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Abstract: Object detection is an essential component of autonomous mobile robotic systems, enabling
robots to understand and interact with the environment. Object detection and recognition have
made significant progress using convolutional neural networks (CNNs). Widely used in autonomous
mobile robot applications, CNNs can quickly identify complicated image patterns, such as objects
in a logistic environment. Integration of environment perception algorithms and motion control
algorithms is a topic subjected to significant research. On the one hand, this paper presents an object
detector to better understand the robot environment and the newly acquired dataset. The model
was optimized to run on the mobile platform already on the robot. On the other hand, the paper
introduces a model-based predictive controller to guide an omnidirectional robot to a particular
position in a logistic environment based on an object map obtained from a custom-trained CNN
detector and LIDAR data. Object detection contributes to a safe, optimal, and efficient path for the
omnidirectional mobile robot. In a practical scenario, we deploy a custom-trained and optimized
CNN model to detect specific objects in the warehouse environment. Then we evaluate, through
simulation, a predictive control approach based on the detected objects using CNNs. Results are
obtained in object detection using a custom-trained CNN with an in-house acquired data set on a
mobile platform and in the optimal control for the omnidirectional mobile robot.

Keywords: omnidirectional mobile robots; object detection; convolutional neural networks; depth
sensing; computer vision; discretized-time model; predictive control algorithm; navigation

1. Introduction

The mobile robots sector has seen a global rise over the past decade. Industrial
mobile robots are becoming more advanced to achieve higher levels of autonomy and
efficiency in various industries [1]. These robots are equipped with sophisticated sensors,
such as Light Detection and Ranging (LiDAR), stereo cameras, Inertial Measurement Unit
(IMU), and a global positioning system or indoor positioning system, to gather information
about the work environment and make well-informed decisions [2]. This is made possible
by using complex algorithms for path planning, obstacle avoidance, and task execution.
Furthermore, autonomous mobile robots, grouped in fleets, are often integrated with cloud-
based technologies for remote monitoring and control, allowing for greater flexibility and
scalability in their deployment.

Path planning is a crucial aspect of mobile robotics navigation because of the need to
perform a task by moving from one point to another while avoiding obstacles and satisfying
more constraints, among which are time, the level of autonomy given by the energy
available, and significantly, maintaining safety margins regarding human operators and
transported cargo. Mobile robot navigation is still one of the most researched topics of today,
addressing two main categories: classical and heuristic navigation. In the variety of classical
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approaches, the most well-known algorithms, characterized by limited intelligence in [3],
are cell decomposition, roadmap approach, and artificial potential field (APF). Heuristic
approaches are more intelligent, including but not limited to the main components of
computational intelligence (i.e., fuzzy logic, neural networks, and genetic algorithms).
Researchers investigate solutions based on the particle swarm optimization algorithm, the
FireFly algorithm, and the artificial BEE colony algorithm [4]. Combining classical and
heuristic approaches, known as hybrid algorithms, offers better performances, especially
for navigation in complex, dynamic environments [3].

In dynamic operational environments, the increased flexibility of autonomous mobile
robots compared to automated guided vehicles is an added advantage due to decreased
infrastructure setup and maintenance costs. Supplementary, the omnidirectional mobile
robots (OMR), compared to other traction and steering systems (e.g., differential drive
and Ackerman), provide three independent degrees of freedom (longitudinal and lateral
translation, together with in-place rotation), motions that can be combined within certain
speed and acceleration limits without producing any excessive wear on the ground contact
surfaces. On the other hand, to obtain precise motion for the OMR, certain constraints
apply to their suspension system and the smoothness of the ground surface.

Considering the computational requirements criteria, the planning technology of a
mobile robot is divided into offline planning and online planning [5]. In offline planning,
the path for the robot is pre-computed and stored in the robot’s memory. The robot then
follows the pre-computed path to reach its destination. This approach is suitable for
deterministic environments with a priori information. When the mobile robot navigates
and performs tasks in a dynamic and uncertain environment, it is necessary to use the
online planning approach. The robot computes its path in real time based on its current
location and the information obtained from its perception module.

Independent of the type of path planning algorithm, the OMR structure is beneficial
because it better resembles the material point model used for simplifying the modeling of
robots in motion planning simulations. In [6–9], a four-wheel’s dynamic and kinematic
modeling, OMR was studied using the Lagrange framework. Sliding mode control allows
robust control for OMRs employing mecanum-wheels and rejects disturbances caused by
unmodeled dynamics [10–12]. The nonholonomic model of the wheel was used to develop
the dynamic equation of an OMR with four mecanum wheels [13]. The kinematic model of
a three-wheeled mobile robot was used to create a predictive control model and filtered
Smith predictor for steering the robot along predetermined paths [14]. A reduced dynamic
model of the robot is the basis for developing a nonlinear model-predictive controller for tra-
jectory tracking of a mecanum wheeled OMR [15]. A constrained quadratic programming
problem is formulated towards optimizing the trajectory of a four-wheel omnidirectional
robot [16]. Dynamic obstacles are considered in the work of the authors [17], whereas the
numerical implementation presented in [18] is based on a three-wheeled omnidirectional
robot. Distributed predictive control on a cooperative paradigm is discussed for a coalition
of robots [19]. A nonlinear predictive control strategy with a self-rotating prediction hori-
zon for OMR in uncertain environments is discussed. The appropriate prediction horizon
was selected by incorporating the effects of moving velocity and road curvature on the
system [20]. Adaptive model-predictive control, with friction compensation and incre-
mental input constraints, is presented for an omnidirectional mobile robot [21]. Wrench
equivalent optimality is used in a model-predictive control formulation to control a cable-
driven robot [22]. Authors discuss an optimal controller to control the robot’s motion on a
minimum energy trajectory [23]. Recently, potential field methods have been used mainly
due to their naturally inspired logic. These methods are also widely used in omnidirectional
mobile robots due to their simplicity and performance in obstacle avoidance [24,25]. Timed
elastic-band approaches utilize a predictive control strategy to steer the robot in a dynamic
environment to tackle real-time trajectory planning tasks [26]. Because the optimization
is confined to local minima, the original timed elastic-band planner may cause a route
through obstacles. Researchers proposed an improved strategy for producing alternate
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sub-optimal trajectory clusters based on unique topologies [27]. To overcome the mismatch
problem between the optimization graph and grid-based map, the authors suggested an
egocentric map representation for a timed elastic band in an unknown environment [28].
These path-planning methods are viable and pragmatic, and acquiring a desired path in
various scenarios is generally possible. Yet, these approaches could have multiple draw-
backs, such as a local minimum, a low convergence rate, a lack of robustness, substantial
computation, and so on. Additionally, in logistic environments where OMR robots are
equipped with conveyor belts to transport cargo, it is essential to guarantee low transla-
tional and rotational accelerations for the safety of the transported cargo. Therefore, we
propose a nonlinear predictive control strategy on a reduced model where we can include
maximum acceleration and velocities of the wheels within inequality constraints derived
from the obstacle positions obtained from environment perception sensors (i.e., LiDAR and
video camera). To tackle the problem of local minima, we propose a variable cost function
based on the proximity of obstacles ahead to balance the global objectives.

Object Detection for Mobile Platforms

Deep neural networks specifically created to analyze organized arrays of data (i.e.,
images) are known as convolutional neural networks, often called CNNs or ConvNets.
CNNs offered solutions to computer vision challenges that are difficult to handle using con-
ventional methods. They quickly advance to the state-of-the-art in areas such as semantic
segmentation, object detection, and image classification. They are widely used in computer
vision because they can quickly identify image patterns (such as lines, gradients, or more
complex objects such as eyes and faces). CNNs are convolutional-layered feed-forward
neural networks. CNNs attempt to mimic the structure of the human visual cortex with
these specific layers.

Localization of object instances in images is implied by object detection. Object
recognition generally assigns a class to the identified objects from a previously learned
class list. Although object detection operates at the bounding-box level, it has no notion
of different classes. The phrase “object detection” now encompasses both activities, even
though they were initially two distinct jobs. So, before continuing, let’s be clear that object
detection includes both object localization and object recognition.

Object detection and recognition is an essential field of study in the context of au-
tonomous systems. The models can be broadly divided into one-stage and two-stage
detectors. One-stage detectors are designed to detect objects in a single step, making them
faster and more suitable for real-time applications, such as path planning based on object
detection for a moving system. On the other hand, two-stage detectors use a two-step pro-
cess, first proposing regions of interest and then looking for objects within those areas. This
approach excludes irrelevant parts of the image, and the process is highly parallelizable.
However, it comes at the cost of being slower than one-stage detectors.

To meet the constraints of the Nvidia Jetson mobile platforms considered for the OMR,
lightweight neural networks were investigated for object detection and recognition. Among
the models evaluated, YoloV5 [29], SSD-Mobilenet-v1 [30], SSD-Mobilenet-v2-lite [31] and
SSD-VGG16 [32] were trained and tested. Earlier, the YoloV4 [33] model had already
made significant improvements over the previous iteration by introducing a new backbone
architecture and modifying the neck of the model, resulting in an improvement of mean
average precision (mAP) by 10% and an increase in FPS by 12%. Additionally, the training
process has been optimized for single GPU architectures, like the Nvidia Jetson family,
commonly used in embedded and mobile systems.

A particular implementation is YoloV5 [29], which differs from other Yolo implemen-
tations using the PyTorch framework [34] rather than the original Yolo Darknet repository.
This implementation offers a wide range of architectural complexity, with ten models
available, starting from the YoloV5n (nano), which uses only 1.9M parameters, up to the
YoloV5x6 (extra large), which uses 70 times as many parameters (140M). The lightest models
are recommended for Nvidia Jetson platforms.
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Recently, an increasing interest has been in developing mobile device object detec-
tion and recognition algorithms. A popular approach is using the Single Shot Detector
(SSD) [35] neural network, a one-step algorithm. To further improve the efficiency of the
SSD algorithm on mobile devices, researchers have proposed various modifications to
the SSD architecture, such as combining it with other neural network architectures. One
such modification is the use of the SSD-MobileNet and SSD-Inception architectures, which
combine the SSD300 [35] neural network with various backbone architectures, such as Mo-
bileNet [30] or Inception [36]. These architectures, such as the Nvidia Jetson development
platforms, are recognized for their real-time object detection capabilities on mobile devices.

These methods for object detection perform very well in general detection tasks.
Yet, there must be more datasets and pretrained models for objects specific to the OMR
environment, such as fixed or mobile conveyors, charging stations, other OMRs, etc. We
have acquired our dataset and deployed domain-specific models for object detection in
the OMR environment. We summarize the main contributions of this paper to the field of
object detection and OMR control in logistic environments below:

• Acquisition of a data set for object detection in the OMR environment;
• Investigation of domain-specific models for object detection and providing a model to

be used in an OMR environment;
• Deployed an image acquisition and object detection module fit for the real-time task

of OMR control;
• Proposed a joint perception&control strategy based on a non-linear model-predictive

control;
• Avoid local minima by using switched cost function weights to navigate around

obstacles while still achieving the overall objective of decreasing travel distance;
• Guarantee maximum wheel speed and acceleration through the constrained non-linear

MPC in order to ensure safe transportation of cargo;

The rest of the paper is organized as follows: Section 2 discusses object detection
in the context of OMR’s logistic environment. First, some equipment experiments were
conducted on the image acquisition sensor and the processing unit. We also describe the
object detection dataset creation and object mapping in 2D and 3D perspectives. Section 3 is
dedicated to the modeling and control of the OMR. We introduce the mathematical model
used for developing the control strategy, followed by formulating the optimization problem
considering the environmental objects. In the last two sections, we discuss the object
detection results and the simulation of the control algorithm, conclude, and emphasize
future work goals.

2. Object Detection for Omnidirectional Mobile Robots
2.1. Image Acquisition and Processing Unit

For the image acquisition unit, we analyzed four depth cameras. Depth information
is needed to accurately place the detected objects on the 2D and 3D maps of the envi-
ronment. The predictive control task relies on object maps. The most important features
considered for the experiments were the correctness of the depth information and the
integration of the camera with the Nvidia Jetson platforms, which are already in use on the
Omnidirectional Robot.

All Zed cameras perform well in indoor environments, but, as can be seen in Figure 1,
the far-depth information provided by Zed 2i is significantly better. Depth information is
completely missing after 10 m for Intel RealSense. The best depth information is given by
Zed 2i; it also has the largest FoV. Based on the image acquisition experiments performed
in the OMR environment, Zed 2i was chosen to be integrated into the robot.
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Figure 1. Depth information for ZED 1 (top left), ZED 2i (top right), ZED mini (bottom left), and
Intel RealSense D435i (bottom right).

Nvidia Jetson system-on-chip platforms are already used on the OMR. Some experi-
ments evaluated the computational capabilities, detection precision, and the dependency
between inference time and resolution. Localization is very important in our defined use
cases for the OMR environment. MS COCO dataset [37] was used for object detection
evaluation across different lightweight neural networks such as Mobilenet [30,31] and
Yolo [29,33] which are suitable for mobile platforms.

The neural networks used for the first experiment are optimized using TensorRT to
run on Jetson mobile platforms. In Table 1, we can see the run-time measurements for the
selected models from the SSD family. The same solution takes considerably more time to
run on the Jetson Nano.

Table 1. Object detection evaluation of the SSD model family.

Architecture FPS on Jetson FPS on Jetson
Nano Xavier AGX

SSD–Mobilenet–v1 10 83

SSD–Mobilenet–v2 7 61

SSD–Inception–v2 6 42

A second experiment aims to see how the processing time evolves depending on
the image resolution. Table 2 presents the results in terms of FPS on a test subset from
Cityscapes data set [38,39]. The results emphasize that the inference time depends on the
size of the images provided at input. Thus, the higher the image resolution, the slower the
model. Jetson Xavier AGX is 4 to 6 times faster than Jetson Nano, depending on the model
and the input resolution.
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Table 2. Inference Time vs. Image Resolution.

Architecture Resolution FPS on Jetson FPS on Jetson
Nano Xavier AGX

SSD–Mobilenet–v1 2048 × 1024 15 fps 91 fps
1024 × 512 23 fps 102 fps

SSD–Mobilenet–v2 2048 × 1024 12 fps 74 fps
1024 × 512 18 fps 76 fps

SSD–Inception–v2 2048 × 1024 11 fps 63 fps
1024 × 512 15 fps 63 fps

Following the analysis of hardware equipment and the experimental measurements,
the Jetson architecture chosen to be integrated into the proposed solution for object detection
in the OMR environment that meets the minimum requirements is the Nvidia Jetson
Xavier AGX.

2.2. The Omnidirectional Robot Object Detection Dataset (OROD)

Enabling the efficient operation of autonomous robots is crucial for accurately detect-
ing and recognizing objects specific to the OMR environment. Using the ZED 2i camera,
we have acquired a new dataset for the object detection task that contains objects specific
to the omnidirectional robot environment. The “Omnidirectional Robot Object Detection
(OROD)” dataset includes charging stations, construction cones, mobile conveyors, and
different types of fixed conveyors. The images in the dataset were captured using the
camera mounted on an omnidirectional robot and were annotated with bounding boxes of
objects. The dataset is intended to evaluate the performance of object detection algorithms
in an omnidirectional robot environment.

The OROD dataset contains 1343 images, each labeled with the objects of interest in the
scene. The images were collected in different environments, such as industrial warehouses
and logistics centers, to reflect the various scenarios in which an omnidirectional robot
operates. Additionally, the data set includes images with varying lighting conditions,
occlusions, and different orientations of the objects to represent real-world challenges in
object detection. The training subset was augmented for better results by applying flip,
rotation, zoom, hue, saturation, blur, noise, etc. The original and augmented data sets were
split according to the figures from Table 3. Examples of the augmented images can be
visualized in Figure 2. The dataset augmentation process did not change the initial class
distribution; it scaled by 3.

Table 3. OROD train-val-test split.

Annotated Frames
before/after Augmentation

Percentage before/after
Augmentation

train-initial 940/2816 70/88

validation 269/269 20/8

test 134/134 10/4

The OROD dataset is the first to focus specifically on object detection in the context of
an omnidirectional robot environment. It is intended to serve as a reference for evaluating
the performance of object detection algorithms in this context and to promote research in
this field.

The augmented data set and the raw dataset, both with YOLO annotations, are publicly
available at https://universe.roboflow.com/gheorghe-asachi-technical-university-of-iasi/
rmoa, accessed on 20 May 2023.

https://universe.roboflow.com/gheorghe-asachi-technical-university-of-iasi/rmoa
https://universe.roboflow.com/gheorghe-asachi-technical-university-of-iasi/rmoa
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Figure 2. Acquired frame (column 1) and augmentation results (columns 2 and 3).

2.3. Detected Objects in 3D and Mapping

All objects detected by the custom-trained model, along with the distances to them,
are visible on the left side of Figure 3. Their 3D position is also exemplified on the right
side. The distance between the scene object and the camera is measured from the back of
the left eye of the camera and is given in meters.

In the context of an OMR moving through its environment, an important feature is to
continuously be aware of its position and rotation relative to the starting point, the charging
station, in our case.

Figure 3. Object detection and distance estimation in meters (top) and 3D point cloud mapping (bottom).

Examples of the OMR position and orientation are listed on the bottom of the frames
in Figure 3. As a benefit of the IMU integration with Zed 2i, we can obtain the camera
position, rotation, and quaternion orientation. In addition to the ZED 2i camera, the OMR
is equipped with two LiDAR sensors for a 360-degree map. At this stage, the LiDAR data
are empirically merged with the detected objects to obtain a bird’s-eye view map of the
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entire environment. In Figure 4, we can see the obtained map of the environment with the
detected objects shown in Figure 3.

Figure 4. Bird’s eye view mapping of detected objects.

3. Model-Predictive Motion Control of OMR

We derive the motion control strategy of the OMR based on a non-linear optimization
algorithm as the core of the motion controller. We define in Section 3.1 the mathematical model
used in the predictions step of the controller. The continuous time equations are discretized
by the Euler method to realize the numerical implementation. Then, we define the physical
constraints of the robot’s actuators (i.e., omnidirectional wheel speed and acceleration) and
the geometrical constraints of the objects (i.e., circumscribed circles of objects). We formulate
the optimization problem considering the global objective of navigating on the shortest path,
avoiding obstacles, and limiting the movement of the OMR within actuator limits.

3.1. Mathematical Model of 3D of Omnidirectional Robot

In this section, we define the discrete mathematical model used in the model-predictive
controller to generate short-term paths and control the robot’s movement along the pre-
dicted trajectory. Equation (1) depicts the inverse kinematics matrix representation:

ω1

ω2

ω3

ω4

 = J


vx

vy

Ω

 (1)

where vx and vy are the longitudinal and lateral velocities of the OMR, respectively. Ω defines
the angular speed along the normal axis, ωj, j = 1..4 are the individual wheels’ angular
velocities, while J is the inverse kinematic Jacobian matrix of the OMR defined in (2) [1]:

J =
1
R


1 1 −(lx + ly)
1 −1 −(lx + ly)
1 1 (lx + ly)
1 −1 (lx + ly)

 (2)

The forward kinematics of the 3DOF system are obtained from the lateral, longitudinal,
and rotation velocities: dx

dt
dy
dt
dθ
dt

 =
R
4

 1 1 1 1
1 −1 1 −1

−1
lx+ly

−1
lx+ly

1
lx+ly

1
lx+ly




ω1
ω2
ω3
ω4

 (3)
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where x, y, θ are plane coordinates and robot orientation, respectively. Moreover, R is the
wheel radius, lx defines the distance from the GC to the front axle, while ly defines the half
distance between the left and right wheels.

Pragmatically, it can be considered that deviations from the nominal kinematic model
act on the system input. Therefore, we can design an input disturbance observer to
compensate for unmodeled dynamics and disturbances. Let us define the disturbance
acting on the system input as F = [ f1, f2, f3, f4]

t, where the additive terms F act on the
system inputs. The observer is designed considering the inverse kinematics of the process.
An additional pole is added for the realizability of the observer. We define Q as a passive
(i.e., unitary gain) first-order low-pass filter diagonal matrix. We define the estimated
input disturbance as: F̂ = [ f̂1, f̂2, f̂3, f̂4]

t = −Q[ω1, ω2, ω3, ω4]
t + QJ[vx, vy, θ̇]t Therefore,

the plant model becomes: dx
dt
dy
dt
dθ
dt

 =
R
4

 1 1 1 1
1 −1 1 −1

−1
lx+ly

−1
lx+ly

1
lx+ly

1
lx+ly




ω1
ω2
ω3
ω4

+


f1
f2
f3
f4

 (4)

The discretized-time model of (3) is obtained by backward rectangle area approxi-
mation (i.e., Euler method). Therefore, the system Equation (3) can be re-written in the
state space framework Ẋ = AX + (J+)ω, where the state transition matrix is null, the state
vector is X = [x y θ]t while the input matrix J+ is defined as J+ = (JT J)−1 JT . Thus, we
obtain the discretized-time model of the OMR in global coordinates:

Xk+1 = I3Xk + (J+)Tsωk (5)

where I3 ∈ R3×3 unity matrix, Xk+1 = [xk yk θk]
t is the state vector at iteration k + 1, Ts is

the sampling time and ωk = [ω1k ω2k ω3k ω4k ]
t is the input vector.

xk+1
yk+1
θk+1

 =

xk
yk
θk

+ Ts
R
4

 1 1 1 1
1 −1 1 −1
−1

lx+ly
−1

lx+ly
1

lx+ly
1

lx+ly




ω1k
ω2k
ω3k
ω4k

 (6)

To improve controller behavior w.r.t to deviations of the model and input perturbation, the
extended discretized model can be used for states and output predictions within the MPC
solver:

xk+1
yk+1
θk+1

 =

xk
yk
θk

+ Ts
R
4

 1 1 1 1
1 −1 1 −1
−1

lx+ly
−1

lx+ly
1

lx+ly
1

lx+ly




ω1k
ω2k
ω3k
ω4k

+ Ts


f1k
f2k
f3k
f4k

 (7)

Table 4 contains the parameters of the mobile robot and the sampling time considered
for the time-discretization of the process.

Table 4. OMR parameters.

Parameter Value

Wheel radius (R) 0.076 [m]
Distance from GC to front axle (lx) 0.294 [m]

Half distance between left and right wheels (ly) 0.2 [m]
Sampling time (Ts) 0.02 [s]

3.2. OMR Motion Optimization Problem

In the optimization problem, we aim to find the solution at time kTs, comprised of
actuator commands ω

(i,k)
j f or j = 1..4, i∈ {1 . . . H} satisfying actuator physical constraints,
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the geometric constraints, and to fulfill the global objective of traveling the shortest distance
and avoiding the detected obstacles. Therefore, we formulate the optimization problem as
follows. Find,

min
x(·|k), y(·|k), θ(·|k), dp(·|k)

Jk(X, Xr, α)

s.t.−ωUB ≤ ωj,j=1..4 ≤ ωUB

−aUB ≤ ω̇j,j=1..4 ≤ aUB

Co < 0

(8)

where Jk is the cost function defined in (9), x(·|k), y(·|k), θ(·|k) are the solutions of the opti-
mization problem; ωUB and aUB are the upper bounds of the angular velocity and acceleration
of the wheels, respectively. Co is the geometric constraints vector and is defined in (22).

The cost function Jk is defined by:

Jk(X, Xr, α) =
1
2

H−1

∑
i=0

[
wx(α)(x(i|k)r − x(i|k))2 + wy(α)(y

(i|k)
r − y(i|k))2 + wθ(θ

(i|k)
r − θ(i|k))2 + (9)

+wTx(x(H−1|k)
r − x(i|k))2 + wTy(y

(H−1|k)
r − y(i|k))2]+ wp(α)

H−1

∑
i=0

(dp(X, X0, X f )
(i|k)) (10)

where Xr ∈ RH×3 is the reference trajectory matrix of the OMR over the prediction horizon H:

Xr =


x(0,k)

r y(0,k)
r θ

(0,k)
r

x(1,k)
r y(1,k)

r θ
(1,k)
r

... ... ...
x(H−1,k)

r y(H−1,k)
r θ

(H−1,k)
r

 (11)

dp(X0, X f ) is the length of the projection of the OMR geometric center over the ideal straight
path connecting the starting (i.e., initial) node with the final node and is defined in (12):

dp(X, X0, X f ) =

√
|L2

1 −
[
(L2

1 + L2
3 − L2

2)/(2L3)
]2| (12)

with

L1 =
√
(x− x0)2 + (y− y0)2 (13)

L2 =

√
(x− x(H−1)

r )2 + (y− y(H−1)
r )2 (14)

L3 =

√
(x0 − x(H−1)

r )2 + (y0 − y(H−1)
r )2 (15)

where L1, L2, and L3 define the L2-norms between the OMR position, initial, and resting
positions, while X0 = [x0, y0, θ0]

t and X f = [x(H−1)
r , y(H−1)

r , θ
(H−1)
r ]t = [x f , y f , θ f ]

t are the
initial and final resting positions. In the cost function, we aim to penalize by weights wx(α)

and wy(α) the deviation from the reference trajectory x(i)r , y(i)r , i = 0..H − 1 defined by (25);
by weight wθ it is penalized the deviation from the desired orientation of the OMR. The
set-point orientation θ

(i)
r , i = 0..H − 1 is such that the OMR remains with the frontal part

facing the destination location. By wTx, we penalize the terminal cost of xr and yr to reduce
the steady-state error. Therefore, wTx > wx and wTy > wy; wp(α) is a weight with two
discrete states, and its value is a function of α which depends on the proximity (tolerance)
of the closest object and is defined by (23).

The actuator constraints of the OMR are defined as:

−ωUB ≤ ωj,j=1..4 ≤ ωUB (16)

−aUB ≤ ω̇j,j=1..4 ≤ aUB (17)
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We define the physical-space constraints from the coordinates of the objects and their
known sizes as:

−(x− xo)
2 − (y− yo)

2 + r2
o ≤ 0 (18)

where xo = [xo1 . . . xono ]
t and yo = [yo1 . . . yono ]

t are the coordinates ro = [ro1 . . . rono ]
t is the

radius of the circle circumscribed about the polygon defining the object. Index no refers to
Number-of-Objects, while, index o signifies the word Objects, also, index a refers to word
Actuators. The global coordinates of the obstacles are obtained from the local coordinates of
the OMR according to the equation below:[

xo
yo

]
=

[
cosφ sinφ
−sinφ cosφ

][[
xl
yl

]
−
[

x
y

]]
(19)

where φ is the angle from the global system’s abscissa to the local system’s abscissa. xl and
yl are the local coordinates of the detected objects, and x and y are the global coordinates of
the local system’s origin. From inequality constraints (16) and (18), we obtain a concatenated
vector of inequality constraints denoted by Ck ∈ R(na ·nw ·H+no ·H)×1 ≤ 0:

Ck = [Ct
a, Ct

o]
t ∈ R(na ·nw ·H+no ·H)×1 (20)

where Ca ∈ Rna ·nw ·H×1, Co ∈ Rno H×1 are defined below:

C(k)
a =



|ω(0|k)
1 | −ωUB

|ω(1|k)
1 | −ωUB

...
|ω(H−1|k)

1 | −ωUB

|ω(0|k)
2 | −ωUB

...
|ω(H−1|k)

4 | −ωUB

|ω̇(0|k)
1 | − aUB

...
|ω̇(H−1|k)

4 | − aUB



≤ 0 (21)

C(k)
o =



−(x(0|k) − xo1)
2 − (y(0|k) − yo1)

2 + r2
o1

−(x(1|k) − xo1)
2 − (y(1|k) − yo1)

2 + r2
o1
...

−(x(H−1|k) − xo1)
2 − (y(H−1|k) − yo1)

2 + r2
o1

−(x(0|k) − xo2)
2 − (y(0|k) − yo2)

2 + r2
o2
...

−(x(H−1|k) − xono )
2 − (y(H−1|k) − yono )

2 + r2
ono


≤ 0 (22)

In the previous equations, na = 2 defines the number of constraints regarding actuators,
and it is two because we included two types of actuator restrictions: angular speed and
angular acceleration.

We approximate numerically ω̇j by ω̇j ≈
(ω

(i)
j −ω

(i−1)
j )

Ts
where Ts is the sampling time.
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In the cost function (9), we propose that wp(α), wx(α) and wy(α) are switched between
their two states based on the value of α = max1≤j≤no ·H Coj which, practically, determines
the minimum proximity to an obstacle from the object list. Therefore,

wp(α) =

{
wp1 , if α > tol
wp2 , if α ≤ tol

wx(α) = wy(α) =

{
wxy1

, if α > tol
wxy2

, if α ≤ tol
(23)

In the previous equation, tol defines the avoidance tolerance.
The set-point orientation over the control horizon H is defined as:

θ
(i)
r = atan2(y

(H−1)
r − y, x(H−1)

r − x)
360
2π

, for i = 0..H − 1 (24)

and the reference trajectory is given by a first-order static function where the slope λ and
the bias ρ are given by:

λ =

{ y f−y
x f−x , if x f 6= x

0, otherwise

ρ =

{
y f −

y f−y
x f−x x f , if x f 6= x

0, otherwise

x(i)r =
x f − x

H
i + x , i = 0..H − 2

x(H−1)
r = x f

y(i)r = λx(i)f + ρ , i = 0..H − 2

y(H−1)
r = y f (25)

3.3. Control Algorithm—One Step Optimization

The control algorithm core is the sequential quadratic optimizer with a constraint
tolerance of 1.0× 10−3 and an optimality tolerance of 1.0× 10−4 deduced heuristically
through multiple experiments. Under this parametrization, the behavior is fairly robust
and predictable with respect to the initial robot position, final resting position, varying
size obstacles, wheel speeds, and acceleration. The object lists consist of a matrix of object
positions obtained from the perception module. In order to determine the radius of the
obstacles, we use the Moor–Neighbour tracing algorithm with Jacob’s stopping criteria,
which provides the contour of the objects from LIDAR data. Beyond providing LIDAR data,
CNN can provide estimates of object radius with higher precision based on the object class.
In order to reduce the computation time, the optimization problem is reformulated at each
sampling time, and we consider in the optimization only those objects within a maximum
radius (dmax) relative to the OMR’s geometric center. The avoidance radius for each object is
determined from the actual object radius with an additional tolerance according to OMR’s
dimensions. The reference orientation θr, and reference trajectory (xr, yr) are determined
at each sample time since the OMR position evolves from one pose to another, constantly
changing the heading to the final resting position. The first computed command over the
predicted horizon is applied to the process inputs. We summarize the control algorithm
steps for one sampling time Ts in Algorithm 1.
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Algorithm 1 Main control algorithm

Inputs:
Desired setpoint X f from mission planner, X f ← [x f y f θ f ]

t;
Initial position X0 from perception module, X0 ← [x0 y0 θ0]

t;
Outputs:
Actuator commands over horizon H, ω

(i,k)
j , j = 1..4, i = 0..H − 1

Predicted path over horizon H, x(i|k), y(i|k), θ(i|k), i = 0..H − 1
Runtime
Acquire object list data: positions (xo, yo), radius (ro) from perception module;
Detect object boundaries from LiDAR data using Moore-Neighbor tracing algorithm with Jacob’s
stopping criteria [40]
[B,L] = bwboundaries(LiDAR data); (Matlab specific function)
l = 0;
for k ∈ {1 . . . length(B)} do

Object boundary← B{k}; B is Matlab cell data-type, therefore brackets are ‘{}’ for indexing
Ignore objects composed of a very small or very high number of pixels (usually are artifacts or

room boundaries)
if BoundaryMin ≤ numel(Object boundary)/2 ≤ BoundaryMax then

l ← l + 1;
If the number of objects exceeds buffer size (MaxNoObjs), an error will be thrown, and

optimization will not be started
if l > MaxNoObjs then

l ← −1;
break;

xy ← mean(Object boundary) ∈ R2×1 Matlab specific function to determine mean
value over each line of a matrix.

xo(l)← xy[2];
yo(l)← xy[1];
ro(l) ← max(|max(Objectboundary) − min(Objectboundary)|); Matlab specific

functions to determine min, max values of matrix rows; or ro provided by CNN subsystem;
noObjs← l; No. of all objects detected in the map;
Determine relevant objects (within specified proximity dmax);
for k ∈ {1 . . . noObjs} No. of all objects do

Calculate distance to each relevant object:
do ←

√
(xo[k]− x)2 + (yo[k]− y)2;

if do ≤ dmax then
Update object radius to include tolerance w.r.t to OMR dimensions
ro[k]← ro[k] + max(lx, ly);
no ← no + 1;

Calculate reference trajectory x(i)r , y(i)r according to Equation (25);
Calculate reference angle θ

(i)
r , i = 0..H − 1 according to Equation (24);

Input data to optimizer: Sampling time: Ts; Object list: xo, yo, ro; Number of objects no, Initial
resting point X0; Final resting point X f , Run-time reference trajectory Xr; Previous optimized
commands ωi
Optimize;
Save in buffer the optimized commands;
Provide to the process inputs the first (i.e., i = 0) command from the- control buffer;

Figure 5 depicts the control structure consisting of two main subsystems: Environment
perception, Model-Predictive Controller, and the interconnection with the psychical process.
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Figure 5. Illustrative block diagram of the control structure.

Figure 6 illustrates the main coordinates and notations used throughout the optimiza-
tion problem. The projection dp from the robot CG to the imaginary straight path connecting
the initial X0 and final X f resting locations is noticeable. Moreover, the L2-norms used in
calculating the cost function, L1, L2, and L3 define the distances between the OMR, initial,
and resting positions.

 

R 
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lx 

      ly  

O 
Ω 

ω 3 

 

ω1 

ω 4 

vx 

vy 

v 

 

X0 

Xf 

L1 

L2 

L3 

Ideal path 

trajectory 

Actual OMR 

trajectory 

dp 

Figure 6. Coordinates system for control algorithm illustrating the used notations.

Table 5 contains the parameters of the model-predictive controller, including the
penalizing factor of the cost function, the proximity threshold (tol) for switching cost
function weights, the radius w.r.t to OMR’s CG to and the prediction horizon.
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Table 5. Control parameters.

Parameter Value

Cost weight 1 of reference trajectory (wxy1) 0.6
Cost weight 1 of projection length to ideal path (wp1 ) 0.01

Cost weight 2 of reference trajectory (wxy2) 0.05
Cost weight 2 of projection length to ideal path (wp2 ) 2.0

Cost weight of orientation angle (wθ) 0.3
Terminal cost weight of reference trajectory (wTx) 0.8
Terminal cost weight of reference trajectory (wTy) 0.8

Threshold for switching cost weights tol −0.1 [m]
Maximum distance from CG to objects (dmax) 2.5 [m]

Prediction horizon (H) 10 [samples] (Thorizon = 0.2 s)
Map cell size 10 [cm]

4. Results
4.1. Object Detection Results

The performance of the selected object detection solutions (ssd-mobilenet-v1, ssd-
mobilenet-v2-lite, ssd-vgg16, and YoloV5) was evaluated on a testing subset with image
resolutions varying between 720 × 404 and 2048 × 1024 pixels. The neural networks were
tested on the Nvidia Jetson AGX mobile platform with the same input.

All models are optimized for Jetson Xavier AGX with the TensorRT framework from
CUDA for Nvidia cards. The run time of the three selected architectures from the SSD family
and the five main YoloV5 [29] is presented in Table 6. Architectures with fewer parameters
performed better in terms of frames per second. Being the lightest model, the Nano YoloV5
is six times faster than the Extra Large model, the largest we considered for the Jetson
platform. This highlights the importance of considering the specific hardware platform and
the model’s complexity for deploying object detection algorithms on mobile robots.

The two largest YoloV5 models did not bring any improvements for the overall
precision and the precision per class compared to the Medium architecture; therefore, they
were not considered for Table 6. A comparison between the precision of the models can
be made based on the figures presented in Table 7. All architectures were trained for
150 epochs to evaluate the mean Average Precision. SSD Mobilenet v2 lite and SSD VGG16
reach a similar mAP@0.5 of 98–99%, while SSD Mobilenet v1 has a lower precision on the
test subset, 86%.

Based on the results from Tables 6 and 7, we can draw the conclusion that the best
model for our OMR object detection use cases is YoloV5 Medium which has a mAP
comparable to SSD-VGG16, with the benefit of being twice as fast. Detection examples
with the neural network models tested in the OMR environment are shown in Figure 7.

Table 6. Inference time.

Architecture FPS on Jetson Xavier AGX Number of Parameters

SSD Mobilenet v1 120 4.2M

SSD Mobilenet v2 lite 130 3.4M

SSD VGG16 50 35M

yoloV5 Nano 270 1.9M

yoloV5 Small 225 7.2M

yoloV5 Medium 109 21.2M

yoloV5 Large 72 46.5M

yoloV5 Extra Large 44 86.7M
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Table 7. Average precision on test subset.

Per Class mAP@0.5

Model Overall
mAP@0.5

Conveyor
Type 1

Conveyor
Type 2 Rosy Charging

Station Cone

SSD Mobilenet v1 0.860 0.909 0.891 0.816 0.717 0.969

SSD Mobilenet v2 lite 0.989 0.998 0.980 0.974 0.998 0.992

SSD VGG16 0.997 0.998 0.996 0.990 0.998 0.998

YoloV5 Nano 0.989 0.993 0.985 0.992 0.982 0.995

YoloV5 Small 0.992 0.995 0.989 0.994 0.99 0.995

YoloV5 Medium 0.994 0.995 0.992 0.995 0.991 0.995

Figure 7. Detected objects with SSD architectures (1st row) and with YOLOv5 architecture (2nd row).

4.2. Simulation Results

To evaluate the control performances, we considered scenarios where the initial and
final positions varied throughout the room so that obstacles blocked the OMR path. We
perform numerical simulations on real data acquired from the perception module. We
evaluate the steady-state error, the possible constraint violations, the cost function, and the
optimization run-time.

In the first test case considered in Figure 8, the final resting position X f is reached
after avoiding the two obstacles on the circumference of virtual circles centered around
the objects. The inequality geometric inequality constrained Co < 0, and the actuator
constraints are satisfied Ca < 0 with an acceptable tolerance. Generally, the tolerance
is within the expected margin of 1.0 × 10−3. The steady-state error of the controlled
position (x, y) is less than 1% as measured around moment t = 10.2 s. The transient time
is limited by the upper and lower bounds of the wheel speed, in this case, ±10 rad/s.
The orientation θ changes at each sample time as the vehicle travels towards X f . Hence,
the tracking is decent, with a peak error of 17 degrees noticeably on the roundabouts of
the objects since the optimizer is more constrained. The cost function decreases as the
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vehicle evolves across the map. In the proximity of an object, the cost function is purposely
increased to avoid local minima by amplifying the deviation from the reference trajectory
and decreasing the penalizing weight for the projection to the ideal path to allow solutions
on the circumference of the encircled object. The maximum number of iterations was 79
with a run-time of 0.8945 s, and the minimum number of iterations was 2 with a run-time
of 0.0204 s (CPU Intel i7 7500u, dual-core, 7th generation). The mean number of iterations
was 6.526, with an execution time of 0.0647 s. It must be mentioned that the run-time is less
relevant since in MEX mode (Matlab executable), the run-time can be reduced considerably
(in MEX mode, the average run-time was 0.0507 s, while in normal mode 0.0647 s). The
execution time is platform dependent.
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Figure 8. Simulation results of the model−predictive controller with LiDAR data and simulation of
camera detection (test case I).

In the second scenario presented in Figure 9, the behavior is similar concerning the
constraint tolerances. The violation of the object boundaries is within the expected limit,
and the steady-state error of the controlled pose (x, y, θ) is less than 1%. In this case, the
actuator constraints limit the transient time,±10 rad/s. The maximum number of iterations
was 66 with a run-time of 0.9923 s, and the minimum number of iterations was 2 with a
run-time of 0.022 s (same CPU as mentioned in test case I). The mean number of iterations
was 8.5658, with a mean execution time of 0.0814 s. In MEX mode, the maximum run-time
was 0.5681 s, the minimum 0.0039 s, and the average 0.0356 s. Generally, the behavior is as
expected, and the run-time proves the applicability of the control structure.

Similar behavior is obtained in the third test case presented in Figure 10, but the
maximum run-time is slightly higher at 1.6 s, the maximum number of iterations is 210, and
the minimum is 2. The minimum run-time was 0.0191 s. However, the average run-time in
MEX mode is 0.0358 s with a maximum of 0.3176 s (instead of 1.6 s as in normal mode) and
a minimum of 0.0043 s.
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Figure 9. Simulation results of the model−predictive controller with LiDAR data and simulation of
camera detection (test case II).
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Figure 10. Simulation results of the model−predictive controller with LiDAR data and simulation of
camera detection (test case III).

5. Conclusions and Future Work

The use of CNNs for object detection in mobile robot navigation provides benefits
such as accuracy, robustness, and adaptability, which are desirable for the navigation of
mobile robots in a logistic environment.

The paper proves the use of an object detector for a better understanding of the OMR
working environment. To overcome this challenge, we also acquired a dataset for domain-
specific object detection that was made public. It contains all objects of interest for the
working environment, such as fixed or mobile conveyors, charging stations, other robots,
and boundary cones. The results show a detection accuracy of 99% using the selected
lightweight model, which was optimized to run on the available mobile platform already
installed on the OMR at about 109 frames per second. The detection results offer a better
understanding of the LiDAR map by assigning a name to obstacles and objects within the
working environment, allowing the control model constraints to be adjusted on the fly.
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This paper also demonstrates the model-predictive control of the OMR in logistic
environments with actuator and geometric constraints. We avoid local minima by using
variable cost function weights to navigate around obstacles while still achieving the overall
objective of reducing travel distance. The execution runtime of the optimizer allows for
practical implementation while the control performance is within the expected margin.

Future work is also expected to involve the deployment of the OMR controller and
testing in a controlled environment and then in an automated logistic warehouse. One of
the short-term goals is to collect and annotate more instances of domain-specific objects so
that the intraclass variety is better covered and the detector can extrapolate on new data.
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Abbreviations
The following abbreviations are used in this manuscript:

AP Average Precision
APF Artificial Potential Field
AR Average Recall
CNN Convolutional Neural Network
CPU Central Processing Unit
FN False Negative
FoV Field of View
FP False Positive
FPS Frames Per Second
GPU Graphics Processing Unit
GT Ground Truth
IMU Inertial Measurement Unit
IoU Intersection over Union
IR Infrared
LiDAR Light Detection and Ranging
mAP mean Average Precision
mAR mean Average Recall
MEX Matlab Executable
MS COCO Microsoft Common Objects in COntext
OMR Omnidirectional Mobile Robots
OROD Omnidirectional Robot Object Detection
SP Set Point
SSD Single Shot Detector
TN True Negative
TP True Positive
TPU Tensor Processing Unit
YOLO You Only Look Once the algorithm
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