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Abstract: According to the characteristics of flexible job shop scheduling problems, a dual-resource
constrained flexible job shop scheduling problem (DRCFJSP) model with machine and worker
constraints is constructed such that the makespan and total delay are minimized. An improved
African vulture optimization algorithm (IAVOA) is developed to solve the presented problem. A
three-segment representation is proposed to code the problem, including the operation sequence,
machine allocation, and worker selection. In addition, the African vulture optimization algorithm
(AVOA) is improved in three aspects: First, in order to enhance the quality of the initial population,
three types of rules are employed in population initialization. Second, a memory bank is constructed
to retain the optimal individuals in each iteration to increase the calculation precision. Finally, a
neighborhood search operation is designed for individuals with certain conditions such that the
makespan and total delay are further optimized. The simulation results indicate that the qualities of
the solutions obtained by the developed approach are superior to those of the existing approaches.

Keywords: improved African vulture algorithm; dual-resource constrained flexible job shop
scheduling problem; population initialization; memory bank; neighborhood search operation

1. Introduction

With the intensification of economic globalization, the production cycle of products
has been reduced, requiring enterprises to establish and use manufacturing systems in an
agile manner. In the current production system, scheduling is essential for increasing labor
efficiency and productivity, as well as enhancing an organization’s ability to compete. At
present, many studies focused on the analysis of the problem of flexible job shop scheduling
(FJSP) can be found. For example, Gao et al. [1] have proposed an improved artificial bee
colony algorithm for FJSP with fuzzy processing time. Li et al. [2] have developed a
hybrid artificial bee colony algorithm based on Tabu search for emergencies in FJSP and a
clustered grouping roulette method to better initialize the population. Caldeira et al. [3]
have presented an improved Jaya algorithm, using a local search method, an effective
initialization mechanism, and an acceptance criterion to improve the quality of the FJSP
solution. Zhang et al. [4] have recently shown that a genetic algorithm (GA) based on
a variable neighborhood search can be used to address the NP-hard property of FJSP,
providing a strong search capability and diversity. To solve the FJSP, Chen et al. [5] have
used a self-learning genetic algorithm that automatically adjusts the vital parameters of
the GA through reinforcement learning. An improved GA based on hybrid initialized
populations, manual cross-over methods, and adaptive weighting mechanisms has been
proposed by Zhang et al. [6], in order to optimize multi-objective FJSP. Ding et al. [7]
have investigated FJSP, and obtained a high-quality scheduling scheme by improving
the encoding–decoding scheme, the inter-particle communication mechanism, and the
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substitution rules for the candidate operation machines in a particle swarm optimization
algorithm. Li et al. [8] have developed a scheduling solution based on the Monte Carlo
tree search algorithm for the dynamic flexible job shop scheduling problem, in order to
minimize the makespan. Different Petri-net based heuristic scheduling methods were used
to obtain optimal or near-optimal schedules for FJSP [9–13]. The FJSP has been solved by
Caldeira et al. [14] using a discrete multi-objective Jaya algorithm, taking the makespan,
total machine workload, and workload of essential machines as performance metrics. There
have been many studies on FJSP that consider machine constraints, and many excellent
results have been achieved. However, FJSP in the actual manufacturing process is not only
constrained by machines, but also by workers. Therefore, it is evident that the traditional
job shop scheduling problem (JSP) of machine constraints and FJSP of machine constraints
do not meet the requirements of actual production. As a result, the dual-resource flexible
job shop scheduling problem (DRCFJSP) with machine and worker constraints has been
proposed. The gap between theoretical and practical scheduling problems can be reduced
by considering the DRCFJSP. However, as the DRCFJSP is an extension of JSP and FJSP, it
still faces significant challenges, such as inheriting the NP-hard features of JSP and FJSP.

At present, there are few relevant studies on DRCFJSP. Cao et al. [15] have contraposed
the NP-hard nature of DRCFJSP and, based on the information processing mechanism
of innate immunity in biological science, a novel immune genetic algorithm combining
the immune algorithm and GA was proposed. Li et al. [16] have presented a branching
population genetic metaheuristic algorithm, in order to minimize the completion time and
cost of DRCFJSP. The algorithm is a GA-based scheduling method that accumulates and
transmits the evolutionary experience of parental chromosomes by introducing pheromones
into the branching population. Zheng et al. [17] have designed a knowledge-guided fruit
fly optimization algorithm based on a novel coding method to solve the DRCFJSP including
a processing time minimization criterion. Zhang et al. [18] have studied the DRCFJSP,
and designed a hybrid discrete particle swarm optimization algorithm. Zhang et al. [19]
have used a quantum genetic algorithm (QGA) for the DRCFJSP, in order to improve the
efficiency of the QGA solution through quantum coding, niche techniques to initialize the
population, adaptive rotation angles, and quantum mutation strategies. Tan et al. [20] have
proposed a fatigue-based DRCFJSP to alleviate worker fatigue and improve productivity
through the joint scheduling of machines and workers.

With the dawn of Industry 4.0 [21], DRCFJSP has become a hot topic of study. As
mentioned above, many algorithms have been employed to address the DRCFJSP, in
order to obtain scheduling solutions with better overall performance. The African vulture
optimization algorithm (AVOA) [22] is a novel metaheuristic optimization algorithm that
simulates the foraging and navigation behavior of vultures. Its effectiveness and superiority
have been demonstrated through its application to various engineering design problems.
Nevertheless, there have been few investigations on AVOA in scheduling problems, even
though it has potential advantages in solving scheduling problems.

To adapt to the complicated and volatile external environment of enterprises, in this
paper, we construct a makespan and total delay target model, and improve the AVOA
(IAVOA) through various improvement strategies to shorten the production cycle time of
products, thus increasing the competitive advantage of enterprises. In addition, we also
compare and analyze IAVOA against a number of widely used multi-objective algorithms,
in order to evaluate relevant performance metrics.

The remainder of this paper is structured as follows: Section 2 presents the specific
details of the problem model. The algorithm adopted to solve the model is detailed in
Section 3. The improvement strategy and the solution process of IAVOA are provided in
Section 4. The simulation experiment is introduced in Section 5. Finally, Section 6 concludes
the work.
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2. The Multi-Objective DRCFJSP Model
2.1. Description of the Problem

In the following, we provide a description of the DRCFJSP. Suppose that there are
w workers in a workshop using m machines to process n jobs. The set of jobs is denoted
as J = {J1, J2, . . . , Jn}, the set of machines as M = {1, 2, . . . , m}, and the set of workers
as W = {1, 2, . . . , w}. A job Ji has ni operations waiting for processing, and there is a
constraint on the sequence between operations. Each operation Oi,j requires m′ candidate
machines, and each machine MP has w′ candidate workers. Therefore, there are cases where
the processing time PTi,j,p,k, k ∈W of the (same or different) machines processing operation
Oi,j differs. The objective of scheduling is to arrange the processing of n jobs reasonably.
Therefore, the three tasks of operation sequence, machine allocation, and worker selection
comprise the DRCFJSP.

In this paper, we construct a DRCFJSP model to optimize the makespan and total
delay. To describe the DRCFJSP model, relevant parameters are defined in Table 1.

Table 1. Definitions of Parameters.

Symbol Description

n Quantity of jobs
m Quantity of machines
w Quantity of workers
ni Total number of the job i operations

Oi,j The j th operation of job i

BTi,j,p,k
The processing time of the j th operation of worker

k using machine p to process job i

TTi,(j−1),p′ ,k′ ,i,j,p,k
Transfer time of job i for two adjacent operations

on the machines or workers
Ci Completion time of job i
di The delivery date of job i
Ti Delay time of job i

wwi Weight coefficient of job i
L A big real number

Hi,(j−1),p′ ,i,j,p

If two adjacent operations of job i are processed on
the different machines, Hi,(j−1),p′ ,i,j,p = 1;

otherwise, Hi,(j−1),p′ ,i,j,p = 0

Hi,(j−1),k′ ,i,j,k

If two adjacent operations of job i are processed by
the different workers, Hi,(j−1),p′ ,i,j,p = 1; otherwise,

Hi,(j−1),p′ ,i,j,p = 0

Xi,j,p,k
If the operation Oi,j is processed on machine p by

wk, Xi,j,p,k = 1; otherwise, Xi,j,p,k = 0

Yi,j,p,i′ ,j′ ,p

If the sequence of different operations for
processing different jobs is processed on machine

p, Yi,j,p,i′ ,j′ ,p = 1; otherwise, Yi,j,p,i′ ,j′ ,p = 0

Zi,j,k,i′ ,j′ ,k

If the sequence of different operations for
processing different jobs is processed by worker

k, Zi,j,k,i′ ,j′ ,k = 1; otherwise, Zi,j,k,i′ ,j′ ,k = 0

To obtain a better scheduling solution for the DRCFJSP, the following assumptions are
made: (1) there is no hierarchy of importance for various jobs; (2) there is a precedence con-
straint between various operations of the same job, but not between operations of different
jobs; (3) each worker is only able to operate one machine at a time to complete one opera-
tion; (4) each operation can only be processed on one machine; (5) each operation process
cannot be interrupted; (6) the processing time for all jobs can be zero; and (7) the transfer
time of workers on different machines is the same as that of jobs on different machines.
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2.2. Objective Function

1. Makespan

f1 = min(Max(Ci), i ∈ {0, 1, 2 . . . , n}), (1)

2. Total delay

The total delay objective function has been proposed by Jun [23]. The formula to
calculate the total delay f2 is as follows:

f2 = min(
n

∑
i=1

wwi·Ti), (2)

Ti = Max(0, Ci − di), (3)

such that
Ci,j ≥ Ci,(j−1) + BTi,j,p,k + max(Hi,(j−1),p′ ,i,j,p·TTi,(j−1),p′ ,k,i,j,p,k , Hi,(j−1),k′ ,i,j,k ·TTi,(j−1),p,k′ ,i,j,p,k)

i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , ni}, (p, p′) ∈ M, (k, k′) ∈W
, (4)

Ci′ ,j′ + (1−Yi,j,p,i′ ,j′ ,p)·L ≥ Ci,j +
w

∑
k=1

BTi,j,p,k ·Xi,j,p,k(i, i′) ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , ni}, j′ ∈ {1, 2, . . . , ni‘}, (p, p′) ∈ M, (k, k′) ∈W, (5)

Ci′ ,j′ + (1− Zi,j,k,i′ ,j′ ,k)·L ≥ Ci,j +
m
∑

p=1
BTi,j,p,k·Xi,j,p,k + Hi′ ,j′ ,k,i,j,k·TTi′ ,j′ ,p′ ,k′ ,i,j,p,k

(i, i′) ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , ni}, j′ ∈ {1, 2, . . . , ni‘}, (p, p′) ∈ M, k ∈W
, (6)

m

∑
p=1

w

∑
k=1

Xi,j,p,k = 1, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , ni}, (7)

As shown in Equation (4), there are restrictions on the order in which the job can be
processed. Equation (5) indicates that, with each machine running at the same time, only
one operation can be processed. Equation (6) implies that there is only one job that each
worker can process at the same time. Finally, Equation (7) means that an operation can only
be performed once.

3. African Vulture Optimization Algorithm

The African Vulture Optimization Algorithm (AVOA) [22] is a recently proposed
metaheuristic algorithm that is divided into an exploration phase and an exploitation phase,
mimicking the foraging and navigation behavior of African vultures. The exploitation
phase can be divided further into a co-operative phase and a competitive phase. The AVOA
determines the phase of the algorithm mainly based on the hunger level F of the vulture. If
F < r1, AVOA enters the exploration phase. If F > r2, AVOA moves into the co-operative
phase. If the above two conditions are not satisfied, AVOA enters the competition phase.
The formula for calculating a vulture’s hunger level F is as follows:

t = h×
(

sinω

(
π

2
× t

maxt

)
+ cos

(
π

2
× ti

maxt

)
− 1
)

, (8)

F = (2× rand1 + 1)× z×
(

1− ti
maxt

)
+ t, (9)

where ti defines the present number of iterations, maxt defines the total number of iterations,
z is a number drawn at random from the range [−1, 1], h is a number chosen at random
from the range [−2, 2], rand1 is a number selected at random from the range [0, 1], and ω is
a constant value (ω = 1).

(1) Exploration phase: Vultures are superb foragers and have outstanding vision in the
wild, so they can spot dying animals. However, vultures may have great difficulty
in finding food, and need to check different random regions to find food. In AVOA,
random regions are represented by two distinct position update formulas, and the
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parameter P1 is used to select the areas searched by vultures. The random number
rand is used to determine the position update formula to obtain new individuals in
the exploration phase. If rand ≥ P1, the position update formula Equation (10) is used;
otherwise, the position update Equation (13) is used:

P(i + 1) = R(i)− D(i)× F, (10)

D(i) = |X× R(i)− P(i)|, (11)

X = 2× rand1, (12)

P(i + 1) = R(i)− F + rand2 × ((ub− lb)× rand3 + lb), (13)

where P(i) is the position vector of the vultures to be updated; P(i + 1) is the new
vulture position vector; R(i) indicates either an optimal or sub-optimal vulture; rand1,
rand2, and rand3 are random numbers between [0, 1]; lb and ub represent the upper
and lower bounds of the variables; and X defines how vultures move at random to
defend their prey from other vultures.

(2) Co-operative phase: When the vultures are hungry, they will move collectively in
search of food. The food source can be represented by two different position update
formulas. The random number rand is used to determine the position update formula
for the new individual in this phase. If rand ≥ P2, Equation (14) is applied. Otherwise,
Equation (17) is applied.

P(i + 1) = D(i)× (F + rand4)− d(t), (14)

d(t) = R(i)− P(i), (15)

S1 = R(i)×
(

rand5×P(i)
2π

)
× cos(P(i))

S2 = R(i)×
(

rand6×P(i)
2π

)
× sin(P(i))

, (16)

P(i + 1) = R(i)− (S1 + S2), (17)

where rand4, rand5, and rand6 are a random numbers between [0, 1].
(3) Competitive phase: Serious disputes over food availability can arise when a large

group of vultures gather at a single food source. Food sources can be represented by
two different position update formulas. The random number rand is used to determine
the position update formula followed by the new individual in the competitive phase.
If rand ≥ P3, Equation (19) is applied; otherwise, Equation (20) is applied.

A1 = BV1(t)− BV1(t)×P(i)
BV1(t)−P(i)2 × F

A2 = BV2(t)− BV2×P(i)
BV2−P(i)2 × F

, (18)

P(i + 1) =
A1 + A2

2
, (19)

P(i + 1) = R(i)− |d(t)| × F× LF(d), (20)

LF(x) = 0.01× u× σ

|v|
1
β

, σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ(1 + β2)× β× 2

(
β−1

2

)


1
β

, (21)

where BV1(t) is the optimal vulture in the current iteration, BV2(t) is the sub-optimal
vulture in the current iteration, d(t) is the distance between BV1(t) and BV2(t), LF
refers to Levy flight, d refers to the dimension of the problem, u and v are both
arbitrary numbers between [0, 1], and the default value for β is fixed at 1.5.
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4. Improved African Vulture Optimization Algorithm (IAVOA)
4.1. Initialization of the Population

According to previous studies, a high-quality initial population is helpful in increasing
the accuracy of such an algorithm, as well as balancing its exploration and development
capacities. Therefore, we designed three rules to generate initial population individuals,
as follows:

1. The shortest processing time principle: Determine the sequence of operations and the
selection of machines in a random manner. For the allocation of workers, select the
workers with the shortest processing time;

2. The machine–worker integration principle: Determine the sequence of operations in
a random manner, fix the workers assigned to each machine at random, randomly
determine the selection allocation of machines, and determine the selection of workers
according to the selection of machines;

3. The randomization principle: Determine the sequence of operations, the selection of
machines, and the distribution of workers in a random manner.

The overall processing time of the jobs can be decreased by using the shortest process-
ing time principle. On the contrast, the machine–worker integration principle can reduce
the transfer time caused by worker transfer. These two methods have a greater probability
of producing better individuals than random methods; however, to maintain population di-
versity and prevent the algorithm from converging too early, the proportion of individuals
generated by the shortest processing time principle and machine–worker integration prin-
ciple should be low. Thus, 20% of the individuals are generated by the shortest processing
time principle, 10% of the individuals are generated by the machine–worker integration
principle, and finally, 70% of the individuals are generated by the randomization principle.

4.2. Solution Representation

The DRCFJSP studied in this paper can be divided into three sub-problems: sequencing
of operations, allocation of machines, and selection of workers. Therefore, we designed a
three-segment encoding scheme—specifically, including a sequence code for operations
OC, an allocation code for machines MC, and a selection code for workers WC. The size of
each segment is the sum of the operations included in the scheduling problem. The size of

the chromosome is
n
∑

i=1
ni, where ni reflects the number of operations in job i. Each gene on

a bit in OC corresponds to a job number, and different occurrences of the same job number
correspond to different operations of the task. In MC, each gene represents that a qualified
machine Mk is selected from the machine set M for processing operation Oij. For WC, each
gene represents a worker who uses the machine. The three-segment encoding method is
conducive to optimizing the processing time and other information in the decoding process,
and reducing the complexity of algorithm calculation.

Figure 1 shows an example of the three-segment coding. This example includes three
jobs {J1, J2, J3}, three machines {m1, m2, m3}, and five workers {w1, w2, w3, w4, w5}. The
workers {w2, w4} can utilize machine m1, workers {w1, w2, w5} can utilize machine m2,
and workers {w1, w3, w4} can utilize machine m3. From left to right, the OC is scanned.
The first "3" illustrates the first operation O31 of job J3, the first "1" illustrates the first
operation O11 of job J1, and the second "3" illustrates the second operation O32 of job
J3. Therefore, the processing sequence of the corresponding operation in Figure 1 is
O31 → O11 → O12 → O21 → O22 → O32 → O33 → O23 → O24 . In MC, the first “2” repre-
sents machine m2 processing operation O11, the first “1” represents machine m1 processing
operation O12, and the second “1” represents machine m1 processing operation O21. In
WC, the number “5” indicates that worker w5 uses machine m2 to process operation O11
(i.e., {w5, m2, O11}), and the number “1” indicates that worker w1 uses machine m3 to
process operation O12. Based on the above, the specific processing information of this
example can be expressed as follows:
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{w2, m2, O31}, {w5, m2, O11}, {w1, m3, O12}, {w2, m1, O21}, {w2, m1, O22}, {w4, m3, O32}, {w2, m1, O33}, {w1, m2, O23}{w4, m1, O24}
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4.3. Individual Position Vector

The initial position vector is determined by the OC. The position vector is composed

of random numbers in the range [−n, n], with length of
n
∑

i=1
ni. Figure 2 shows an example

of generating a position vector. In Figure 2, there are three jobs {J1, J2, J3} to be processed,
where each job includes two operations. It can be seen in Figure 2 that the OC of individual
P1 is 3→ 1→ 2→ 2→ 3→ 1 . Obtaining the sequence number according to the relation
between the sequence number and the job number gives 5→ 2→ 1→ 6→ 3→ 4 . Obtain-
ing the position vector using the relation between the random number and the sequence
number gives 2.8→ 0.7→ 0.2→ 3.0→ 1.4→ 2.1 .
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4.4. Fitness

When solving DRCFJSP by IAVOA, each individual has different degrees of fitness.
Therefore, it is crucial that we develop a way to assess an individual’s fitness value. In
evaluating individual fitness, the single objective optimization problem only requires
comparing the value of the objective function. However, for problems regarding multi-
objective optimization, due to the mutual constraints between objectives, it is necessary
to measure the target value of each individual comprehensively. Common methods for
evaluating comprehensive individual performance are SPEA2’s k-nearest neighbors method,
NSGA-II’s Pareto frontier method, and the weight method, among others. To better assess
the fitness of individuals and obtain the optimal global solution, we designed a new formula
to calculate the individual fitness value, as follows:

F =
s

∑
l=1

rl · f 2
l

, (22)
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where s is the dimension of the objective function, l is the index of the objective function, f
is the objective function, and rl is a number drawn at random from the range [0, 1]. In this
paper, to prevent the algorithm from entering local optima and maintain high population
diversity, the parameter rl is used to control the search direction of the population.

4.5. Memory Bank

The memory bank is a simple storage unit, which is used to store the better individuals
in the population. The memory bank has a full file value NA, which controls the population
size. The memory bank judges the fitness of individuals according to certain rules. To
improve the overall quality of the next generation of individuals, we designed two rules to
select better individuals:

1. Boundary rule: The boundary value αl of the population is calculated by Equation (23),
and individuals smaller than the boundary value are stored in the memory bank. The
boundary rule can eliminate individuals with large target values, reduce the number
of invalid searches in the solution space, and enhance the algorithm’s computational
effectiveness.

2. Distance rule: The distance between each individual and the optimal individual is
calculated, and individuals with a large distance are deleted from the memory bank.
The distance rule can control the algorithm’s search direction, focusing it toward the
optimal solution.

The specific steps of the memory bank processing are as follows:

Step 1: Use Equation (23) to calculate the boundary value αl of the population and calcu-
late the Euclidean distance between the individuals and the optimal individual.
Individual distances in the population are sorted in ascending order:

αl = max fl − r·max fl , (23)

where l defines the dimension of the objective function, and r refers to a number in
the interval [0, 1] (e.g., r = 0.35);

Step 2: Individuals less than the boundary value αl of any dimension using the boundary
rule are stored in the memory bank;

Step 3: Determine whether the number of individuals in the memory bank has reached NA.
If the number of individuals l in the memory bank is higher than NA, individuals
with a large distance, according to the distance rule, are deleted; otherwise, the
storage of individuals in the memory bank is completed.

4.6. Updating of Individuals

IAOVA uses position vectors to update individuals in the population. First, we use the
location update formula of AVOA to update the individual location vector in the memory
bank, and then use the individual update mechanism to update the individuals. For
this paper, we designed an operation update mechanism, three machine–worker update
mechanisms, and a neighborhood search operation. The specific steps by which IAOVA
updates individuals are as follows:

Step 1: Determine the optimal vulture individual, the sub-optimal vulture individual, and
the individual Pi;

Step 2: Update the position vector of Pi using the position update formula of AVOA;
Step 3: Use the process update mechanism to update the OC of individuals in the mem-

ory bank;
Step 4: Determine whether the neighborhood search condition is reached. If the condition

is fulfilled, the neighborhood search operation is executed; otherwise, proceed
to Step 5;

Step 5: Randomly generate a random number rr in the range [0, 1];
Step 6: SUse rr to determine the machine–worker update mechanism. Update MC and WC

of individuals in the memory bank.
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Individual Updating Mechanism

1. Operation update mechanism

The specific steps for updating individual operation sequences are as follows:

Step 1: θ is determined randomly, where θ is a position element of the position vector of
individual Pi;

Step 2: Carry out ascending ranking of element values higher than θ in the position vector of
individual Pi, and record the changed operation numbers and position vector elements;

Step 3: Set the operation number of the optimal vulture or the sub-optimal vulture to zero,
which is the same as the operation number recorded in Step 2, and record the non-zero
numbers and position vector elements;

Step 4: Record the operation number and position vector in Step 2 as the first half of the
sub-generation, and record the operation number and position vector in Step 3 as
the second half of the sub-generation.

The operation update mechanism of the individual is depicted in Figure 3.
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2. Machine–worker update mechanism

Based on the relationship between the AVOA solution and the optimal or sub-optimal
vulture, and to maintain the diversity of the algorithm, we designed three machine–worker
update mechanisms. The specific mechanisms are as follows.

(1) Machine–worker self-updating mechanism

Step 1: Generate two location indices l1 and l2 on MC in a random way;
Step 2: Determine the processing procedures on the location indices l1 and l2, and randomly

select machines from the machine set to replace the machines at these locations;
Step 3: Randomly select workers to replace workers at these locations.

Figure 4 depicts the machine–worker self-updating process of individuals.
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(2) Machine–worker cross-updating mechanism

Step 1: Calculate the exchange digit l using Equation (24):

l = round(u·
n

∑
i=1

ni), (24)

where round is the rounding function, and u = 0.225.
Step 2: Randomly generate two location indices l1 and l2, where |l1 − l2|= l ;
Step 3: The position elements between l1 and l2 in vulture Ri are transferred to the offspring

Ci in turn, keeping the original location index unchanged;
Step 4: The values of individual Pi, except for the location elements between the location

indices l1 and l2, are kept unchanged and passed to the child Ci in turn.

Figure 5 depicts the individual machine–worker cross-updating process.
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(3) Worker self-updating mechanism

Step 1: Step 1: Randomly generate two location indices l1 and l2 on WC;
Step 2: Set the location elements in the location indices l1 and l2 of the individual Pi to be

updated to the child Ci;
Step 3: In individual Ri, except for the location elements between the location indices l1

and l2, the original location indices are kept unchanged and passed to the child Ci
in turn.

The new MC is the MC of vulture Ri. Figure 6 depicts the WC updating process.
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4.7. Neighborhood Search Operation

The neighborhood search operation enhances the algorithm’s exploration of the so-
lution space, enhances the quality of the solution for a wide variety of individual groups,
and improves the ability of the algorithm to skip local optima. The neighborhood search
operation is as follows:

Step 1: Judge whether an individual’s position vector meets the neighborhood search con-
ditions (more than 60% of the elements on the position vector are the same, or all
elements on the position vector are boundary values). If the condition is met, Step 2
is performed. Otherwise, the neighborhood search operation is not performed;

Step 2: Determine the allele exchange number Ng;
Step 3: Generate the location indices l1 and l2;
Step 4: In OC, the alleles on the location indices l1 and l2 are exchanged. For the position

vector, the elements located at l1 and l2 are generated randomly;
Step 5: Judge whether the exchange number Ng has been met. If the condition is met, new

individuals will be generated. Otherwise, Step 2 is executed.

The specific operation flow of the neighborhood search operation is shown in Figure 7.
Suppose that the allele exchange number Ng is 3. Each exchange of alleles does not affect
each other. Therefore, there is a certain probability of generating the same location index.
For example, in Figure 7, the location index required for the second exchange is the same
as that generated the first time.
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4.8. Framework of the Developed Algorithm

The AVOA is improved by designing the initial population and memory bank, balanc-
ing the ability of the AVOA to explore and develop the solution space. The neighborhood
search operation is intended to enhance the ability of the algorithm to skip local optima.
Figure 8 shows a flow chart indicating how IAVOA is used to solve the DRCFJSP. The
specific steps of the solution process are as follows:

Step 1: Set up the parameters;
Step 2: Initialize the population Pt by using the strategy for population initialization;
Step 3: Calculate individual fitness values in the population. Select the optimal vulture and

the sub-optimal vulture, and determine the vulture Ri;
Step 4: Judge whether the termination condition has been met. If the condition is fulfilled,

Step 9 is executed. Otherwise, Step 5 is executed;
Step 5: Compose the population Pt and memory bank At into a new memory bank A′t, and

calculate the Euclidean distance and boundary value αl between the individuals and
the optimal vulture in A′t;

Step 6: Use the memory bank pruning strategy to prune A′t to obtain the memory
bank At+1;
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Step 7: Update the position vector of At+1 using the position update formula of AVOA, and
update the OC of At+1 using the operation update mechanism;

Step 8: Judge whether the neighborhood search operation is required. If the condition
is fulfilled, the neighborhood search operation is used to update the individuals.
Otherwise, the machine–worker update mechanism updates the individual machine
code and the worker code. New individuals join the new population Pt+1. Then,
Step 3 is executed;

Step 9: Output the optimal solution.
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5. Experimental Simulation and Analysis

We analyze the performance of IAVOA through an experiment. The environment for
the experimental analysis was Windows 10, with 4 GB of RAM and an Intel i7 processor, and
the programming environment was MATLAB 2021. The experimental analysis included
the following.

(1) Setting the parameters of IAVOA;
(2) Assessing the optimal performance of IAVOA;
(3) Examining the performance of IAVOA, compared to that of commonly used multi-

objective optimization algorithms.
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5.1. Evaluation Metrics

To assess the performance of IAVOA, three evaluation metrics are used in this paper:
Generational Distance (GD) [24], Inverse Generational Distance (IGD) [25], and hypervol-
ume (HV) [26]. GD and IGD were used to evaluate the convergence of IAVOA, while
HV was employed to estimate the diversity of IAVOA. The formulas for these evaluation
metrics are as follows:

1. GD

GD =

√
∑
|Ω|
i=1 D2

i
(Ω, Ω∗)

|Ω| , (25)

where Ω is the first Pareto front value (PF) obtained by an algorithm, Ω∗ is the true PF value,
|Ω| is the quantity of elements in the Pareto front obtained from the algorithm’s solution,
and Di(Ω, Ω∗) denotes the minimum Euclidean distance that separates the solution in Ω∗

from solution i in Ω. A smaller GD value indicates better convergence of the algorithm.

2. IGD

IGD =
∑
|Ω∗ |
i=1 Di(Ω∗, Ω)

|Ω∗| , (26)

where |Ω∗| is the quantity of elements in the true PF, and Di(Ω∗, Ω) denotes the shortest
Euclidean distance that separates the solution in Ω from solution i in Ω∗. A smaller value
of the IGD indicates better convergence of the algorithm.

3. HV

HV = δ(∪|Ω|i=1Vi), (27)

where δ is the Lebesgue measure, and Vi denotes the hypercube formed between the
reference point and the solution i in PF. A larger HV value reflects better diversity of
the algorithm.

5.2. Test Case

As the DRCFJSP is a relatively new problem, there were no standard cases for testing
the algorithm’s performance. Therefore, we applied 24 test cases, DMK01–DMK15 and
DDP10–DDP18, based on FMK01–FMK15 and FDP10–FDP18, respectively [20]. The quan-
tity of jobs, operations, machines, and workers; the processing time BTi,j,p,k of the operation;
and the transit time TTi,(j−1),p′ ,k′ ,i,j,p,k of the two machines in the test case were the same as
in FMK01–FMK15 and FDP10–FDP18. The delivery period of jobs is related to the tightness
factor of the delivery period [27]. Equation (28) describes the delivery period for job i. The
weights for the jobs were generated using the weight averaging method. Table 2 shows the
scale used in the test case.

di = ri + c×
ni

∑
j=1

∗
BTi,j,p,k, (28)

where
∗

BTi,j,p,k indicates the mean processing time for operation j of job i, ri denotes the

release time of job i (ri ∈ U[0, ∑ni
j=1

∗
BTi,j,p,k/ni]), and c indicates the tightness factor of the

delivery period (c = 1.2).
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Table 2. Scale of the test case.

Test Case Job Operation Machine Worker

DMK01 10 55 6 4
DMK02 10 58 6 4
DMK03 15 150 8 6
DMK04 15 90 8 5
DMK05 15 160 2 3
DMK06 10 150 15 10
DMK07 20 100 5 4
DMK08 20 225 10 8
DMK09 20 240 10 8
DMK10 20 240 15 10
DMK11 30 179 5 4
DMK12 30 193 10 8
DMK13 30 231 10 8
DMK14 30 277 15 12
DMK15 15 293 8 6
DDP10 15 293 8 6
DDP11 15 293 8 6
DDP12 15 293 8 6
DDP13 20 387 10 8
DDP14 20 387 10 8
DDP15 20 387 10 8
DDP16 20 387 10 8
DDP17 20 387 10 8
DDP18 20 387 10 8

5.3. Setting of Parameters

The performance of IAVOA is significantly impacted by the parameter settings. The
key parameters affecting the performance of the IAVOA are r1(i.e., r1 ∈ [1, 1.3]), r2(i.e.,
r2 ∈ [0.5, 0.8]), P1(i.e., P1 ∈ [0.4, 0.7]), P2(i.e., P2 ∈ [0.4, 0.7]), and P3(i.e., P3 ∈ [0.3, 0.6]),
where r1 and r2 determine the phase of the IAVOA (i.e., exploration, co-operative, or
competition), and P1, P2, and P3 primarily determine the location update formula employed
by IAVOA at each phase. In this paper, the DMK08 was considered a test case, and the
Taguchi method [28] for setting up an orthogonal experiment was applied to determine the
best parameter combination strategy. Several reasonable levels for the parameters are given
in Table 3, and each group of parameters was run 10 times, where the average value for
each IGD group was regarded as the response value. Table 4 displays the average response
values and the rank of parameters. As shown in Table 4, the parameters with the highest
impact rank were r2 and P3. Figure 9 depicts the factor level trend of the parameters. The
optimal combination of parameters for IAVOA was found to be r1 = 1.3, r2 = 0.5, P1 = 0.7,
P2 = 0.7, and P3 = 0.3, through experimental analysis.

Table 3. Level of parameters.

Parameter
Level

1 2 3 4

r1 1 1.1 1.2 1.3
r2 0.5 0.6 0.7 0.8
P1 0.4 0.5 0.6 0.7
P2 0.4 0.5 0.6 0.7
P3 0.3 0.4 0.5 0.6
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Table 4. Response values and rank of parameters.

Level r1 r2 P1 P2 P3

1 0.2015 0.1872 0.1984 0.1956 0.1686
2 0.2033 0.1910 0.1915 0.2084 0.1990
3 0.1919 0.2111 0.2092 0.1905 0.2180
4 0.1807 0.1881 0.1783 0.1830 0.1807

Delta 0.0208 0.0239 0.0309 0.0254 0.0373
Rank 5 4 2 3 1
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5.4. Performance Analysis of IAVOA

In this subsection, the methods developed in [24,29] are employed as comparison
algorithms to assess the performance of IAVOA (i.e., SPEA2 and NSGA-II). Both algorithms
have been widely used and their excellent performance in solving engineering problems
has been proven. Therefore, they were considered highly reliable for comparison. The
differences of the two multi-objective optimization algorithms are as follows: SPEA2
evaluates individual fitness mainly by the k-nearest neighbor method, whereas NSGA-
II evaluates individual fitness by the non-dominated sorting technique and crowding
distance calculation approach. Table 5 shows the parameter setting values for the different
algorithms. Zitzler [24] has identified that SPEA2 produces superior solutions around
Pc = 0.8 and Pm = 0.1. Therefore, the probability of crossing and mutation for SPEA2 in
Table 5 was set as 0.8 and 0.15, respectively. To avoid errors arising from the parameters,
the NSGA-II probability of crossing and mutation was also set as 0.8 and 0.15. The range
of each parameter was shown in parentheses. For each case, we run the tested algorithm
10 times.

Table 5. Parameter setting values of the different algorithm.

Parameter IAVOA SPEA2 NSGA-II

Population size 100 (100~300) 100 (100~300) 100 (100~300)
Iterations 500 (400~700) 500 (400~700) 500 (400~700)

The probability of
crossing Pc

- 0.8 (0.75~0.85) 0.8 (0.75~0.85)

The probability of
mutation Pm

- 0.15 (0.5~0.2) 0.15 (0.5~0.15)

Memory bank NA 100 (100~500) - -
Archive - 100 (100~500) -

r1 1.3(1~1.3) - -
r2 0.5(0.5~0.8) - -
P1 0.7(0.4~0.7) - -
P2 0.7(0.4~0.7) - -
P3 0.3(0.3~0.6)
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The performance metrics of the three algorithms are displayed in Table 6 where the
data in bold indicate the optimal values of the performance metrics for each test case.
Multiple test cases are detailed in Table 6, where IAVOA’s GD and IGD values were better
than those of SPEA2 and NSGA-II, demonstrating that IAVOA has better convergence. The
data in Table 6 indicated that IAVOA also had better HV values than SPEA2 and NSGA-II,
except for the cases DMK01, DMK04, and DMK07, which demonstrates that the diversity
of IAVOA is generally better than the other two algorithms. Figure 10 shows the box plots
for the three evaluation metrics.

Table 6. Performance metric values of the three algorithms.

Test Case
GD IGD HV

IAVOA SPEA2 NSGA-II IAVOA SPEA2 NSGA-II IAVOA SPEA2 NSGA-II

DMK01 0.0168 0.0164 0.0353 0.029 0.0283 0.0611 1.0087 1.0221 0.9701
DMK02 0.0280 0.0564 0.0764 0.0483 0.0976 0.1322 1.0250 0.9612 0.9152
DMK03 0.0943 0.1287 0.1428 0.1334 0.1815 0.2019 0.9861 0.9183 0.8945
DMK04 0.0546 0.0529 0.0477 0.1443 0.1397 0.1258 0.9169 0.9264 0.9513
DMK05 0.0496 0.0703 0.0874 0.0859 0.1218 0.1513 1.0622 1.0187 0.9823
DMK06 0.0901 0.1401 0.1720 0.0901 0.1401 0.172 0.9600 0.8863 0.8365
DMK07 0.0527 0.0483 0.0609 0.1178 0.1079 0.1361 0.9464 0.9656 0.9336
DMK08 0.0911 0.1052 0.1376 0.1289 0.1487 0.1946 0.9689 0.9424 0.8796
DMK09 0.1014 0.1214 0.1235 0.1755 0.2103 0.2139 0.9363 0.8930 0.8901
DMK10 0.0935 0.1369 0.1342 0.1322 0.1936 0.1898 0.9989 0.9143 0.9191
DMK11 0.1065 0.1234 0.1300 0.1506 0.1745 0.1838 1.0003 0.9691 0.9626
DMK12 0.0695 0.1784 0.1120 0.1204 0.1784 0.1939 0.9661 0.8915 0.8663
DMK13 0.1333 0.1867 0.2366 0.1333 0.1867 0.2366 0.9922 0.9195 0.8551
DMK14 0.0600 0.0692 0.0948 0.1586 0.183 0.2507 1.0457 1.0118 0.9167
DMK15 0.0982 0.1558 0.1752 0.1387 0.2188 0.2477 1.0358 0.9197 0.8849
DDP10 0.1420 0.1654 0.2007 0.1942 0.2326 0.2839 0.9642 0.9218 0.8652
DDP11 0.0893 0.1386 0.1502 0.1785 0.2771 0.3003 1.0692 0.9334 0.8996
DDP12 0.0887 0.1256 0.1561 0.1984 0.2809 0.349 0.9352 0.8268 0.7436
DDP13 0.0721 0.1123 0.1265 0.2164 0.2751 0.3098 1.0290 0.8935 0.8470
DDP14 0.1423 0.2449 0.2750 0.2013 0.3464 0.3889 1.0549 0.8540 0.7999
DDP15 0.1182 0.1637 0.2169 0.2046 0.2836 0.3757 1.0887 0.9718 0.8503
DDP16 0.0749 0.0840 0.0977 0.1675 0.1879 0.2184 0.9396 0.9128 0.8722
DDP17 0.0540 0.1584 0.1759 0.0935 0.2744 0.3046 1.0970 0.8454 0.8072
DDP18 0.0930 0.1793 0.1879 0.1611 0.3106 0.3254 1.0563 0.8503 0.8334

Sensors 2023, 23, x FOR PEER REVIEW 18 of 21 
 

 

DDP18 0.0930 0.1793 0.1879 0.1611 0.3106 0.3254 1.0563 0.8503 0.8334 

Table 7 shows the optimization values for the test cases resolved using IAVOA, 

SPEA2, and NSGA-II. The data in bold indicate the optimal results for the corresponding 

cases solved by the algorithms, and the corresponding line chart is shown in Figure 11, 

which demonstrate that higher quality scheduling solutions were obtained when solving 

DRCFJSP with IAVOA, compared to the other two algorithms. Figure 11 illustrates the 

various advantages of IAVOA in solving the large-scale DRCFJSP. Thus, our experiment 

showed that IAVOA is better suited to the practical FJSP solution than SPEA2 and NSGA-

II. 

Table 7. Objective function values for the test cases solved with the three algorithms. 

Test Case 
Optimal Results of Makespan/min Optimal Results of Total Delay/min 

IAVOA SPEA2 NSGA-Ⅱ IAVOA SPEA2 NSGA-Ⅱ 

DMK01 75 76 83 11.7687 7.4946 7.9494 

DMK02 75 82 91 10.0309 12.1499 17.1734 

DMK03 349 379 400 97.4101 121.1134 126.3537 

DMK04 150 162 155 61.9927 49.9123 42.0513 

DMK05 338 379 390 182.5554 170.4126 174.6927 

DMK06 183 205 218 6.4038 23.2212 40.4034 

DMK07 280 293 306 118.9131 82.1253 93.6101 

DMK08 687 726 769 312.6511 321.0397 386.9322 

DMK09 643 690 699 291.3925 301.9603 297.0488 

DMK10 485 556 550 158.5083 212.4392 211.066 

DMK11 1211 1271 1306 735.8705 744.534 725.7022 

DMK12 736 828 842 313.419 351.2002 376.6815 

DMK13 858 954 1050 407.6391 465.5957 510.1178 

DMK14 947 1001 1091 451.6775 466.4827 545.0523 

DMK15 836 938 985 323.9902 387.5786 432.1122 

DDP10 4759 4974 5350 2236.6866 2308.146 2324.749 

DDP11 4346 4860 4973 1962.1604 2236.056 2406.352 

DDP12 4523 5059 5453 2152.6979 2505.917 2805.742 

DDP13 4800 5362 5594 2280.077 2748.891 2956.206 

DDP14 4220 4986 5238 1735.3055 2434.829 2559.569 

DDP15 4610 4944 5456 2064.664 2489.012 2860.294 

DDP16 4781 4959 5189 2315.1469 2422.619 2603.635 

DDP17 4271 5754 6064 1728.576 2991.734 3168.29 

DDP18 4402 5453 5657 1978.0443 2839.279 2834.144 

 

Figure 10. Box plot for the three evaluation metrics: (a) GD; (b) IGD; (c) HV. Figure 10. Box plot for the three evaluation metrics: (a) GD; (b) IGD; (c) HV.

Table 7 shows the optimization values for the test cases resolved using IAVOA, SPEA2,
and NSGA-II. The data in bold indicate the optimal results for the corresponding cases
solved by the algorithms, and the corresponding line chart is shown in Figure 11, which
demonstrate that higher quality scheduling solutions were obtained when solving DRCFJSP
with IAVOA, compared to the other two algorithms. Figure 11 illustrates the various
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advantages of IAVOA in solving the large-scale DRCFJSP. Thus, our experiment showed
that IAVOA is better suited to the practical FJSP solution than SPEA2 and NSGA-II.

Table 7. Objective function values for the test cases solved with the three algorithms.

Test Case
Optimal Results of Makespan/min Optimal Results of Total Delay/min

IAVOA SPEA2 NSGA-II IAVOA SPEA2 NSGA-II

DMK01 75 76 83 11.7687 7.4946 7.9494
DMK02 75 82 91 10.0309 12.1499 17.1734
DMK03 349 379 400 97.4101 121.1134 126.3537
DMK04 150 162 155 61.9927 49.9123 42.0513
DMK05 338 379 390 182.5554 170.4126 174.6927
DMK06 183 205 218 6.4038 23.2212 40.4034
DMK07 280 293 306 118.9131 82.1253 93.6101
DMK08 687 726 769 312.6511 321.0397 386.9322
DMK09 643 690 699 291.3925 301.9603 297.0488
DMK10 485 556 550 158.5083 212.4392 211.066
DMK11 1211 1271 1306 735.8705 744.534 725.7022
DMK12 736 828 842 313.419 351.2002 376.6815
DMK13 858 954 1050 407.6391 465.5957 510.1178
DMK14 947 1001 1091 451.6775 466.4827 545.0523
DMK15 836 938 985 323.9902 387.5786 432.1122
DDP10 4759 4974 5350 2236.6866 2308.146 2324.749
DDP11 4346 4860 4973 1962.1604 2236.056 2406.352
DDP12 4523 5059 5453 2152.6979 2505.917 2805.742
DDP13 4800 5362 5594 2280.077 2748.891 2956.206
DDP14 4220 4986 5238 1735.3055 2434.829 2559.569
DDP15 4610 4944 5456 2064.664 2489.012 2860.294
DDP16 4781 4959 5189 2315.1469 2422.619 2603.635
DDP17 4271 5754 6064 1728.576 2991.734 3168.29
DDP18 4402 5453 5657 1978.0443 2839.279 2834.144
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To clearly determine the performance of IAVOA, the medium-scale DMK12 was se-
lected for performance analysis. Figure 12 presents the convergence graph for DMK12,
which shows that IAVOA provides a better solution when the iterations increase. The supe-
rior results obtained by IAVOA illustrate the feasibility and effectiveness of the improved
strategy. Figure 13 shows the Gantt chart of DMK12 for IAVOA.
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6. Conclusions

In this paper, we considered the influence of machine and worker constraints on the
FJSP, and established the DRCFJSP with makespan and total delay as objective functions.
The AVOA, based on the position update formula and position vector, was proposed
to solve DRCFJSP. To sustain population diversity and optimize solution quality, the
population was initialized in three ways, following the shortest processing time principle,
the machine–worker integration principle, and the randomization principle. The memory
bank of AVOA was improved to enhance the solution space exploration and exploitation
capabilities of the algorithm. A neighborhood search operation was designed to avoid the
algorithm falling into local optima, and the Taguchi method was employed to determine
the optimal parameters of the algorithm. The test cases were DMK01-DMK10 and DDP10-
DDP18, based on FMK01-FMK10 and FDP10-FDP18, respectively. The experimental results
demonstrated that the IAVOA can outperform the state-of-the-art SPEA2 and NSGA-II in
solving large-scale flexible job shop scheduling problems. In terms of performance metrics,
the experiments verified that IAVOA has good convergence and diversity.

For future work, there exist many dynamic problems attached to FJSP, such as job
insertion, machine breakdowns, and other emergencies, which deserve further considera-
tion. In this manuscript, the limitation of overtime for workers was not considered. This
problem can be solved in future work by increasing the number of workers. Distributed
scheduling and reverse scheduling can also be considered as future research directions.
In addition, the algorithm needs further improvement, in order to obtain a scheduling
solution with better performance.
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