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Abstract: In this study, distributed security estimation problems for networked stochastic uncertain
systems subject to stochastic deception attacks are investigated. In sensor networks, the measurement
data of sensor nodes may be attacked maliciously in the process of data exchange between sensors.
When the attack rates and noise variances for the stochastic deception attack signals are known, many
measurement data received from neighbour nodes are compressed by a weighted measurement
fusion algorithm based on the least-squares method at each sensor node. A distributed optimal filter
in the linear minimum variance criterion is presented based on compressed measurement data. It
has the same estimation accuracy as and lower computational cost than that based on uncompressed
measurement data. When the attack rates and noise variances of the stochastic deception attack
signals are unknown, a correlation function method is employed to identify them. Then, a distributed
self-tuning filter is obtained by substituting the identified results into the distributed optimal filtering
algorithm. The convergence of the presented algorithms is analyzed. A simulation example verifies
the effectiveness of the proposed algorithms.

Keywords: multiplicative noise; weighted measurement fusion; unknown attack rate; identification;
distributed self-tuning filter

1. Introduction

With the development of science and technology, networked systems or sensor net-
works [1] have been gradually applied to various key infrastructures. The networked
systems introduce the network into a control system and realise data sharing among sen-
sors, actuators, and controllers. The networked systems have the characteristics of low cost,
simple maintenance, and flexibility. During data exchange between sensor nodes, data may
be attacked maliciously by the networks. Methods to address the injected data in the state
estimation are of importance. Therefore, the state estimation for systems with network
attacks attracts considerable interest in the field of security estimation.

The types of network attacks mainly include deception, DoS, and replay attacks.
The deception attack implies that an attacker injects false data into the network channels
to affect the performance of the system [2]. The DoS attack implies that the attacker
jams network channels to prohibit the transmission of data [3]. The replay attack is a
special form of deception attack [4] in which an attacker puts captured historical data
back into the channels. The current research on the three types of network attacks has
attracted considerable attention. In [5], a deception attack model has been presented
against state estimation in electric power grids. In [6], the distributed security filtering
problem of wireless sensor networks under network deception attacks has been studied.
By introducing an exponential function, a protector has been designed for each sensor
node according to an innovation sequence, and an attack protection model is presented.
In [7,8], the fusion estimation problem of deception attack signals has been studied for
cyberphysical systems.
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Under the network DoS attack, the event-triggered security estimation problems of
sensor networks have been addressed in [9–11], whereas the distributed dimensional-
reduction fusion estimators have been designed in [12,13]. In [14], the optimal DoS attack
scheduling problem from the attacker’s perspective has been studied. The distributed
detection for the DoS attack has also been developed in [15]. In [16], a model with a com-
pensation has been developed to describe the replay attack, and then a recursive distributed
estimator is devised in the LMV criterion. In [17], a distributed set membership filter is
proposed for linear time-varying systems over sensor networks with limited bandwidths.
The discrimination between the replay attack and sensor fault is investigated under an
event-triggered transmission mechanism in [18]. In [19], the problem of detection and
defence of replay attacks has been studied. In [20–22], the problem of security control and
estimation under hybrid attacks has been also investigated.

In networked systems, there are many network-induced stochastic uncertainties in
addition to network attacks, such as random delays, packet losses, and multiplicative
noises, which affect the performance of the systems [1]. Stochastic uncertain systems have
various applications; e.g., parameter errors in system models and fading channels in data
transmissions can be depicted by multiplicative noises, and environmental disturbances
can be often depicted by additive noises. For multisensor stochastic uncertain systems with
random parameters, delays, and packet dropouts, a distributed fusion filter is presented
in [23]. For multirate uncertain nonlinear systems with coloured measurement noises, a
robust fusion algorithm has been designed in [24]. In the above literature, the statistical
characteristics of noises are assumed to be known. Otherwise, adaptive or self-tuning
estimation algorithms need to be designed. By using the correlation function method to
identify the statistical characteristics of unknown noises, the distributed fusion self-tuning
estimators have been proposed for multisensor systems with unknown noise variances
in [25,26]. The distributed fusion self-tuning filters have also been developed for multisen-
sor networked systems with unknown model parameters and data loss rates in [27–29]. For
nonlinear systems, a fuzzy energy-to-peak filter [30] and distributed fusion filters [31] have
also been studied. However, network attacks in networked systems are not involved in the
above literature.

Compared to the centralised fusion estimation where the data of all nodes are trans-
mitted to a fusion centre, the distributed fusion estimation based on the network topology
has an advantage of resource sharing among sensor nodes. Each node acts as a local fusion
centre. Each node can fuse the information from itself and its neighbours to improve the
performance of the system. However, as a large amount of data from neighbour nodes is
processed, an augmentation method will impose a costly computational overhead. To re-
duce the computational cost of the filter, the augmented measurement data received at each
sensor node can be compressed to a dimensionality reduction measurement before being
used for filtering. In addition, the data exchanged between sensor nodes may be subject
to malicious attacks from the network. Therefore, it is vital to investigate the distributed
security estimation problem of sensor networks based on data compression.

There have been few studies on the network security estimation of mixed uncertain
systems subject to multiplicative noises, additive noises, including both state-dependent
and noise-dependent multiplication and stochastic deception attacks. In this study, from the
perspective of a defender, the distributed security estimation based on data compression
is investigated for sensor networks. In contrast to [5–12], which only consider network
attacks, and [23–29], which consider uncertainties of system model parameters and noise
covariance, this study considers stochastic uncertainties of multiplicative noises, additive
noises, and stochastic deception attacks. In contrast to the results on distributed estimation
for multisensor systems in the above literature, where a large amount of data are not
compressed and directly used by filters, data are first compressed and then used by filters
in this study, which can reduce the computational burden of the filter. In contrast to the
results on distributed estimation for systems with deception attacks in [32], where attack
rates and noise variances of deception attack signals are assumed to be known, distributed
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self-tuning filters with unknown attack rates and noise variances of deception attack signals
is designed in this study. However, attack rates and noise variances of deception attack
signals are often unknown in practical applications.

The contributions of this paper are presented as follows.
(a) In the studied systems, mixed uncertainties of multiplicative noises, additive noises,

and stochastic deception attacks are comprehensively considered, which can better reflect
some practical systems.

(b) Under the known attack rates and noise variances of stochastic deception attack
signals, a weighted measurement fusion algorithm in the least squares is used to compress
the measurements of the sensor and its neighbours at each node, and then a distributed op-
timal filter is presented in the LMV. It has the same accuracy as that based on uncompressed
data. Moreover, it has a lower computational cost than that based on uncompressed data.

(c) Under the unknown attack rates and noise variances of the stochastic deception
attack signals, a correlation function method is employed to identify the attack rates and
noise variances of attack signals at each node and then a distributed self-tuning filter is
designed. The convergence of the distributed self-tuning filtering algorithm is analyzed;
it converges to the distributed optimal filter if the identifications of attack rates and noise
variances of attack signals are consistent.

The rest of this paper is organised as follows. The problem formulation is presented in
Section 2. The distributed optimal filter is presented based on compressed data in Section 3.
In Section 4, the distributed self-tuning filter based on compressed data is presented and
its convergence is analyzed. An example is given in Section 5. Finally, conclusions are
presented in Section 6.

Notations: Rn represents the n -dimensional Euclidean space, Rn×n is the set of n× n
real matrices, AT and A−1 are the transpose and inverse of matrix A, respectively, E{•} is
the expectation, Cov{•} is the covariance, ρ(A) is the spectral radius of matrix A, ‖•‖ is
the Euclidean norm of a real vector or spectral norm of a real matrix, A⊗ B is the Kronecker
product of matrices A and B, and δtk is the Kronecker delta function.

2. Problem Formulation

Consider the multisensor, linear, time-invariant stochastic uncertain system,

x(t + 1) = (A +
q

∑
l=1

αl(t)Al)x(t) + (B +
q

∑
l=1

βl(t)Bl)ω(t), (1)

yi(t) = (Ci +
q

∑
l=1

hil(t)Cil)x(t) + vi(t), i = 1, 2, . . . , L, (2)

where x(t) ∈ Rn is the system state, yi(t) ∈ Rmi is the measurement of the ith sensor,
αl(t) ∈ R, βl(t) ∈ R, and hil(t) ∈ R, l = 1, 2, . . . , q, are multiplicative noises to depict
stochastic uncertainties of model parameters, where q is a positive integer, ω(t) ∈ Rr is
the process noise, vi(t) ∈ Rmi is the measurement noise, and A, B, Ci, Al , Bl and Cil are
constant matrices with appropriate dimensions. The subscript i corresponds to the ith
sensor, and L is the number of sensors.

Assumption 1. Multiplicative noises αl(t) ∈ R, βl(t) ∈ R, and hil(t) ∈ R are uncorrelated white
noises with zero mean and covariance Qαl , Qβl , and Qhil

, respectively; process noise ω(t) ∈ Rr

and measurement noise vi(t) are uncorrelated white noises with zero mean and covariance Qω and
Qvi . Moreover, multiplicative noises αl(t), βl(t), and hil(t) are uncorrelated with additive noises
ω(t) and vi(t).
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Assumption 2. The initial state value x(0) is uncorrelated with ω(t), vi(t), αl(t), βl(t), and
hil(t), with the mean and covariance as

E{x(0)} = µ0, E
{
[x(0)− µ0][x(0)− µ0]

T
}
= P0. (3)

Assumption 3. A is a stable matrix, and ρ(A⊗ A +
q
∑

l=1
Qαl Al ⊗ Al) < 1.

Assumption 1 describes the statistical characteristics of noises. Assumption 2 provides
the statistical characteristics of the initial state. They are applicable to state estimation
problems in general [23,33]. Assumption 3 implies that the studied systems are stable in
the mean square sense, which guarantees the existence of the state second moment in the
later text [34].

We consider a sensor network consisting of L sensor nodes. Its topology is described
by a graph G = (V, E), where V = {1, 2, . . . , L} is the set of sensor nodes, and E = {(i, j) :
i, j ∈ V} ⊂ V ×V is the edge set formed by the interactive connections between nodes. We
denote the set of neighbour nodes of sensor i by Ni = {j ∈ V : (j, i) ∈ E}, where (j, i) ∈ E
indicates that the sensor i can receive the data transmitted by its neighbour node j. We
denote the number of neighbour nodes of sensor i as di.

In the process of data exchange between nodes, the measurement data may be attacked
maliciously by the network. We consider the following form of network deception attack
signals when the sensor i transmits its measurement data through the network,

~yi(t) = −yi(t) + σi(t), i = 1, 2, . . . , L, (4)

where σi(t) is a white noise with zero-mean and variance Qσi , independent of other random
variables.

Considering the limited energy of the attacker and limited network source, the attack
does not always exist and may occur randomly. If we assume that the attack signal satisfies
Bernoulli distribution in the network, the measurement data of the attacked sensor node i
satisfies the following equation,

ȳi(t) = yi(t) + γi(t)~yi(t) , (5)

where γi(t) is a Bernoulli random variable with the following known statistical characteris-
tics E{γi(t) = 1} = γ̄i, E{γi(t) = 0} = 1− γ̄i, Cov{γi(t)} = γ̄i(1− γ̄i), 0 ≤ γ̄i ≤ 1. In the
model (5), if γi(t) = 0 implies the absence of an attack, γi(t) = 1 implies a complete attack.
Thus, model (5) is more general.

The purpose of this study is to devise a distributed optimal filter in the LMV sense
under the known attack rates γ̄ik and noise variances Qσik

, ik ∈ Ni of the deception attack
signals, and distributed self-tuning filter under the unknown attack rates γ̄ik and noise
variances Qσik

, ik ∈ Ni of the deception attack signals at each sensor node i, based on
its measurement data yi(t) and measurement data ȳik (t), k = 1, 2, ..., di received from its
neighbour nodes ik ∈ Ni.

Remark 1. The studied systems contain uncertainties due to multiplicative and additive noises.
Multiplicative noises can be used to describe parameter errors in system modelling and signal trans-
mission fading. Additive noises can be used to describe the background environmental disturbances
of the systems.

3. Distributed Optimal Filter

Before presenting a distributed self-tuning filter, a distributed optimal filter is first
presented in this section. By compressing measurement data of sensor itself and neighbor
nodes, a distributed optimal filter in the LMV criterion is devised under the condition that
the attack rates and noise variances of the deception attack signals are known.
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3.1. Model Transformation

At sensor node i, a distributed optimal filter is devised based on the measurements
yi(t) and ȳik (t) of it and its neighbour nodes ik ∈ Ni. However, the received measurement
data ȳik (t) from its neighbour nodes ik ∈ Ni may be subject to deception attacks. Systems
(1) and (2) is then transformed as follows:

x(t + 1) = Ax(t) + ω− (t) (6)

yi(t) = Cix(t) + vi(t) (7)

ȳik (t) = C̄ik x(t) + v̄ik (t), ik ∈ Ni (8)

where
C̄ik = (1− γ̄ik )Cik (9)

ω(t) =
q

∑
l=1

αl(t)Al x(t) + Bω(t) +
q

∑
l=1

βl(t)Blω(t) (10)

vi(t) = vi(t) +
q

∑
l=1

hil(t)Cil x(t) (11)

v̄ik (t) = [γ̄ik − γik (t)]Cik x(t) + [1− γik (t)]
q

∑
l=1

hik l(t)Cik l x(t) + γik (t)σik (t) + [1− γik (t)]vik (t). (12)

ȳik (t), ik ∈ Ni, k = 1, 2, · · · , di are the measurements of the neighbour nodes of sensor node
i. ω(t) is the new process noise, vi(t) is the new measurement noise of the transformed
systems (6) and (7), and v̄ik (t), ik ∈ Ni are the measurement noises of the neighbour nodes
of sensor node i. ω(t), vi(t), and v̄ik (t) are still white noises of zero-mean and covariance
matrices Qω(t) = E{ω(t)ωT(t)}, Qvi (t) = E{vi(t)vT

i (t)}, Qv̄ik
(t) = E{v̄ik (t)v̄

T
ik
(t)}:

Qω(t) =
q

∑
l=1

Qαl AlX(t)AT
l + BQωBT +

q

∑
l=1

Qβl BlQωBT
l (13)

Qvi (t) = Qvi+
q

∑
l=1

Qhil
CilX(t)CT

il (14)

Qv̄ik
(t) = γ̄ik (1− γ̄ik )Cik X(t)CT

ik + (1− γ̄ik )
q

∑
l=1

Qhik l
Cik lX(t)CT

ik l + γ̄ik Qσik
+(1− γ̄ik )Qvik

. (15)

According to (1), the state second moment X(t) = E
{

x(t)xT(t)
}

can be recursively
calculated as

X(t + 1) = AX(t)AT +
q

∑
l=1

Qαl AlX(t)AT
l + BQωBT +

q

∑
l=1

Qβl BlQωBT
l , (16)

with an initial of value X(0) = µ0µT
0 + P0.

Under Assumption 3, the state second moment X(t) is bounded [34]. Thus, Qω(t) in
(13), Qvi (t) in (14), and Qv̄ik

(t) in (15) are also bounded, which is necessary for the filter
design.

Based on the measurements (7) and (8), each node augments its measurement yi(t)
and receives measurements ȳik (t) of its neighbour nodes. The augmented measurement
equation is

Y(a)
i (t) = C(a)

i x(t) + V(a)
i (t), (17)
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where Y(a)
i (t) = [yT

i (t), ȳT
i1
(t), · · · , ȳT

idi
(t)]T, C(a)

i = [CT
i , C̄T

i1
, · · · , C̄T

idi
]T, V(a)

i (t) =
[
vT

i (t) ,

V̄T
i (t)

]T and V̄i(t) =
[
v̄T

i1
(t), · · · , v̄T

idi
(t)
]
. The superscript (a) denotes the augmentation.

The statistical characteristic of the noise V(a)
i (t) is

Q
V(a)

i
(t) = E

{
V(a)

i (t)(V(a)
i (t))

T
}

= diag[Qvi (t), QV̄i
(t)],

where QV̄i
(t) = E

{
V̄i(t)V̄T

i (t)
}
= diag[Qv̄i1

(t), Qv̄i2
(t), · · · , Qv̄idi

(t)].

For the state Equation (6) and augmented measurement (17), the standard Kalman
filtering algorithm [35] can be applied to obtain the distributed filter at each sensor node.
However, the distributed filter based on the augmented measurement (17) has a heavy
computational cost due to the high dimension of the augmented measurement, where
the gain matrix requires the inverse of a high-dimensional matrix. To overcome this
shortcoming, the augmented high-dimensional measurement can be compressed to a low-
dimensional measurement, and then the filter is designed based on the compressed data,
reducing the computational burden.

3.2. DOFCD

An augmented measurement is compressed to a dimensionality reduction measure-
ment using a weighted least-squares algorithm [36] in this subsection.

For the augmented measurement Equation (17), if rank{C(a)
i } = ri 6 min{n, m̄i},

where m̄i = mi + ∑di
k=1 mik , there is a full rank decomposition:

C(a)
i = F(c)

i C(c)
i , (18)

where F(c)
i ∈ Rm̄i×ri is a full column rank matrix and C(c)

i ∈ Rri×n is a full row rank matrix.
Let

F(c)
i = [FT

i , FT
i1 , · · · , FT

idi
]T. (19)

The augmented measurement (17) can be rewritten as

Y(a)
i (t) = F(c)

i C(c)
i x(t) + V(a)

i (t). (20)

By applying the weighted least-squares algorithm to compress the measurement, we
obtain

[FT
i Q−1

vi
(t)Fi +

di

∑
k=1

FT
ik Q−1

v̄ik
(t)Fik ]

−1[FT
i Q−1

vi
(t)yi(t) +

di

∑
k=1

FT
ik Q−1

v̄ik
(t)ȳik (t)]

= C(c)
i x(t) + [FT

i Q−1
vi

(t)Fi +
di

∑
k=1

FT
ik Q−1

v̄ik
(t)Fik ]

−1[FT
i Q−1

vi
(t)vi(t) +

di

∑
k=1

FT
ik Q−1

v̄ik
(t)v̄ik (t)] (21)

Let Y(c)
i (t)=[FT

i Q−1
vi

(t)Fi +
di
∑

k=1
FT

ik
Q−1

v̄ik
(t)Fik ]

−1[FT
i Q−1

vi
(t)yi(t) +

di
∑

k=1
FT

ik
Q−1

v̄ik
(t)ȳik (t)]

and V(c)
i (t)=[FT

i Q−1
vi

(t)Fi +
di
∑

k=1
FT

ik
Q−1

v̄ik
(t)Fik ]

−1[FT
i Q−1

vi
(t)vi(t) +

di
∑

k=1
FT

ik
Q−1

v̄ik
(t)v̄ik (t)] and

the following compressed measurement equation is obtained:

Y(c)
i (t) = C(c)

i x(t) + V(c)
i (t), (22)
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where the superscript (c) denotes compression. The new measurement Y(c)
i (t) has a reduced

dimension ri 6 min{n, m̄i}. V(c)
i (t) has a variance matrix of

Q
V(c)

i
(t) = [FT

i Q−1
vi

(t)Fi +
di

∑
k=1

FT
ik Q−1

v̄ik
(t)Fik ]

−1. (23)

For state Equation (6) and compressed low-dimensional measurement Equation (22),
the following filter is obtained by applying the standard Kalman filtering algorithm [35].

Theorem 1. For systems (6) and (22), the DOFCD in the LMV criterion is calculated as follows

x̂(c)i (t + 1|t + 1) = x̂(c)i (t + 1|t) + K(c)
i (t + 1)(Y(c)

i (t + 1)− C(c)
i x̂(c)i (t + 1|t)) (24)

x̂(c)i (t + 1|t) = Ax̂(c)i (t|t) (25)

K(c)
f i (t + 1) = P(c)

i (t + 1|t)C(c)T
i [C(c)

i P(c)
i (t + 1|t)C(c)T

i + Q
V(c)

i
(t + 1)]−1 (26)

P(c)
i (t + 1|t) = AP(c)

i (t|t)AT + Qω(t) (27)

P(c)
i (t + 1|t + 1) = [In − K(c)

i (t + 1)C(c)
i ]P(c)

i (t + 1|t), (28)

where x̂(c)i (t + 1|t + 1) and x̂(c)i (t + 1|t) are the filtering and prediction estimates of sensor node i

based on the compressed measurement, respectively, K(c)
f i (t + 1) is the corresponding filtering gain

matrix, and P(c)
i (t + 1|t + 1) and P(c)

i (t + 1|t) are the filtering error variance and prediction error

variance, respectively. The initial values are x̂(c)i (0|0) = µ0 and P(c)
i (0|0) = P0.

Remark 2. Compared to the distributed optimal filter based on the augmented measurement with
the computational complexity O(m̄3

i + n3), the distributed optimal filter based on the compressed
measurement in Theorem 1 with the computational complexity O(n3) has a lower computational cost.
In particular, when there are a large number of neighbour sensor nodes, i.e., n� m̄i, the distributed
filter based on compressed data proposed in Theorem 1 significantly reduce the computational cost.
Moreover, they have the same estimation accuracy [36].

4. Distributed Self-Tuning Filter

In the preceding section, the distributed optimal filter has been designed under the
assumption of known attack rates and noise variances of the stochastic deception attack
signals. However, the attack rates and noise variances of the stochastic deception attack
signals are usually unknown in practical systems. The distributed optimal filter proposed
in Section 3 cannot be applied. In this section, we devise a distributed self-tuning filtering
algorithm for the case when the attack rates and noise variances of the stochastic deception
attack signals are unknown.

4.1. Identification of Attack Rates and Noise Variances of Deception Attack Signals

If the attack rates γ̄ik and noise variances of the stochastic deception attack signals
Qσik

, ik ∈ Ni are unknown, the unknown attack rates γ̄ik and noise variances Qσik
, ik ∈ Ni

must be identified first to apply the distributed optimal filtering algorithm in Theorem 1
for state estimation. The real-time identified attack rates ˆ̄γik (t) and noise variances Q̂σik

(t)
are then substituted into Theorem 1 to obtain a distributed self-tuning filter.

The attack rates γ̄ik and noise variances Qσik
, ik ∈ Ni are identified by a correlation

function method. By using (2), (4), and (5), we obtain
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ȳik (t) = [1− γik (t)]Cik x(t) + [1− γik (t)]
q

∑
l=1

hik l(t)Cik l x(t) + [1− γik (t)]vik (t) + γik (t).σik (t). (29)

The zero-order correlation function of the measurement is calculated as

Rik (t, 0) = E[ȳik (t)ȳ
T
ik (t)]

= E{(1− γik (t))
2Cik x(t)xT(t)CT

ik}

+E{(1− γik (t))
2

q

∑
l=1

hik l(t)Cik l x(t)xT(t)
q

∑
l=1

CT
ik lh

T
ik l(t)}

+E{(1− γik (t))
2vik (t)v

T
ik (t)}+ E{[γik (t)]

2σik (t)σ
T
ik (t)}

= (1− γ̄ik )[Cik X(t)CT
ik +

q

∑
l=1

Qhik l
Cik lX(t)CT

ik l+Qvik
] + γ̄ik Qσik

. (30)

The first-order correlation function of the measurement is calculated as

Rik (t, 1) = E[ȳik (t)ȳ
T
ik (t− 1)]

= E{(1− γik (t)(1− γik (t− 1))Cik Ax(t− 1)xT(t− 1)CT
ik}

= (1− γ̄ik )
2Cik AX(t− 1)CT

ik , (31)

which uses the results E{(1− γik (t))
2} = 1− γ̄ik . E{[γik (t)]

2} = γ̄ik , and E{(1−γik (t))(1−
γik (t− 1))} = (1− γ̄ik )

2.
Thus, according to (30) and (31),

ˆ̄γik (t) = 1− (trRik (t, 1)/tr(Cik AX(t− 1)CT
ik ))

1/2 (32)

Q̂σik
(t) = ˆ̄γ−1

ik
(t){Rik (t, 0)− (1− ˆ̄γik (t))[Cik X(t)CT

ik +
q

∑
l=1

Qhik l
Cik lX(t)CT

ik l+Qvik
]}. (33)

The correlation functions of the measurement Rik (t, 0) = E[ȳik (t)ȳ
T
ik
(t)] and Rik (t, 1) =

E[ȳik (t)ȳ
T
ik
(t− 1)] can be calculated approximately by the sampled correlation functions [25],

R̂ik (t, 0) =
1
t

t

∑
k=1

ȳik (k)ȳ
T
ik (k) (34)

R̂ik (t, 1) =
1
t

t

∑
k=1

ȳik (k)ȳ
T
ik (k− 1), (35)

which can be recursively calculated by

R̂ik (t, 0) = R̂ik (t− 1, 0) +
1
t

[
ȳik (t)ȳ

T
ik (t)− R̂ik (t− 1, 0)

]
(36)

R̂ik (t, 1) = R̂ik (t− 1, 1) +
1
t

[
ȳik (t)ȳ

T
ik (t− 1)− R̂ik (t− 1, 1)

]
. (37)

By replacing Rik (t, 0) in (30) by R̂ik (t, 0), and Rik (t, 1) in (31) by R̂ik (t, 1), we can
obtain the identified value ˆ̄γik (t) of γ̄ik , and Q̂σik

(t) of Qσik
. As the sampled correlation
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function converges to the true correlation function [25], i.e., R̂ik (t, 0)→ Rik (t, 0), R̂ik (t, 1)→
Rik (t, 1), t→ ∞, the identified values ˆ̄γik (t) and Q̂σik

(t) are consistent, i.e.,

ˆ̄γik (t)→ γ̄ik , t→ ∞ (38)

Q̂σik
(t)→ Qσik

, t→ ∞. (39)

Remark 3. Under no network attacks, the self-tuning estimation problems have been studied for
systems with unknown parameters and/or noise variances in the past decade [25–28]. In this paper,
only the attack rates and noise variances of the stochastic deception attack signals are unknown.
If the model parameters and noise variances of systems are also unknown, the recursive extended
least-squares and correlation function can be employed for the identification of unknown model
parameters and variances of multiplicative noises, additive noises, and stochastic deception attack
signals. This may be more complex, and will be further investigated in future studies.

4.2. DSTFCD

According to the DOFCD obtained by Theorem 1 in Section 3.2 and identified results of
the unknown attack rates and noise variances of the deception attack signals in Section 4.1,
we can obtain the following distributed self-tuning filtering algorithm based on compressed
data.

Theorem 2. For systems (6) and (22) with the unknown attack rates and noise variances of
deception attack signals, the DSTFCD is calculated as

ˆ̄x(c)i (t + 1|t + 1) = ˆ̄x(c)i (t + 1|t) + K̂(c)
i (t + 1)[Ŷ(c)

i (t + 1)− Ĉ(c)
i (t) ˆ̄x(c)i (t + 1|t)] (40)

ˆ̄x(c)i (t + 1|t) = A ˆ̄x(c)i (t|t) (41)

K̂(c)
f i (t + 1) = P̂(c)

i (t + 1|t)Ĉ(c)T
i (t)[Ĉ(c)

i (t)P̂i(t + 1|t)Ĉ(c)T
i (t) + Q̂

V(c)
i
(t + 1)]−1 (42)

P̂(c)
i (t + 1|t) = AP̂(c)

i (t|t)AT + Qω(t) (43)

P̂(c)
i (t + 1|t + 1) = [In − K̂(c)

i (t + 1)Ĉ(c)
i (t)]P̂(c)

i (t + 1|t), (44)

where ˆ̄x(c)i (t + 1|t + 1) is the self-tuning filter of sensor node i, ˆ̄x(c)i (t + 1|t) is the self-tuning

predictor, K̂(c)
f i (t + 1) is the self-tuning filtering gain, and P̂(c)

i (t + 1|t) and P̂(c)
i (t + 1|t + 1) are

the corresponding self-tuning prediction error variance matrix and filtering error variance matrix,
respectively. The initial values are ˆ̄x(c)i (0|0) = µ0 and P̂(c)

i (0|0) = P0.

Proof. By substituting the identified attack rates ˆ̄γik (t) and noise variances Q̂σik
(t) of the

stochastic deception attack signals into the distributed optimal filtering algorithm (24)–(28)
in Theorem 1, we obtain (40)–(44). This proof is completed.

The operation of DSTFCD has been summarized in Algorithm 1.
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Algorithm 1: The DSTFCD algorithm.

Initialization:
Set the initial value at each sensor node i with ˆ̄x(c)i (0|0) = µ0, P̂(c)

i (0|0) = P0, t = 0.
Step 1: At each sensor node i, the measurement data of the neighbor node ȳik (t) are
obtained by (8).
Step 2: Use (30) and (31) to calculate the correlation function Rik (t, 0), Rik (t, 1), use (32)
and (33) to calculate the online identified results ˆ̄γik (t), Q̂σik

(t).
Step 3: Use the identified estimates ˆ̄γik (t), Q̂σik

(t) to calculate the compressed

measurement Ŷ(c)
i (t).

Step 4: Substitute the identified estimates ˆ̄γik (t), Q̂σik
(t) at each time into

Equations (40)–(44) in Theorem 2. The DSTFCD Algorithm can be obtained.
Step 5: Set t = t + 1, return to step 1.

4.3. Convergence of the Distributed Self-Tuning Filter

Lemma 1 ([35]). Consider the following equation,

δ(t) = F(t)δ(t− 1) + u(t), (45)

where δ(t) ∈ Rn, u(t) ∈ Rn. F(t) is uniformly asymptotically stable; i.e., there exist constants
0 < p < 1 and c > 0 such that

‖F(t, j)‖ ≤ cpt−j, ∀t ≥ j ≥ 0, (46)

where F(t, j) = F(t)F(t − 1) . . . F(j + 1), F(t, t) = In. If the input u(t) is bounded, δ(t) is
bounded; furthermore, if u(t)→ 0 as t→ ∞, δ(t)→ 0 as t→ ∞.

Lemma 2 ([35]). Suppose that the n× n matrix ∆(t) satisfies the Lyapunov equation

∆(t) = F1(t)∆(t− 1)FT
2 (t) + U(t), (47)

where U(t) is an n × n input matrix and F1(t) and F2(t) are uniformly asymptotically stable
matrices. If U(t) is bounded, ∆(t) is bounded; furthermore, if U(t)→ 0 as t→ ∞ , ∆(t)→ 0 as
t→ ∞.

Assumption 4. Systems (6) and (22) are uniformly completely controllable and observable.

Based on the DOFCD and DSTFCD, we obtain the following result.

Theorem 3. The distributed self-tuning prediction and filtering error variances at each sensor node
converge to the distributed optimal prediction and filtering error variances with a probability of
1(w.p.1) under any initial values, i.e.,

lim
t→∞

(P̂(c)
i (t+1|t)− P(c)

i (t+1|t)) = 0, w.p.1 (48)

lim
t→∞

(P̂(c)
i (t|t)− P(c)

i (t|t)) = 0, w.p.1. (49)

Proof. See Appendix A.

Theorem 4. The distributed self-tuning predictor and filter at each sensor node converge to the
corresponding distributed optimal predictor and filter under any initial values, i.e.,

lim
t→∞

( ˆ̄x(c)i (t + 1|t)− x̂(c)i (t + 1|t)) = 0, w.p.1 (50)
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lim
t→∞

( ˆ̄x(c)i (t|t)− x̂(c)i (t|t)) = 0, w.p.1. (51)

Proof. See Appendix B.

5. Simulation Example

To verify the effectiveness and applicability of our algorithms, we consider a target
tracking system in practical background consisting of five nodes as an example, the system
is made up of mixed uncertainties of multiplicative noises, additive noises, and stochastic
deception attacks, whereas the communication between nodes may be under network
attack, the sensor network topology structure is given in Figure 1.

1

5

2 3

4

1

5

2 3

4

Single directed communication

Double directed communicationDouble directed communication

Sensor node

Single directed communication

Double directed communication

Sensor node

1

5

2 3

4

Single directed communication

Double directed communication

Sensor node

Figure 1. Topology structure of sensor network with five sensors. (authors’ own processing).

The discrete-time system is given as follows:

x(t + 1) = (A +
2

∑
l=1

αl(t)Al)x(t) + (B +
2

∑
l=1

βl(t)Bl)ω(t) (52)

yi(t) = (Ci +
2

∑
l=1

hil(t)Cil)x(t) + vi(t), i = 1, 2, . . . , 5, (53)

where the state is x(t) =
[

x1(t)
x2(t)

]
, x1(t) and x2(t) respectively denote the position and

velocity of the target. yi(t) is the measurement of the ith sensor node. In the simulation,

A =

[
0.95 0.01

0 0.95

]
, A1 =

[
0.1 0
0 0.01

]
, A2 =

[
0.2 0
0 0.02

]
, B =

[
0.8
0.6

]
, B1 =

[
1
0

]
,

B2 =

[
0
1

]
, C1 = [ 1 0.5 ], C2 = [ 0.9 1 ], C3 = [ 1 1 ], C4 = [ 1 1 ], C5 =

[ 1 1 ], Ci1 = [ 1 0 ], and Ci2 = [ 0 1 ], i = 1, 2, . . . , 5. The process noise ω(t)
and measurement noises vi(t), i = 1, 2, . . . , 5 are uncorrelated white noises satisfying
the relation Qω = 0.5, Qv1 = 1, Qv2 = 1, Qv3 = 1, Qv4 = 1, Qv5 = 1. Variances of
multiplicative noises α1(t), α2(t), β1(t), β2(t), hi1(t), and hi2(t), i = 1, 2, . . . , 5 are set as
Qα1 = Qα2 = 0.16, Qβ1 = Qβ2 = 0.11, Qhi1

= 0.21, and Qhi12
= 0.14. The variances of the

random disturbance noises injected into the attack signals are set as Qσ1 = 9, Qσ2 = 3.6,
Qσ3 = 16, Qσ4 = 12, and Qσ5 = 4. The distributions of Bernoulli random variables in
attack signals γi(t), i = 1, . . . , 5 satisfy γ̄1= E{γ1(t) = 1} = 0.2, γ̄2= E{γ2(t) = 1} = 0.4,
γ̄3= E{γ3(t) = 1} = 0.6, γ̄4= E{γ4(t) = 1} = 0.8, γ̄5= E{γ5(t) = 1} = 1. Set the initial
values µ0 = 0 and P0 = I2.

In this example, our aim is to design DOFCD when the attack rates and noise variances
of the stochastic deception attack signals are known, and the DSTFCD when the attack
rates and noise variances of the stochastic deception attack signals are unknown.

The performance of DOFCD is depicted in Section 5.1, and the performance of DSTFCD
is depicted in Section 5.2.
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5.1. The Performance of DOFCD

We simulate 300 Monte Carlo runs. Figure 2 shows the tracking effect of the DOFCD
in this paper when the attack rates and noise variances of attack signals are known. From
Figure 2, we see that the DOFCD has good tracking accuracy.

In this example, the estimation accuracy is evaluated by MSE and MSD, which are
defined as

MSE(t) =
1
N

N

∑
k=1

(x(k)(t)− x̂(k)i (t|t))
2
,

MSD(t) =
1
L

L

∑
i=1

(
1
N

N

∑
k=1

(x(k)(t)− x̂(k)i (t|t))
2
),

where N is the number of Monte Carlo tests. The MSDs of the DOFCD in this paper and
DOFUCD in most of the literature are compared in Figure 3. The accuracy of the DOFCD
is the same as that of the DOFUCD. However, compared with DOFUCD in most of the
literature, the proposed DOFCD has less computational burden than the DOFUCD from
Remark 2.
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Figure 2. Tracking effects of DOFCDs of five sensor nodes: (a) tracking for the position; (b) tracking
for the velocity (authors’ own processing).
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Figure 3. Comparison of MSDs of DOFCD and DOFUCD: (a) MSDs of the position filters; (b) MSDs
of the velocity filters (authors’ own processing).

We consider node 1 as an example. Under the different attack rates of attack signals,
the impact of the attack signals on the performance of the DOFCD is shown in Figure 4.
The probability distributions of the Bernoulli variables γi(t) , i = 2, 4, 5 of the attack signals
injected to the neighbor nodes of sensor 1 are expressed by five cases as follows:
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Case 1: γ̄2 = 0, γ̄4 = 0, γ̄5 = 0;
Case 2: γ̄2 = 0.2, γ̄4 = 0.2, γ̄5 = 0.2;
Case 3: γ̄2 = 0.5, γ̄4 = 0.5, γ̄5 = 0.5;
Case 4: γ̄2 = 0.8, γ̄4 = 0.8, γ̄5 = 0.8;
Case 5: γ̄2 = 1, γ̄4 = 1, γ̄5 = 1.
Figure 4 shows that the MSEs of the DOFCDs increase with the increase in the mean

γ̄i of the Bernoulli variables γi(t) , i = 2, 4, 5; i.e., the accuracy of the DOFCD in Case
1 outperforms that in Case 2, that in Case 2 outperforms that in Case 3, that in Case 3
outperforms that in Case 4, and that in Case 4 outperforms that in Case 5. Thus, the greater
the attack probability of the attack signal corresponds to a worse accuracy of the DOFCD,
which is reasonable.
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Figure 4. Comparison of MSEs of DOFCDs under different attack rates of the attack signals: (a) MSEs
of the position filters; (b) MSEs of the velocity filters (authors’ own processing).

5.2. The Performance of DSTFCD

When the attack rates and noise variances of the deception attack signals are unknown,
based on the measurement data of the neighbors of the ith sensor node, from (32) and
(33) by the correlation function method, we can obtain the identified ˆ̄γik (t) and Q̂σik

(t).
The identified results are provided in Figures 5 and 6. The identified attack rates and
noise variances of the attack signals are consistent. That means that the estimates of the
attack rates and noise variances converge to their true values as time increases, i.e., (38)
and (39) hold. By using the identified results, the tracking effects of the DSTFCDs of five
sensor nodes are shown in Figure 7. Figure 8 compares the MSEs of the DSTFCDs for five
sensor nodes. From Figures 7 and 8, the DSTFCDs of all nodes have an effective estimation
performance. Figure 9 shows the comparison of MSDs of the DSTFCDs and DSTFUCDs
for five sensor nodes. From Figure 9, we can see that the DSTFCDs and DSTFUCDs have
the same accuracy. Moreover, comparing Figures 3 and 9, the results in Theorem 3 and
Theorem 4 can be verified.

Under the same probability distributions of the Bernoulli variables of the attack signals
injected to the neighbour nodes of sensor 1 as those in the above DOFCD, Figure 10 shows
the effect of the attack rates of the attack signals on the performance of the DSTFCD. A
result consistent with Figure 4 is obtained. All simulation results verify the effectiveness of
the proposed algorithms.
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Figure 5. Identified results of unknown attack rates of deception attack signals (authors’ own
processing).
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processing).
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Figure 7. Tracking effects of DSTFCDs of five sensor nodes: (a) tracking for the position; (b) tracking
for the velocity (authors’ own processing).
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Figure 8. Comparison of MSEs of DSTFCDs of five sensor nodes: (a) MSEs of the position filters;
(b) MSEs of the velocity filters (authors’ own processing).
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Figure 9. Comparison of MSDs of DSTFCDs and DSTFUCDs of five sensor nodes: (a) MSDs of the
position filters; (b) MSDs of the velocity filters (authors’ own processing).
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Figure 10. Comparison of MSEs of DSTFCDs with different attack rates of the attack signals: (a) MSEs
of the position filters; (b) MSEs of the velocity filters (authors’ own processing).

6. Conclusions

For multisensor networked stochastic uncertain systems with multiplicative noise, the
measurement data may be attacked by deception attack signals in the process of data ex-
change between sensor nodes. When the attack rates and noise variances of the attack signal
are known, the received augmented high-dimensional measurement is first compressed to
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a low-dimensional measurement based on the weighted least-squares algorithm. Based on
the compressed data, a distributed optimal filter in the LMV criterion was achieved, which
had the same accuracy and reduced computational burden compared to that based on
uncompressed data. Furthermore, a distributed self-tuning filter based on compressed data
was designed when the attack rates and noise variances of the attack signals are unknown,
where the correlation function method is adopted to identify the unknown attack rates
and noise variances. The convergence of the distributed self-tuning filtering algorithm
was analyzed.

In future studies, the distributed security estimation problems will be analyzed for
networked stochastic uncertain systems with stochastic deception attacks when model
parameters and/or noise covariance in systems are unknown. In addition, the systems
may be time-varying and/or nonlinear in practical engineering applications, so the security
estimation problems for time-varying systems and nonlinear systems with network attacks
will be investigated. Moreover, we will investigate practical applications in target tracking
and autonomous navigation in smart vehicles.
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Appendix A. The Proof of Theorem 3

When the attack rates γ̄ik and noise variances Qσik
, ik ∈ Ni of the stochastic deception

attack signals are known, the prediction error covariance of the DOFCD in Theorem 1
satisfies the following optimal time-varying Riccati equation:

P(c)
i (t + 1|t) = A[I − K(c)

i (t)C(c)
i ]P(c)

i (t|t− 1)AT + Qω(t). (A1)

When the attack rates γ̄ik and the variances Qσik
of the deception attack signals are

unknown, we replace γ̄ik , Qσik
in (16), (22), and (23) by ˆ̄γik (t), Q̂σik

(t). According to the

consistency of identification, i.e., ˆ̄γik (t) → γ̄ik , Q̂σik
(t) → Qσik

, the following consistency
estimates can be obtained:

Ŷ(c)
i (t)→ Y(c)

i (t), Q̂
V(c)

i
(t)→ Q

V(c)
i
(t), t→ ∞, w.p.1. (A2)
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The substitution of Q̂
V(c)

i
(t) into (A1) yields the distributed self-tuning Riccati equation:

P̂(c)
i (t + 1|t) = A[In − K̂(c)

i (t)C(c)
i ]P̂(c)

i (t|t− 1)AT + Qω(t). (A3)

The subtraction of (A1) from (A3) yields

P̂(c)
i (t + 1|t)− P(c)

i (t + 1|t)=A[In − K̂(c)
i (t)C(c)

i ]P̂(c)
i (t|t− 1)AT

− A[I − K(c)
i (t)C(c)

i ]P(c)
i (t|t− 1)AT. (A4)

Let ∆P̂(c)
i (t + 1|t) = P̂(c)

i (t + 1|t)− P(c)
i (t + 1|t), and ∆Q̂

V(c)
i
(t) = Q̂

V(c)
i
(t)−Q

V(c)
i
(t),

according to (A2), and ∆Q̂
V(c)

i
(t)→ 0. Equation (A4) is further derived as follows:

∆P̂(c)
i (t + 1|t) = A[In − K̂(c)

i (t)C(c)
i ]P̂(c)

i (t|t− 1)AT − AP(c)
i (t|t− 1)[In − K(c)

i (t)C(c)
i ]T AT

= A[In − K̂(c)
i (t)C(c)

i ][P̂(c)
i (t|t− 1)− P(c)

i (t|t− 1)][In − K(c)
i (t)C(c)

i ]T AT

+A[In − K̂(c)
i (t)C(c)

i ]P̂(c)
i (t|t− 1)C(c)T

i (K(c)
i (t))T AT

−AK̂(c)
i (t)C(c)

i P(c)
i (t|t− 1)[In − K(c)

i (t)C(c)
i ]T AT

= Ψ̂(c)
i (t)∆P̂(c)

i (t|t− 1)(Ψ(c)
i (t))T

+AK̂(c)
i (t)Q̂

V(c)
i
(t)(K(c)

i (t))T AT − AK̂(c)
i (t)Q

V(c)
i
(t)(K(c)

i (t))T AT

= Ψ̂(c)
i (t)∆P̂(c)

i (t|t− 1)(Ψ(c)
i (t))T + AK̂(c)

i (t)∆Q̂
V(c)

i
(t)(K(c)

i (t))T AT

= Ψ̂(c)
i (t)∆P̂(c)

i (t|t− 1)(Ψ(c)
i (t))T + Ui(t), (A5)

where [I − K(c)
i (t)C(c)

i ]P(c)
i (t|t− 1) = P(c)

i (t|t− 1)[In − K(c)
i (t)C(c)

i ]T has been used in the

first equality, [In − K̂(c)
i (t)C(c)

i ]P̂(c)
i (t|t − 1)C(c)T

i = K̂(c)
i (t)Q̂

V(c)
i
(t) has been used in the

third equality, Ψ(c)
i (t) = A[In − K(c)

i (t)C(c)
i ] , Ψ̂(c)

i (t) = A[In − K̂(c)
i (t)C(c)

i ], and

Ui(t) = AK̂(c)
i (t)∆Q̂

V(c)
i
(t)(K(c)

i (t))T AT. (A6)

According to [35], Ψ(c)
i (t) and Ψ̂(c)

i (t) are uniformly asymptotically stable matrices
under Assumption 4. According to (A2) and (A6), Ui(t) → 0, t → ∞, w.p.1. From the
uniformly asymptotic stability of Ψ(c)

i (t) and Ψ̂(c)
i (t) and Lemma 4, it follows that

∆P̂(c)
i (t + 1|t)→ 0, t→ ∞, w.p.1. (A7)

Thus, (48) is true.
Let ∆P̂(c)

i (t|t) = P̂(c)
i (t|t)− P(c)

i (t|t), similarly, according to the filtering error variances
of (28) and (44),

∆P̂(c)
i (t|t) = (In − K̂(c)

i (t)C(c)
i )P̂(c)

i (t|t− 1)− (In − K(c)
i (t)C(c)

i )P(c)
i (t|t− 1)

= P̂(c)
i (t|t− 1)− P(c)

i (t|t− 1)− K̂(c)
i (t)C(c)

i P̂(c)
i (t|t− 1) + K(c)

i (t)C(c)
i P(c)

i (t|t− 1). (A8)

Let ∆K̂(c)
i (t) = K̂(c)

i (t)− K(c)
i (t), (A8) can be rewritten as

∆P̂(c)
i (t|t) = P̂(c)

i (t|t− 1)− P(c)
i (t|t− 1)− K(c)

i (t)C(c)
i P̂(c)

i (t|t− 1)
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−∆K̂(c)
i (t)C(c)

i P̂(c)
i (t|t− 1) + K(c)

i (t)C(c)
i P(c)

i (t|t− 1)

= [In − K(c)
i (t)C(c)

i ]∆P̂(c)
i (t|t− 1)− ∆K̂(c)

i (t)C(c)
i P̂(c)

i (t|t− 1). (A9)

According to (26), (42), (A2), and (A8), ∆K̂(c)
i (t)→ 0, t→ ∞. Furthermore, according

to (A9), ∆P̂(c)
i (t|t)→ 0 , i.e., (49) is true. This proof is completed.

Appendix B. The Proof of Theorem 4

According to Theorems 1 and 3, the distributed optimal and self-tuning predictors is
rewritten as

x̂(c)i (t + 1|t) = Ψ(c)
i (t)x̂(c)i (t|t− 1) + AK(c)

i (t)Y(c)
i (t) (A10)

ˆ̄x(c)i (t + 1|t) = Ψ̂(c)
i (t) ˆ̄x(c)i (t|t− 1) + AK̂(c)

i (t)Ŷ(c)
i (t). (A11)

Let δi(t) = ˆ̄x(c)i (t|t− 1)− x̂(c)i (t|t− 1), we can obtain the dynamic error equation

δi(t + 1) = Ψ(c)
i (t)δi(t) + ui(t) (A12)

ui(t) = ∆Ψ̂(c)
i (t) ˆ̄x(c)i (t|t− 1) + AK̂(c)

i (t)Ŷ(c)
i (t)− AK(c)

i (t)Y(c)
i (t), (A13)

where ∆Ψ̂(c)
i (t) = Ψ̂(c)

i (t)− Ψ(c)
i (t). We can easily obtain that ∆Ψ̂(c)

i (t) → 0. According
to the proof of Theorem 4, ui(t)→ 0. According to the uniformly asymptotic stability of
Ψ(c)

i (t) and Lemma 3, δi(t) → 0 as t → ∞ , which leads to (A10). Similarly, (A11) can be
proven. Hence, the distributed self-tuning predictor and filter have asymptotic optimality.
This proof is completed.
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