Figure 1. The identification of gait events with foot-
shoe normal force data utilized a threshold of 50 N. Gait event estimation from the IMU
data utilized distinct spatial and temporal rules. The identification of gait events from
the dorsal-mounted IMUs estimated initial contact by identifying peaks in the resultant
acceleration. The spatial rule for initial contact with the foot-mounted IMUs (ICfoot) was a
minimum resultant acceleration of 50 m s−2. The temporal rule for determining ICfoot was a
minimum duration of 500 ms between estimated consecutive ICfoot [29]. The identification
of toe off from the foot-mounted IMUs (TOfoot) was performed by searching a specific
temporal window beginning 100 ms after the estimated ICfoot, ending at the half-width of
the estimated stride time. In this window, TOfoot was either identified as the local maxima
of vertical acceleration or the first instance when the vertical acceleration was greater than
three times gravity [13,29]. Gait event detection using the sacral IMU utilized the anterior
posterior accelerations. The spatial rule for the identification of initial contact from the
sacral-mounted IMU (ICsacrum) was local minima with a maximum value of 5 m s−2 in the
posterior direction. The temporal rule for ICsacrum was a minimum temporal difference of
200 ms between the identified ICsacrum [29]. The identification of toe off from the sacral-
mounted IMU (TOsacrum) with a search window was either with the maximum acceleration
in the anterior direction or the maximum positive slope of the acceleration in the anterior
direction [9]. Exemplar outputs of these algorithms are presented in Figures 2 and 3.
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Figure 2. Acceleration waveforms from the IMUs mounted on the right foot (orange and blue
waveforms), with superimposed foot contacts (dashed black square waves) identified from the force-
measuring insoles. The estimated ICfoot is shown in the filled circles, and the estimated TOfoot is
shown in the filled squares. The search windows used for the identification of TOfoot are shown in
the solid black rectangles. (A) Data from a 2.24 m s−1 run; (B) data from a 5.36 m s−1 run.
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Figure 3. Acceleration waveforms from IMUs mounted on the sacrum (blue waveforms), with
superimposed foot contacts (dashed black square waves) identified from the force-measuring insoles.
The estimated ICsacrum is shown in the filled circles and the estimated TOsacrum is shown in the filled
squares. The search windows used for the identification of TOsacrum are shown in the solid black
rectangles. (A) Data from a 2.24 m s−1 run; (B) data from a 5.36 m s−1 run.

3. Results

The gait events estimated using data from foot-mounted IMUs were more accurate
than those estimated using the sacral-mounted IMU when compared to the force mea-
surement standard identification (Figure 4, Table 3). Foot-mounted IMUs had a larger
RMSE than the sacral-mounted IMU for the identification of gait events in the slowest
running speed conditions. Across the range of speeds, the algorithms identified ICfoot
and ICsacrum with similar accuracy (Figure 4, Table 3). The identification of TOsacrum was
more accurate at slower speeds than TOfoot. However, at running speeds >3.57 m s−1, the
algorithm identified TOsacrum after the force-measured TO and with larger RMSEs than
TOfoot (Figure 4).

Table 3. Root-mean-square error for identification of gait events and estimation of contact time.

Foot-Mounted Sacral-Mounted

Velocity
(m s−1)

Initial
Contact (s) Toe Off (s) Contact

Time (s)
Initial

Contact (s) Toe Off (s) Contact
Time (s)

2.24 0.074 0.092 0.025 0.045 0.059 0.043
2.33 0.026 0.060 0.045 0.038 0.021 0.030
2.44 0.024 0.044 0.026 0.035 0.027 0.026
2.55 0.033 0.064 0.054 0.039 0.036 0.024
2.68 0.024 0.040 0.038 0.028 0.028 0.490
2.82 0.024 0.034 0.029 0.030 0.032 0.030
2.98 0.018 0.039 0.035 0.024 0.032 0.027
3.16 0.024 0.036 0.032 0.029 0.042 0.029
3.35 0.024 0.035 0.025 0.039 0.051 0.036
3.58 0.018 0.023 0.022 0.019 0.042 0.037
3.83 0.020 0.031 0.028 0.024 0.045 0.036
4.13 0.019 0.024 0.023 0.020 0.047 0.039
4.47 0.021 0.026 0.021 0.020 0.044 0.036
4.88 0.018 0.026 0.022 0.020 0.035 0.030
5.36 0.020 0.038 0.035 0.020 0.033 0.026
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Figure 4. Time differences in the identification of gait events between measured forces and estimated
IMU gait events: (A) results from foot-mounted IMU; (B) results from sacral-mounted IMU. Negative
time differences indicate that the IMU-estimated gait event occurred prior to the measured gait event.
The identification of TOsacrum had larger error rates due to the temporal windowing of the data, and
the wider range of speeds used than previous work.

Estimation of the foot contact duration with data from the foot-mounted IMU showed
an overestimation of foot contact duration at slower running speeds (<2.55 m s−1). The
estimated foot contact duration from the dorsal-mounted IMUs generally had a smaller
RMSE across the range of speeds than the sacral IMU-estimated contact duration (Table 3
and Figure 5). The algorithm for the sacral-mounted IMU data consistently underestimated
the duration of foot contact at slower speeds, <3.5 m s−1, and overestimated the duration
of foot contact at faster speeds, >3.5 m s−1 (Figure 5).

Analysis of foot contact by trial mean was examined using Bland–Altman plots. These
plots present a comparison between the average difference between IMU-estimated foot
contacts and force-measured foot contacts (Figure 6). The offset of the foot IMU estimate
was 0.004 s with [−0.005 0.013] 95% Limits of Agreement (LoA) and the sacral IMU estimate
offset was 0.001 s with [−0.018 0.021] 95% LoA. These results show more variability at
the slower speeds, and longer foot contacts, for both the sacral- and foot-mounted IMUs
(Figure 6). We used a linear model to examine the relationship between the IMU-estimated
foot contacts and the force-measured foot contact as well (Figure 7). Regression analysis of
the sacral estimation of foot contact resulted in an r2 value of 0.73, a moderate correlation,
and a slope of 0.60, indicating an underestimation of the foot contact duration. Regression
analysis from the foot IMU-estimated contact duration resulted in an r2 value of 0.91, a
strong correlation, and a slope of 1.15, indicating a slight overestimation of the foot contact
duration.
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durations from the IMUs and the measured gait events from the force-sensing insoles: (A) data from
the sacral-mounted IMU; (B) data from the foot-mounted IMU. Each dot represents an average speed
trial by a participant. Differences greater than 0 are an overestimation of contact time by the IMU.
Differences less than 0 are an underestimation of foot contact by the IMU.
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Figure 7. Time differences between the IMU-estimated foot contact and force-measured foot contact:
(A) data from sacral-mounted IMU; (B) data from foot-mounted IMU. Sacral-mounted IMU data
generally underestimated foot contact, with a slope of 0.60. Foot-mounted IMU data generally
overestimated foot contact duration at a faster speeds slope of 1.15. The foot-mounted IMU was
more accurate across the range of speeds for the estimation of foot contact in comparison to the
sacral-mounted IMU.

4. Discussion

The purpose of this work was to validate the identification of gait events using data
from IMUs in a semi-uncontrolled environment. We collected inertial data from two IMUs
attached bilaterally on each foot and one approximately on the sacrum, from participants
of varying running skill levels. We developed and implemented two algorithms for the
identification of gait events from an IMU, based upon previous work [13,20,29]. The
outputs of these algorithms, the IMU-estimated gait events, were validated against the
standard of a force-sensing insole. The main findings of the work are summarized briefly
here: (1) estimated and measured contact times generally decreased across the range of
running speeds; (2) the identification of gait events from the foot-mounted IMUs was more
accurate than the identification of gait events from the sacral-mounted IMU; (3) foot contact
was identified with an average RMSE of <0.04 s across the range of average running speeds
for the foot- and sacral-mounted IMUs.

It is necessary to address the accuracy of the force-sensing insoles and their measure-
ment of contact time with respect to speed, as this measure was considered our standard.
Foot contact time measured from the insoles followed a similar pattern to [28]: a decrease in
contact time with an increase in speed [30]. Foot contact durations as measured by the force
insoles were consistently longer in duration than those reported in [28]. A contributing fac-
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tor in this was the participants recruited for these studies. Our study recruited participants
from a range of running skills, from the truly novice to highly trained community runners.
The samples tested in previous studies consisted of middle distance and sprint athletes.

The time between ICfoot and the force-sensing insole approached zero difference as
the speed increased (Figure 5). We used an algorithmic method most similar to [9], which
proposed the identification of peak resultant acceleration across the range of speeds, and
this has become a common approach for the identification of ICfoot [9,31]. The work of [9]
utilized a force plate and single foot strikes for the identification of gait events, reporting
differences in ICfoot ranging from −7.3 to 3.3 ms. In our study, the error in the estimate of
ICfoot ranged from −63 to −5 ms (Figure 4). They additionally reported TO differences
ranging from −53 ms to −32 ms, compared to our range of TOfoot differences from −78
to 2 ms (Figure 4) [9]. We improved on the identification of TOfoot, by incorporating their
rule for the identification of TOfoot as a secondary rule to the identification of peak vertical
acceleration, in a temporal search window [9,29]. Our work had more variability in the
range of TOfoot identification only at the three slowest running speeds, however, as there
was only one participant who ran at these average running speeds.

Foot-mounted IMUs overestimated the contact time at running speeds <2.52 m s−1

(Figures 4 and 6). The slope of the regression line for this comparison was 1.15, providing
further evidence of the overestimation of foot contact time overall (Figure 7). Another
study reported an offset of −0.047 s with a 95% LoA of [−0.059 0.154] [29], compared with
our findings of 0.004 s with a 95% LoA [−0.005 0.013], showing an overall improvement.
It should be noted that Benson et al. reported challenges in the identification of TOfoot
for one of their participants, which may have contributed to the larger offset [29]. Our
algorithm was developed on a wider range of speeds, participant running abilities, and on
data collected in a semi-uncontrolled environment. The set of algorithms we developed
captured the gait events more effectively than previous work. The overestimation of foot
contact at the slower running speeds would likely be remedied by the inclusion of a greater
number of less experienced runners.

Estimations of contact time from the sacral-mounted IMUs between the speeds of
2.52 and 3.16 m s−1 matched the measured contact times (Figure 5). However, the RMSE
TOsacrum at speeds >3.57 m s−1 was greater than 0.04 (Table 3). This stems from the difficulty
in estimating the temporal window in which to identify TOsacrum. The identification of the
temporal duration of the window in which to estimate TOsacrum is related to aerial time,
which, in this study, ranged from 40 to 100 ms. Differing window lengths were tested to
accurately identify TOsacrum. The most accurate of these resulted from window termination
20 ms before the next ICsacrum (Figure 3). A dynamic temporal window for the estimation
of TOsacrum could be a way to further improve the estimation accuracy of TOsacrum and
foot contact. The study by [26] reported an average underestimation of foot contact from
sacral-mounted IMUs from −0.017 to −0.001 s, while the current findings showed average
contact time differences from −0.011 to 0.027 s. Specifically, at average running speeds
<2.56 m s−1, the sacral IMU underestimated foot contact time, and at average running
speeds >3.16 m s−1, the contact time was overestimated. Another study [29] reported a foot
contact offset from a sacral-mounted IMU of 0.029 s with a 95% LoA [−0.069 0.010]. Our
analysis had a smaller offset of 0.001 s with a 95% LoA of [−0.018 0.021].

There were multiple limitations in this study. First, the temporal synchronization
between the IMUs and the force-sensing insoles presented an initial challenge. While
participants were running, the IMU clock and the force-sensing insole clock could be off by
0.01 s, which thus accumulates the longer the measures are taken. These errors resulted in
zeros being added or removed during the swing of the phase from the force-sensing insole
data. We partially accounted for time drift using the time synchronization between each
trial. However, we did not want to artificially decrease the RMSE in the results of this work
by removing data due to imperfect synchronization. This, in turn, led to cumulative errors
between the measured and estimated gait events. These errors would be more concerning if
there were large differences in the estimation of contact time across the range of speeds. As
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it is, we feel that it is important to include the data in full, to fully represent the performance
of the techniques used.

A single participant’s data heavily influenced the error in the model. This participant
ran less than 5 miles per week and was truly a novice runner. When the data from this
participant were removed from the dataset, ICfoot ranged from −20 ms to −1 ms, compared
to the original −63 ms to 5 ms (a ~60% improvement) from speeds of 2.67 m s−1 to 5.4 m s−1,
and TOfoot temporal differences ranged from -30 ms to -1 ms, compared to the original
values of −78 ms to 2 ms (a ~75% improvement) across the range of speeds. Further, the
exclusion of this participant from the analysis reduced the offset in the foot-mounted IMU
in the estimation of foot contact from an offset of 4 ms to an offset of 1 ms, while the
95% LoA remained the same. The slope of the linear regression also decreased from 1.15
to 1.10 when this participant’s data were removed from analysis, indicating a reduced
overestimation of contact time in the model. We chose to include this participant as a
representative example of the truly novice runner. We expect that if more runners from
a wide range of running levels were included in the dataset, we would see decreased
variability in the identification of IC and TO from the minimal and maximal running speeds
included in this work.

5. Conclusions

In conclusion, our results demonstrate the validity of two different gait event detection
algorithms for a range of running speeds and skill levels in a semi-uncontrolled environ-
ment. We used data from a wider range of participant skill levels, and a wider range of
running speeds than previous studies. We demonstrated the utility of these algorithms for
the identification of foot contacts in a semi-uncontrolled environment. The use of a gait
event detection system in a real-world environment needs to be validated for a broader
set of conditions before we can estimate other biomechanical variables from these devices.
The next steps in this research are the estimation of ground reaction force waveforms
from the force-sensing insole data, and testing of these algorithms in a truly uncontrolled
environment.
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