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Abstract: Image generation from natural language has become a very promising area of research on
multimodal learning in recent years. In recent years, the performance of this theme has improved
rapidly, and the release of powerful tools has caused a great response in various places. The Stacked
Generative Adversarial Networks (StackGAN) model is a representative method to generate images
from text descriptions. Although it can generate high-resolution images, it involves several limitations;
some of the images generated are typically unintelligible, and mode collapse may occur. Therefore, in
this study, we aim to solve these two problems to generate images that follow a given text description
more closely. First, we incorporate a new consistency regularization technique for conditional
generation tasks into StackGAN, called Improved Consistency Regularization or ICR. The ICR
technique learns the meaning of data by matching the semantic information of input data before and
after data augmentation, and can also stabilize learning in adversarial networks. In this research,
this method mainly suppresses mode collapse by expanding the variation of generated images.
However, this method may lead to excessive variations in the generated images, which may result
in images that do not match the meaning of the input text or that are ambiguous. Therefore, we
further propose a new regularization method called ICCR as a modification of ICR, which is designed
to perform conditional generation tasks and eliminate the negative impacts of the generator. This
method realized the generation of various images along the input text. The proposed StackGAN with
ICCR performed 16% better than StackGAN and 4% better than StackGAN with ICR and AttnGAN
on the Inception Score using the CUB dataset. AttnGAN, similar to StackGAN, is a GAN-based
text-to-image model that incorporates the attention mechanism, which has achieved great results in
recent years. It is very important that our proposed model, which incorporates ICCR into a simple
model, obtained better results than AttnGAN. In addition, StackGAN with ICCR was effective in
eliminating mode collapse. The probability of mode collapse in the original StackGAN was 20%,
while in StackGAN with ICCR the probability was 0%. In the questionnaire survey, our proposed
method was rated 18% higher than StackGAN with ICR. This indicates that ICCR is more effective
for conditional tasks than ICR.

Keywords: deep learning; multimodal learning; natural language processing; image generation

1. Introduction

Since the advent of artificial intelligence technology, making computers perform cre-
ative tasks has been a major goal for engineers. With the remarkable development of
artificial intelligence technology in recent years, it is gradually being realized. Among
them, image generation is attracting a great deal of attention. Image generation technol-
ogy based on artificial intelligence has made dramatic progress with Variational Auto-
Encoder (VAE) [1] proposed by Kingma et al. in 2013 and Generative Adversarial Networks
(GAN) [2] proposed by Ian et al. in 2014. One application of these methods is image
generation based on text data. Methods to automatically generate images according to
descriptions written in natural language have a wide variety of possible applications, such
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as art production and image editing. Driven by some notable advances, image generation
from natural language has also become one of the most active areas of research on multi-
modal learning in recent years. On the other hand, DALL-E and DALL-E 2 [3] released
by OpenAI in 2021 and Stable Diffusion [4] released by CompVis in 2022 had very high
performance and were used by users all over the world, but caused various social problems.

Most existing image generation methods are based on GAN models. For example,
the Stacked Generative Adversarial Networks (StackGAN) [5] architecture proposed by
Han et al. divides the image generation process into two stages to generate high-resolution
images. However, the task of generating high-resolution images from text descriptions
is very difficult due to the complexity of learning. This learning difficulty is often due
to a large number of variations in correspondence between natural language and images.
There are innumerable natural language expressions that express one image, and there are
also innumerable images corresponding to one natural language expression. Although
StackGAN has successfully generated high-resolution images of 256 × 256 pixels, unstable
learning has caused problems such as unintelligible images and mode collapse. This
problem becomes more pronounced as the resolution of the generated image increases in
the conditional generation task.

Our prior research has shown that these problems can be mitigated by incorporating
Improved Consistency Regularization (ICR) [6], a learning stabilization method, into Stack-
GAN [7]. Our proposed method uses ICR to learn corresponding to various representations
of natural language and images, and achieves a certain degree of accuracy improvement.
However, ICR does not inherently support conditional generation tasks; ICR has a structure
to increase the variation of generated images, but this leads the user to focus on increasing
variation while ignoring conditions. To prevent this, a structure for conditional generation
is needed. We, therefore, propose a new regularization method, Improved Conditional
Consistency Regularization (ICCR), for conditional generation tasks. It prevents mode col-
lapse and condition-neglected generation by constraining latent variables in the generated
image to a meaning-preserving range.

2. Related Work

The field of data generation tasks has made great progress since GAN was first
published. In the field of image generation from text, the model proposed by Reed et al. [8]
was the first to successfully generate high-resolution images. Existing text-to-image GANs
convert the entire sentence into a single vector and use it. AttnGAN [9] generates a region
that is most closely related to a specific word among finely segmented regions in an
image. As a result, AttnGAN achieved better accuracy than existing methods. Recently, the
Diffusion Model [3,4,10,11] has been attracting attention. The Latent Diffusion Model [12]
has improved the stability of learning and succeeded in generating higher-resolution
images compared to adversarial learning. These methods sample the latent variables from
the learned distributions, and the similarities of the algorithms to VAE can be seen.

On the other hand, GAN-based models generally produce clearer images than VAE-
based models. Therefore, in this research, we introduced our proposed method to a
GAN-based text-to-image model and conducted an experiment.

2.1. Generative Adversarial Networks

GAN architectures use two separate neural network models to generate data via an ad-
versarial learning process, which are referred to as generator and discriminator models. The
generator takes random noise z as input and generates data, and the discriminator then clas-
sifies the input data as being real or fake, that is, synthetic data generated by the generator.
The discriminator is designed to learn instances of the source data in contrast to the output
of the generator, whereas the generator learns to generate data that can fool the discrimina-
tor. These two models solve the optimization problem given below in Equation (1).

min
G

max
D

V(G, D) = Ex∼pdata(x) log D(x) +Ez∼p(z) log(1− D(G(z))). (1)
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The random noise z input to the generator is sampled from an arbitrary distribution
p(z) in the latent space. In contrast, the input to the discriminator is either x sampled from
the observed data distribution pdata(x) or the generated data G(z).

2.2. Stacked Generative Adversarial Networks

The StackGAN model takes a text description as input and generates images that
capture its features through a two-step process. Stage I generates low-resolution images
that capture features such as rough shapes and colors. In Stage II, the images output by the
trained Stage I model are input to the generator, which then generates a high-resolution
image with the features not represented in Stage I. High-resolution image generation using
this two-step process follows the approach of pgGAN [13]. An overview of StackGAN is
shown in Figure 1.
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Figure 1. Overview of the Stacked Generative Adversarial Networks model.

Stage II includes three routes from the input to the discriminator. An input image
may comprise observed data matching the input text; alternatively, the input image may
be observed data that does not match the input text. Finally, the input image may also be
synthetic, having been generated by the generator in Stage I.

2.2.1. Conditioning Augmentation

The latent variable vector ϕt of text input is often high-dimensional (>100), which
hinders stable learning. Hence, our proposed method assumes that the distribution of

the latent space is Gaussian and
^
c is sampled randomly from the Gaussian distribution

N (µ0(ϕt), σ(ϕt)) and used as an input to the generator. When the latent space becomes
high-dimensional, the mapping to the latent variables becomes correspondingly sparse,
and acquiring features becomes difficult. However, limiting the distribution of the latent
space to a Gaussian distribution can solve this problem by increasing the density of the
mapping of latent variables.

2.2.2. Stage I

Stage I generates low-resolution images that capture the broad features of the text

description. The input to the generator comprises
^
c sampled from the latent variable space

of the conditioning augmentation and z sampled from an arbitrary distribution p(z). The
discriminator does not consider whether the input image is real at this stage; rather, it
classifies images according to whether they match the text description. Hence, there are
three input patterns as noted above, including authentic images that match the input text
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description, authentic images that do not match, and generated images. The discriminator’s
loss function is shown in Equation (2), and that of the generator is shown in Equation (3).

LD0 = −E(I0,t)∼pdata
[log D0(I0,ϕt)]−Ez∼p(z),t∼pdata

[
log
(

1− D0

(
G0

(
z,

^
c
)

,ϕt

))]
, (2)

LG0 = Ez∼p(z),t∼pdata

[
log
(

1− D0

(
G0

(
z,

^
c
)

,ϕt

))]
+λ0DKL(N (µ0(ϕt), σ(ϕt))‖N (0, 1)),

(3)

where the real image I0 and the text description t are obtained from the observed data distri-
bution pdata, z is a random sample from the distribution p(z), and λ0 is a hyperparameter.

2.2.3. Stage II

Stage II generates a high-resolution image to correct the image generated in Stage I

to render detailed features. In Stage II, the inputs to the generator comprise
^
c sampled

from Stage I’s conditioning augmentation and s0 from the images generated by Stage I.
Therefore, the loss functions of the discriminator and generator in Stage II are as shown in
Equations (4) and (5), respectively.

LD = −E(I,t)∼pdata
[log D0(I,ϕt)]−Es0∼pG0 ,t∼pdata

[
log
(

1− D
(

G
(

s0,
^
c
)

,ϕt

))]
, (4)

LG = Es0∼pG0 ,t∼pdata

[
log
(

1− D
(

G
(

s0,
^
c
)

,ϕt

))]
+λDKL(N (µ0(ϕt), σ(ϕt))‖N (0, 1)),

(5)

2.3. Improved Consistency Regularization

ICR is based on consistency regularization (CR). CR methods are designed to stabilize
the learning processes of generative adversarial models. CR adds the following consistency
regularization expression to the loss function of the discriminator model.

L = ‖D(x)− D(T(x))‖2, (6)

where T(x) represents the data augmentation (DA) of the observed data x. Because the
DA of the observed data does not alter its original meaning, the presence or absence of
DA should not significantly affect the mapping by the discriminator to the latent space.
Therefore, by providing a loss function that reduces the difference in the discriminator’s
latent variables owing to the presence or absence of DA, the latent space learns the semantic
information of the input data to improve the performance of the discriminator. However,
CR involves some challenges, which ICR was proposed to solve in addition to providing
improved performance. ICR combines balanced consistency regularization (bCR) and
latent consistency regularization (zCR).

2.3.1. Balanced Consistency Regularization

Incorporating CR improves the performance of GAN models, and bCR was proposed
to address some limitations of this approach. An example of DA is shown in Figure 2, in
which a cutout masks part of the image. In this case, the generator also learns to process
masks as a feature of the observed data, and the generated images may thus include
apparent cutouts.
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The loss function of the discriminator is supplemented with expressions for the ob-
served (7) and generated (8) data as given below.

Lreal = ‖D(xreal)− D(T(xreal))‖2, (7)

L f ake = ‖D
(

x f ake

)
− D

(
T
(

x f ake

))
‖

2
, (8)

Therefore, the loss function of the discriminator is as follows.

Lbcr
D = LD + λreal Lreal + λ f akeL f ake, (9)

where λreal and λ f ake are hyperparameters.

2.3.2. Latent Consistency Regularization

In bCR, DA is performed on the input of the discriminator, whereas in zCR, DA is
performed on noise z, which is the input of the generator. An overview of zCR is shown
in Figure 4.
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To improve the performance of the discriminator by enforcing consistency in the noise
space, the hypothesis that the discriminator output should be consistent is incorporated
when DA is applied to noise z. The generator is given two input patterns, including z with
and without the DA. The following expression is added to the loss function to bring the
two outputs of the generator closer when they are input to the discriminator.

Ldis = ‖D(G(z))− D(T(G(z)))‖2, (10)

Therefore, the loss function of the discriminator is given as follows.

Lzcr
D = LD + λdisLdis, (11)

However, this approach is prone to mode collapse, where the generator produces the
same image, regardless of z. The following expression is added to the loss function of the
generator to diversify its output.

Lgen = −‖G(z)− G(T(z))‖2, (12)

Therefore, the loss function of the generator is given as

Lzcr
G = LG + λgenLgen, (13)

where λdis and λgen are hyperparameters.

3. StackGAN with ICCR

ICR maximizes the L2 norm among the generated data to increase the amount of
variation they contain. This may cause a problem in that ICR maximizes the L2 norm
even when the same conditions are given for the generation, resulting in the generation of
images that are far from the given conditions. Therefore, we propose StackGAN with ICCR
as a new consistency regularization method for conditional generative models.

3.1. Stage I

The training process for Stage I of StackGAN with ICCR is performed using a Mo-
bileNet v1 model pre-trained on the ImageNet dataset to obtain the latent variables cor-
responding to the generated images. In ordinary ICR, the latent variable space of the
generator is used; however, by using a pre-trained MobileNet model, latent variables that
capture features can be used even in the early stages of training to improve the stability of
the process. The fact that the evaluation criteria do not change as learning progresses also
contributes to improved stability. A diagram of the proposed model is shown in Figure 5;
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the loss function of the discriminator is given in Equation (14), and that of the generator is
provided in Equation (15).

LICCR
D0

= −E(I0,t)∼pdata
[log D0(I0, ϕt)]

−Ez∼p(z),t∼pdata
[log(1− D0(G0(z, ĉ), ϕt))]

+α‖D0(I0)− D0(T(I0))‖2

+α‖D0(G0(z, ĉ), ϕt)− D0(T(G0(z, ĉ), ϕt))‖2

+β‖D0(T(G0(z, ĉ)), ϕt)− D0(G0(T(z), ĉ), ϕt))‖2,

(14)

LICCR
G0

= Ez∼p(z),t∼pdata
[log(1− D0(G0(z, ĉ), ϕt))]

+λDKL(N (µ0(ϕt), σ(ϕt))‖N (0, 1))
−γ‖M(G0(z, ĉ), ϕt)−M(G0(T(z), ĉ), ϕt)‖2,

(15)Sensors 2023, 23, x FOR PEER REVIEW 7 of 12 
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3.2. Stage II

Stage II generates a high-resolution image that modifies the output generated in Stage
I. Therefore, the input of the generator is changed from noise z to s0 of the image generated
in Stage 1. The third term in Equation (15) can be modified as shown in Equation (16) to
prevent the generation of images that do not conform to the conditions or that exhibit mode
collapse.

LICCR
G1

= Ez∼p(z),t∼pdata
[log(1− D1(G1(z, ĉ), ϕt))]

+λDKL(N (µ0(ϕt), σ(ϕt))‖N (0, 1))

+γ

(
‖M(s0)−M(T(s0))‖2 − ‖M

(
G1

(
s0,

^
c
)

,ϕt

)
−M(T(G1(s0, ĉ),ϕt))‖

2
)

,
(16)

This forces changes in latent variables due to DA to be retained in the generator’s
output image, which prevents the generation of images that deviate significantly from the
conditions or that exhibit mode collapse. A diagram of the Stage II model of StackGAN
with ICCR is shown in Figure 6.
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4. Experiments

This section describes experiments conducted to evaluate the performance of the
proposed approach.

4.1. Experimental Setup

In this section, we describe the dataset used in the experiments as well as the experi-
mental setup, including the hyperparameters.

4.1.1. Data Set

The Caltech-UCSD Birds [14] dataset was used in the experiment. The CUB contains a
total of 11,788 images of birds of 200 different species. Each image includes a set of text
describing the color, pattern, and shape of each specific area. For example, the image in
Figure 7 shows a cactus wren, and the text describing this image is presented below.

• This bird has a dark brown crown, a white superciliary, and a spotted back with
spotted tail feathers.
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4.1.2. Network Setup

600 epochs were used to train the StackGAN model for both stages I and II, and
1000 epochs were used for Stage I of StackGAN with ICR for comparison and 600 for Stage
II. The number of epochs was determined by observing the values of the loss and the
number of epochs until convergence for each model. The StackGAN hyperparameters,
λ0 and λ in Equations (3) and (4), were set to 1. This is in accordance with the values
proposed in [5]. The hyperparameters of StackGAN with ICR, λreal , λ f ake, λdis, and λgen in
Equations (9), (11), and (13), were set to λreal = 0.1, λ f ake = 0.1, λdis = 0.5, and λgen = 0.001,
respectively. The hyperparameters in Equations (14), (15), and (16) of StackGAN with ICCR
were assigned values of λ = 1, α = 0.1, β = 0.5, γ = 0.001, respectively. In this research,
these hyperparameters were determined experimentally. Experiments were performed
with different parameters, and it is known that they are not so sensitive. The size of the
generated image was 64 × 64 pixels for Stage I and 256 × 256 pixels for Stage II.

4.2. Evaluation Metrics

Evaluating the performance of generative models is difficult. We used a numerical
evaluation method called “Inception Score” (I) [15] to evaluate the model quantitatively, as
given below.

I = exp (ExDKL( p(y|x)||p(y))), (17)

where x is a single generated sample and y is the label predicted by the Inception-v3
model [16]. The reasoning behind this measure is that a good model should produce
diverse but meaningful images. Therefore, the KL divergence between the marginal p(y)
and the conditional p(y|x) distributions should be large. We also evaluated this measure
on 3000 randomly selected samples for each model.

4.3. Experimental Results

In this section, we describe the experimental results. We used the generated images,
the incidence of mode collapse, Inception Score, and the results of a questionnaire as
measures to compare the accuracy of the generated content. We compared StackGAN,
StackGAN with ICR, AttnGAN, and StackGAN with ICCR models.

4.3.1. Comparison of Generated Images

The images generated by the four models are shown in Figure 8. The generated images
for StackGAN, with ICR, and with ICCR were obtained from Stage II. The following four
texts were used as inputs.

1. This black bird has no crest, a medium-pointed bill, and a short tail.
2. This is a white bird with black wings and a small beak.
3. This small bird has a white belly and breast, and is mostly speckled otherwise.

The results for the text labeled 1 show that the AttnGAN model was able to generate
images that captured the features of the input data best. StackGAN also succeeded in
generating images that captured color features, although the bird shape was slightly
distorted. For text 2, all models failed to generate an image. For text 3, StackGAN and
StackGAN with ICCR were able to capture the “white belly and breast” features. Only
AttnGAN was able to represent “mostly speckled otherwise”.
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4.3.2. Incidence of Mode Collapse

We compared StackGAN and StackGAN with ICCR in terms of the incidence of mode
collapse. Four types of input noise z were used for a single input text. In total, images were
generated for 20 texts. In this experiment, we observed mode collapse in the output for
four texts with StackGAN, as shown in Figure 9, and no instances of mode collapse were
observed with StackGAN with ICCR.
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4.3.3. Comparison of Inception Score

The inception scores of each model are listed in Table 1. StackGAN, StackGAN with
ICR, and StackGAN with ICCR were trained in three trials and the mean and standard
deviation of the Inception Score were recorded. For AttnGAN, we downloaded the trained
model from GitHub. Therefore, the mean and standard deviation were obtained from three
trials of the same trained model with different input noise.

Table 1. Inception Score of each model.

Model Inception Score

StackGAN 4.75 ± 0.16
StackGAN with ICR 5.30 ± 0.15

StackGAN with ICCR 5.51 ± 0.05
AttnGAN 5.32 ± 0.11
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As shown in Table 1, StackGAN with ICCR had the highest Inception Score value.
Specifically, it performed approximately 16% better than StackGAN, 4% better than Stack-
GAN with ICR, and 4% better than AttnGAN.

4.3.4. Comparison by Questionnaire Survey

A survey was conducted with 21 people using images generated by StackGAN with
ICR and StackGAN with ICCR. Twenty texts were entered into each model, and the survey
asked which of the output images were clearer. In this case, we did not reveal which output
image was produced by which model. The results showed that 41% of the respondents
chose StackGAN with ICR as clearer and 59% chose StackGAN with ICCR.

5. Discussion
5.1. Conclusions

As a result of comparing the images generated by each model, the results of the
proposed model in this research were not good in all trials. By comparing a large number
of generated images, we found that our proposed model is statistically superior. The
images generated by StackGAN showed mode collapse in 4 out of 20 texts, whereas those
produced by StackGAN with ICCR showed no mode collapse in 20 texts. This indicates
that introducing ICCR may be expected to eliminate mode collapse. StackGAN with ICCR
also had the highest Inception Score value among the four models. The standard deviation
was the smallest, indicating that the training process was stable. StackGAN with ICR, the
model with the second-highest Inception Score, was used in the survey for comparison,
and StackGAN with ICCR obtained higher values in terms of human perception. This
shows that the ICCR is more effective than ICR in the conditional generation model.

5.2. Recommendation

In the future, we plan to establish a stable learning method for GAN models, which
is generally considered challenging, and to build a system that can handle text input
describing more complex scenes. The text contained in the Caltech-UCSD Birds we used
was relatively simple. Thus, we also want to achieve more complex image generation from
natural language.
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