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Abstract: Abdominal aortic aneurysm (AAA) is a fatal clinical condition with high mortality. Com-
puted tomography angiography (CTA) imaging is the preferred minimally invasive modality for
the long-term postoperative observation of AAA. Accurate segmentation of the thrombus region of
interest (ROI) in a postoperative CTA image volume is essential for quantitative assessment and rapid
clinical decision making by clinicians. Few investigators have proposed the adoption of convolutional
neural networks (CNN). Although these methods demonstrated the potential of CNN architectures by
automating the thrombus ROI segmentation, the segmentation performance can be further improved.
The existing methods performed the segmentation process independently per 2D image and were
incapable of using adjacent images, which could be useful for the robust segmentation of thrombus
ROIs. In this work, we propose a thrombus ROI segmentation method to utilize not only the spatial
features of a target image, but also the volumetric coherence available from adjacent images. We
newly adopted a recurrent neural network, bi-directional convolutional long short-term memory
(Bi-CLSTM) architecture, which can learn coherence between a sequence of data. This coherence
learning capability can be useful for challenging situations, for example, when the target image
exhibits inherent postoperative artifacts and noises, the inclusion of adjacent images would facilitate
learning more robust features for thrombus ROI segmentation. We demonstrate the segmentation
capability of our Bi-CLSTM-based method with a comparison of the existing 2D-based thrombus ROI
segmentation counterpart as well as other established 2D- and 3D-based alternatives. Our comparison
is based on a large-scale clinical dataset of 60 patient studies (i.e., 60 CTA image volumes). The
results suggest the superior segmentation performance of our Bi–CLSTM-based method by achieving
the highest scores of the evaluation metrics, e.g., our Bi-CLSTM results were 0.0331 higher on total
overlap and 0.0331 lower on false negative when compared to 2D U-net++ as the second-best.

Keywords: abdominal aortic aneurysm; medical image segmentation; computed tomography an-
giography imaging; mask region-based convolutional neural network; bi-directional convolutional
long short-term memory

1. Introduction

Abdominal aortic aneurysm (AAA) is a life-threatening clinical condition that needs
long-term follow-up care and management. AAA is characterized as the abnormal focal
dilation of the aorta that exceeds its nomotopic diameter by more than 50% [1]. If left
untreated, AAA may gradually expand over time and rupture, resulting in a high mortal-
ity rate [2–4]. Endovascular aneurysm repair (EVAR) is a dominant treatment approach
for AAA, due to its low rate of perioperative mortality and the short period of hospital-
ization [5,6]. This minimally invasive approach conducts the transfemoral insertion and
deployment of a stent graft using a catheter, which isolates the damaged aneurysm wall
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from the blood circulation. In favorable cases, the thrombus of the isolated region contin-
ues to shrink and eventually disappears. Follow-up observation after EVAR, however, is
generally required at least yearly due to potential complications, such as endoleaks. These
complications, e.g., due to graft material damage or defect, may introduce a recurrent blood
leakage toward the isolated thrombus, which potentially requires reintervention to prevent
the aortic rupture. In fact, the reintervention rate of EVAR cannot be underestimated, e.g.,
with a 6-year follow-up showing 29.6% [7].

Computed tomography angiography (CTA) imaging has been the preferred minimally
invasive data modality for the follow-up observation of AAA that typically does not cause
any noticeable physical symptoms. The use of postoperative CTA imaging allows for the
quantitative assessment in the evolution of AAA by imaging specialists. The quantitative
assessment should involve the detection of the thrombus region of interest (ROI) and the
precise measurement of its morphologic properties, including maximum diameter, volume,
and shapes, which, when manually performed by humans, is time-consuming and implies
inter- and intra-observer variability [8].

To facilitate the quantitative evaluation of thrombus ROIs, computerized segmentation
of thrombus ROIs in postoperative CTA imaging was actively investigated [8–10]. Tradi-
tional segmentation methods are based on semi-automated algorithms using low-level
intensity features, such as graph cuts [9], level sets [8], and active models [10]. These seg-
mentation methods, however, are vulnerable to the inherent characteristics in postoperative
CTA imaging, which is illustrated in Figure 1 and described below:

• The intensity values of thrombus ROIs tend to overlap with those of adjacent tissues
and organs (Figure 1a);

• The geometric shape of thrombus ROIs tends to be irregular, and its position could
appear across any part of the abdominal aortic passway (Figure 1b,c);

• Parts of ROIs tend to be occluded by metal artifacts introduced by stent grafts.
(Figure 1c,d).

In addition, the traditional segmentation methods often involve user interaction and
rely on prior knowledge. The segmentation performance was highly reliant on the careful
adjustment of multiple parameters, which affects the robustness for use in clinical settings.

Recent advances in deep learning research using medical imaging continue to address
some automation, parameter tuning, user interaction, clinical robustness, and applicabil-
ity [11,12]. Few investigators have proposed convolutional neural network (CNN)-based
methods for automated segmentation of thrombus ROIs [13–16]. A representative work by
López-Linares et al. [13] proposed the adoption of a holistically nested edge detection (HED)
network to address the delineation of fuzzy parts (e.g., boundaries) of thrombus ROIs. In
these CNN-based methods [13–16], thrombus ROI segmentation was performed indepen-
dently per 2D image. These 2D-based methods tended to be vulnerable to challenging
situations where an image obviously exhibits the aforementioned characteristics.

In this work, we propose an automated thrombus ROI segmentation method to utilize
not only the spatial features of a target image, but also the volumetric coherence among
adjacent images. We propose the adoption of a recurrent neural network, bi-directional
convolutional long short-term memory (Bi-CLSTM) [17], which can learn coherence be-
tween a sequence of data. Bi-CLSTM has the learning capability to remember previous
information and reinforce the learning with current information by allowing the previous
output to be used as a current input. This coherence learning capability can be useful for
challenging situations, for example, where a target image is severe with inherent postopera-
tive artifacts and noises and may need the adjacent images to learn more robust features for
thrombus ROIs. For the spatial feature extraction, we use mask region-based CNN (Mask
R-CNN) as suggested by Hwang et al. [18]. We experiment the segmentation capability
and algorithmic property of our Bi-CLSTM-based method using 60 patient studies of AAA
(i.e., postoperative CTA image volumes), which is the largest postoperative AAA dataset
to our knowledge. We validate our method by comparing with the existing 2D-based
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thrombus ROI segmentation counterpart [13] as well as established 2D- and 3D-based
alternatives [19–21] using five representative evaluation metrics.

(a) (b) (c) (d)

Figure 1. Thrombus ROIs of a CTA image volume. The first row shows four images from different
patients, the second row is the thrombus ROIs (annotated by yellow color), and the third row is a
focused view of the thrombus ROIs.

The remainder of this paper is described as follows. In Section 2, we discuss the related
work for thrombus ROI segmentation. Section 3 describes our proposed method with the
experimental settings and datasets in detail. We present and discuss the experiment results
and comparisons in Sections 4 and 5. Finally, concluding remarks are presented in Section 6.

2. Related work
2.1. Segmentation Methods for Thrombus ROIs in CTA Image Volumes

The traditional methods [8–10,22] use prior knowledge, such as geometry constraints
and user interaction as a supplement for segmenting thrombus ROIs from CTA image
volumes. Given an initial segmentation of the aortic regions by humans, the method
proposed by Freiman et al. [9] started to segment thrombus ROIs using an intensity-based
graph min-cut algorithm and iteratively refined the segmentation result based on geometry
constraints. Lee et al. [8] investigated the use of a 3D graph-cut algorithm to reduce user
interaction. In order to improve segmentation accuracy, enhanced geometry constraints
were applied by Lareyre et al. [10] and Lalys et al. [22].

Machine learning- and deep learning-based methods have been proposed for en-
hanced segmentation of thrombus ROIs. Maiora et al. [23] used a random forest classifier
which built intensity-based features to better represent thrombus ROIs. Hong et al. [24]
introduced deep belief network (DBN) to use deep features. López-Linares et al. [13]
firstly introduced the modified holistically-nested edge detection (HED) CNN network to
improve the boundary delineation of thrombus ROIs. The use of well-established Mask
R-CNN was also investigated by Hwang et al. [18], where an optimized cost function
was developed to reinforce the segmentation results. All these 2D-based methods carried
out the segmentation independently for each image and lacked the features commonly
available from adjacent images. The aim of this study is to investigate the usefulness of
adjacent images in enhancing segmentation performance.
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2.2. CLSTM for ROI Segmentation

Recurrent neural networks are a type of deep learning architecture that is capable
of learning coherence between a sequence of data. The LSTM architecture improved the
learning process of the recurrent neural networks by addressing the vanishing gradient
problems. LSTM architectures have been demonstrated to show notable performance in
handling a large variety of sequential problems, e.g., natural language processing [25],
machine translation [26], and time-series forecasting [27]. LSTM was composed of a fully
connected layer (FCN) that is a 1D vector multiplication, and it inherently posed a limitation
for loss of spatial information if LSTM was applied to image sequences. Xingjian et al. [17]
introduced a CLSTM that replaced the FCN with a 2D convolutional operation. The
proposed architecture demonstrated the capability in maintaining spatial information
and notable enhancement in predicting ROIs. CLSTM is now widely applied in, for
example, hyperspectral imageries (HSI) classification [28], mitotic cell detection [29], and
liver segmentation [30].

3. Bi-CLSTM-Based Segmentation Method for Thrombus ROIs

The whole process of our Bi-CLSTM-based segmentation method for thrombus ROIs
in a postoperative CTA image volume is shown in Figure 2. Our method takes as input a
pair of the target image and its spatial attention map as input. In addition, neighbor pairs
were also put together to learn volumetric coherence between sequences of the pairs. We
adopted the concept of Bi-CLSTM [31] by integrating features from the neighbor pairs in a
forward and backward manner. We note that CTA image volumes had no direction, and
the two different directions may complement each other in the feature learning. For the
extraction of the spatial attention map from an image, we adopted the well-established
Mask R-CNN [32]. We experimentally set the sequence length of the pairs (N) to five for
the best segmentation performance but we demonstrated that the different values of the
sequence length had no significant influence on the segmentation performance.

3.1. Mask R-CNN for Spatial Attention Map

The architecture of Mask R-CNN [32] for the extraction of the spatial attention map
is illustrated in Figure 2b. Mask R-CNN consisted of (i) feature pyramid network (FPN)
and (ii) region proposal network (RPN). FPN was based on a top-down pathway and used
Resnet50 [33] as the backbone. The FPN output of an image was a set of feature maps
that were scaled proportionally at various levels. These multi-scale feature maps were
used to build high-level semantic feature maps for thrombus ROIs. This pyramid model
demonstrated sufficient performance as feature extractors in several general image tasks,
such as object detection and segmentation [34]. RPN was designed to generate region
(bounding box) proposals. RPN used anchor boxes with three scales and three aspect ratios
to address the variation in the sizes of thrombus ROIs. RPN extracted the feature maps from
each anchor box and normalized to the same dimension via a bilinear interpolation called
RoI Align to accurately locate thrombus ROIs. The region proposals with the normalized
feature maps went through each of the three output branches.

Mask R-CNN produced three output branches, including (i) classification, which lets
us know whether each region proposal belonged to the foreground class (thrombus ROIs);
(ii) regression that estimated bounding box coordinates; and (iii) spatial attention map
which produced binary prediction for the class. We only used the spatial attention map
for our Bi-CLSTM-based segmentation method. The classification and regression branches
used a fully connected (FC) layer with 1024 neurons, and the spatial attention map branch
used FCN [35]. We used the loss function for this multi-task learning in [32].
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Figure 2. The overview of our Bi-CLSTM-based thrombus ROI segmentation method. Our Bi-CLSTM
method inputs a sequence of the five pairs: a pair of the target image and its spatial activation
map and the four neighbor pairs. Our Bi-CLSTM-based method performed bi-directional feature
integration among the pair sequence. Mask R-CNN was used to extract the spatial activation maps of
the individual images.

3.2. Bi-CLSTM for Volumetric Coherence between an Image Sequence

Our Bi-CLSTM-based segmentation method consisted of two residual blocks and a
CLSTM layer (Conv LSTM) as shown in Figure 2a. The residual blocks contained two
convolution layers (Conv) with 64 filters and batch normalization (BN) layer, and a single
residual connection (ReLU), with the resultant 64-channel feature maps representing the
input sequence. The feature map sequence was then transferred to the Conv LSTM. We
configured it in the same way as in [17]. It performed a 2D convolutional operation with
128 filters to the input sequence and then mapped the convolutionized sequence to the
hidden state, with an output through several gate operations. (see Figure 2c). Our Bi-
CLSTM-based segmentation method had two CLSTM operations, each for the forward and
the opposite direction. We fused the feature maps from both directions and finally included
a Conv with 64 filters to predict thrombus ROI segmentation. We used focal loss [36]
to solve the problem of class imbalance between foreground ROIs and backgrounds by
assigning the lower weight to the larger background.

3.3. Experiment Settings

We built an evaluation dataset of 60 patient studies who went through EVAR operation
for the treatment of AAA (i.e., 60 postoperative CTA image volumes). Each patient study
had a thrombus ROI in the abdominal aorta. To the best of our knowledge, our evaluation
dataset is the largest in the number of patient studies. We observed that the geometrical
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structure and position of thrombus ROIs exhibited considerable variability in the evaluation
dataset, and the noises and artifacts caused by postoperative stent grafts were dispersed
randomly (see Figure 1). We believe that our evaluation dataset is obviously suitable for
validating the robustness of our method to AAA variability.

The evaluation dataset was acquired by Gachon University Gill Hospital, Republic of
Korea, and had been collected for 9 years from 2012 to 2020. The age range of the evaluation
dataset is from 51 to 88; this age range includes the elderly population over 65 in which
AAA usually occurs [37]. A total of 46 male patients were included along with 14 females;
the 3.28:1 ratio was similar to statistics available from the United States (4:1) [38]. Five
distinct scanner models from Siemens were used to collect the evaluation dataset: Somatom
Definition Edge, Somatom Definition Flash, Somatom Force, Somatom Emotion Duo, and
Sensation 16. The patient studies were scanned in the feet-first-supine position, focusing
on the chest or abdomen. They varied in pixel spacing from 0.6152 to 0.9766 and the image
resolution was 512 × 512 in axial view.

The ground truth (GT) segmentation masks of thrombus ROIs were manually anno-
tated by a senior imaging specialist with more than 10 years of clinical experience. The
reliance on the sole annotator may imply that inter and intra-observer variability was
present in the evaluation dataset. We generated the ground truth of 2D bounding boxes
by fitting rectangles to segmentation masks. We excluded the images from each patient
study, where thrombus ROIs did not exist; in total, the number of images was 1637 for
use in our evaluation. The full contrast range was rescaled to 8 bits between 0 and 255
without window-level adjustment to minimize human intervention. The window-level
contrast adjustment transforms images to focus on specific organs and tissues to obtain
better segmentation results. However, it may require the image specialist to manually
define the optimal window-level depending on patient studies and scanning devices. So,
we decided to use the consistent full contrast range. We could leverage the augmented
data to train classifiers to increase reliability. In our method, elastic deformation [19] and
rotation within 10° are employed.

We compared our method with three 2D-based methods (U-net [19], U-net++ [21],
and mHED [13]) and one 3D-based method (3D U-net [20]) to validate the thrombus ROI
segmentation performance of our method. Note that mHED was only the method to be used
in the thrombus ROI segmentation, and the others were chosen as representative medical
image segmentation methods. For the numerical comparisons, we used five representative
evaluation metrics as suggested in [13], which included total overlap (TO), dice coefficient
(Dice), and Jaccard index (Jaccard) for overlapping performance and false negative rate
(FN) and false positive rate (FP) for overlapping error. We then conducted an ablation
study to demonstrate the segmentation capability of our Bi-CLSTM-based method to use
volumetric coherence among the adjacent images.

We used a workstation computer with an Intel Core E5-2620 central processing unit at
a clock speed of 2.10 GHz and an Nvidia TITAN RTX graphic card for all experiments and
pre-processing procedures. Our implementation was based on Pytorch with the Torchvision
library [39]. We used stochastic gradient descent optimizer with the learning rate of 0.0001
for Mask R-CNN and 0.005 for Bi-CLSTM. The Adam optimizer with the learning rate of
0.0001 was applied for U-net, mHED, U-net++, and 3D U-net. We conducted 4-fold cross
validation to reduce the chance of a biased testing set and provide robustness to evaluation
results. Our evaluation dataset was divided by patient study units (i.e., image volumes).
For each fold, 45 patient studies were used as a training set, and the other 15 patient studies
were as a testing set. We rotated this process 4 times to cover all 60 patient studies for the
testing sets.
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4. Results
4.1. Comparison of Our Bi-CLSTM Method with Different 2D and 3D-Based CNN Methods for
Thrombus ROI Segmentation

In Table 1, we show the segmentation comparison results of our Bi-CLSTM method
with three 2D-based and one 3D-based method [13,19–21] for thrombus ROIs. The results
show that our Bi-CLTM method outperformed all the existing methods across all the
evaluation metrics except for FP where 2D U-net++ method [21] was the best, but the
margin with our Bi-CLSTM method by 0.0217 was not obvious. Among the four existing
methods, 2D U-net++ produced the overall best performance.

Table 1. Thrombus ROI segmentation result comparison of our Bi-CLSTM method with three 2D-
based [13,19,21] and one 3D-based approach [20] using the five evaluation metrics.

TO ↑ Dice ↑ Jaccard ↑ FN ↓ FP ↓

Our Bi-CLSTM 0.8931 0.8730 0.7809 0.1069 0.1358

2D Segmentation Approaches

2D U-net 0.8297 0.8375 0.7334 0.1703 0.1277
2D U-net++ 0.8600 0.8655 0.7703 0.1400 0.1141

mHED 0.6210 0.6488 0.4949 0.3790 0.2610

3D Segmentation Approaches

3D U-net 0.7545 0.7145 0.5768 0.2455 0.2687

In Figure 3, we show the qualitative visualization results from four patient studies
for all five methods [13,19–21]. The results showed our Bi-CLSTM method enhanced
the prediction capability in segmenting voxels belonging to the thrombus ROIs, when
compared to the four existing methods. We note that the enhancement was obvious in the
areas that were difficult to be differentiated from the neighboring tissues and organs due
to the similarity in low-level features. It is observed that our Bi-CLSTM method tended
to perform over-segmentation (see the region with blue color), whereas the other existing
methods exhibited an under-segmentation tendency (see the region with red color), which
was consistent with the quantitative findings from FP scores in Table 1.

4.2. Ablation Study of Our Bi-CLSTM-Based Method

Our Bi-CLSTM-based method relied on a 2D-based CNN backbone to extract the
spatial attention map of images, which were then used to learn the volumetric coherence
of the image sequence. In Table 2, we evaluated the utility of the volumetric coherence
by comparing the segmentation results of thrombus ROIs with and without it, i.e., the
spatial attention map from the 2D-based CNN backbones can be a segmentation result.
For generalization, we used four different 2D-based CNN backbones, including our Mask
R-CNN and the 2D U-net [19], 2D U-net++ [21], and mHed [13]. The results show that all
four 2D-based CNN backbones could benefit from the use of the volumetric coherence,
improving the evaluation metrics in large margins, e.g., 0.1024 of TO on mHED. Our Mask
R-CNN and mHED backbones resulted in the segmentation enhancement from all five
evaluation metrics. On the other hand, 2D U-net++ backbone showed degeneration from
the FP metric, but the margin was not obvious, and the gains from the other four metrics
were much greater. Similarly, 2D U-net did not provide the segmentation enhancement
from the Dice, Jaccard, and FP metrics. We used Mask R-CNN as the default backbone of
our method because Mask R-CNN showed the greatest enhancement.
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Figure 3. Thrombus ROI segmentation results comparison using four patient studies (each column
representing a study). Seven rows represent: (a) row image; (b) GT mask; (c) segmentation result from
our Bi-CLSTM method; (d) 2D U-net; (e) 2D U-net++; (f) mHED; (g) 3D U-net. In full-scale images,
the yellow line denotes the GT; and the green line is the predicted mask from different methods. In
cropped insets, the yellow color indicates true positive voxels; the red color is false negative; and the
blue color is false positive.
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Table 2. Thrombus ROI segmentation results comparison among four 2D-based CNN backbones for
use in our Bi-CLSTM method.

TO ↑ Dice ↑ Jaccard ↑ FN ↓ FP ↓

Mask R-CNN (ours) Without Bi-CLSTM 0.8762 0.8636 0.7666 0.1238 0.1383
With Bi-CLSTM 0.8931 0.8730 0.7809 0.1069 0.1358

2D U-net Without Bi-CLSTM 0.8297 0.8375 0.7334 0.1703 0.1277
With Bi-CLSTM 0.8399 0.8319 0.7253 0.1601 0.1483

2D U-net++ Without Bi-CLSTM 0.8600 0.8655 0.7703 0.1400 0.1141
With Bi-CLSTM 0.8856 0.8570 0.7563 0.1144 0.1567

mHED Without Bi-CLSTM 0.6210 0.6488 0.4949 0.3790 0.2610
With Bi-CLSTM 0.7234 0.7110 0.5671 0.2766 0.2459

In Table 3, we show the influence of the image sequence length (N) in our Bi-CLSTM-
based method on the thrombus ROI segmentation results. We experimented with the
three different lengths of image sequences ranging from 3, 5, to 7. The results show that
our Bi-CLSTM-based method with the sequence of 5 images had the highest for the Dice,
Jaccard, and FP metrics; the TO and FN metrics were high with the longest sequence of
7 images. We, however, note that there were no significant differences among all three
sequence lengths. We chose 5 as the default sequence length due to its advantage in lower
memory consumption when compared to the longest length of 7.

Table 3. Thrombus ROI segmentation results from three different lengths (N) of the image sequence
for our Bi-CLSTM-based method.

Image Sequence
Length of

Bi-CLSTM
TO Dice Jaccard FN FP

3 0.8921 0.8723 0.7798 0.1079 0.1365
5 0.8931 0.8730 0.7809 0.1069 0.1358
7 0.8937 0.8712 0.7782 0.1063 0.1390

5. Discussion and Future Works

The results demonstrate the capability of our Bi-CLSTM-based method to precisely
segment thrombus ROIs in post-operative CTA image volumes, where different artifacts
and noises commonly appear. The comparative validation with the large-scale patient
studies suggests the robustness and utility of our Bi-CLSTM-based method over the four
existing counterparts [13,19–21].

We attribute our superior segmentation performance to the novel use of Bi-CLSTM
which was designed to take into account the volumetric coherence of image sequences.
The ROI segmentation of an image could be refined with additional features learned from
adjacent images. The value of the volumetric coherence was experimentally validated
from the comparison results with the 2D-based segmentation methods [13,19,21], where
the thrombus ROIs were segmented independently per image, i.e., without the volumetric
coherence. Our BI-CLSTM-based method outperformed all 2D-based counterparts in the
evaluation metrics (see Table 1). In addition, we visually observed that the 2D-based
methods failed the boundary parts of thrombus ROIs to be precisely segmented due to
the neighboring tissues sharing similar low-level features, such as intensity values (see
Figure 3).

We demonstrated the enhanced segmentation capability of our Bi-CLSTM-based
method over the 3D-based counterpart [20] by showing its superior performance from the
evaluation metrics (see Table 1). It could suggest that our Bi-CLSTM-based method can be
more effective to preserve the volumetric coherence by explicitly combining the features
within adjacent images, when compared to the 3D-based counterpart, implicitly extracting
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the volumetric coherence through a 3D convolution operation. We analyzed that one of the
dominant advantages of the proposed method over 3D-based methods is that our approach
utilizes information from adjacent slices, whereas 3D u-net also uses information from
slices farther away.

We valued the over-segmentation tendency of our Bi-CLSTM-based method, instead
of the under-segmentation tendency from the existing methods [13,19–21] (see Table 1
and Figure 3). From the clinical point of view, it is ideal to avoid both specificity (FP)
and sensitivity (FN) for patient care and management, but if not available, having lower
specificity is preferred over sensitivity [40]. It is due to the fact that FN could have deadly
consequences, but FN could be resolved later by trained clinicians.

The current results may imply that our Bi-CLSTM-based segmentation method is
limited in clinical generalization and robustness because we validated it only with a
single medical institution. Medical institutions vary in, for example, imaging scanner
manufacturers, image acquisition protocols, and clinical routines. These variations have a
major impact on the quality of postoperative CTA image volumes and the segmentation
performance for thrombus ROIs. As future work, we plan to achieve a certain level of
clinical generalization and robustness by validating our method with multi-site medical
institutions.

Our results (see Table 2) demonstrate the adaptability of our Bi-CLSTM-based method
to different CNN backbones for the extraction of the spatial attention maps. Mask R-CNN
and mHED following Bi-CLSTM showed better performance in all evaluation metrics.
However, only total overlap (TO) and the false negative (FN) were improved in the case
of U-net-based backbones. As such, our Bi-CLSTM-based method is not limited to a
particular CNN backbone, but we experimentally chose Mask R-CNN as the default
due to the superior segmentation performance. The investigation to use other new CNN
backbones could be an interesting future work in order to further improve the segmentation
performance.

6. Conclusions

We proposed a noise-robust Bi-CLSTM-based segmentation method for thrombus
ROIs in postoperative CTA image volumes. Our Bi-CLSTM-based segmentation method
approximates the thrombus ROIs of a target image and then refines the challenging pertur-
bation parts, e.g., the boundaries, using the volumetric coherence of the adjacent images,
thereby improving overall segmentation performance. The thorough validations with a
large-scale clinical dataset of 60 patient studies suggest that our method is superior to the
existing 2D-based and 3D-based counterparts [13,19–21]. We suggest that our work can be
a useful baseline for the quantitative assessment of postoperative AAA clinical conditions.
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