
Citation: Said, Y.; Atri, M.; Albahar,

M.A.; Ben Atitallah, A.; Alsariera,

Y.A. Obstacle Detection System for

Navigation Assistance of Visually

Impaired People Based on Deep

Learning Techniques. Sensors 2023,

23, 5262. https://doi.org/10.3390/

s23115262

Academic Editor: Petros Daras

Received: 9 April 2023

Revised: 30 May 2023

Accepted: 31 May 2023

Published: 1 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Obstacle Detection System for Navigation Assistance of
Visually Impaired People Based on Deep Learning Techniques
Yahia Said 1,2,3,* , Mohamed Atri 4, Marwan Ali Albahar 5 , Ahmed Ben Atitallah 6

and Yazan Ahmad Alsariera 7

1 Remote Sensing Unit, College of Engineering, Northern Border University, Arar 91431, Saudi Arabia
2 King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia
3 Laboratory of Electronics and Microelectronics (LR99ES30), University of Monastir, Monatir 5019, Tunisia
4 College of Computer Sciences, King Khalid University, Abha 62529, Saudi Arabia; matri@kku.edu.sa
5 School of Computer Science, Umm Al-Qura University, Mecca 24382, Saudi Arabia; mabahar@uqu.edu.sa
6 Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia;

abenatitallah@ju.edu.sa
7 College of Science, Northern Border University, Arar 91431, Saudi Arabia; yazan.sadeq@nbu.edu.sa
* Correspondence: yahia.said@nbu.edu.sa

Abstract: Visually impaired people seek social integration, yet their mobility is restricted. They need
a personal navigation system that can provide privacy and increase their confidence for better life
quality. In this paper, based on deep learning and neural architecture search (NAS), we propose
an intelligent navigation assistance system for visually impaired people. The deep learning model
has achieved significant success through well-designed architecture. Subsequently, NAS has proved
to be a promising technique for automatically searching for the optimal architecture and reducing
human efforts for architecture design. However, this new technique requires extensive computation,
limiting its wide use. Due to its high computation requirement, NAS has been less investigated
for computer vision tasks, especially object detection. Therefore, we propose a fast NAS to search
for an object detection framework by considering efficiency. The NAS will be used to explore the
feature pyramid network and the prediction stage for an anchor-free object detection model. The
proposed NAS is based on a tailored reinforcement learning technique. The searched model was
evaluated on a combination of the Coco dataset and the Indoor Object Detection and Recognition
(IODR) dataset. The resulting model outperformed the original model by 2.6% in average precision
(AP) with acceptable computation complexity. The achieved results proved the efficiency of the
proposed NAS for custom object detection.

Keywords: visually impaired people; deep learning; obstacle detection; object detection; neural
architecture search (NAS); anchor-free model

1. Introduction

The primary sensory organ of a person is his or her eyes. In our environment, visual
information provides help to perform any task. However, this fact presents a substantial
challenge that the visually impaired encountered in their lives and can isolate them from
society. For this reason, it is common for sighted individuals (e.g., friends or family) to
be overly excited to help visually impaired people, but very frequently, rushing to help
them without asking can cause visually impaired people to feel helpless and compromise
their independence. This possibility implies a negative impact on their confidence and
their emotional well-being. Consequently, it is essential to allow the visually impaired to
support themselves, helping them to increase their autonomy and integration into society.
However, the lack of accessibility to information by visually impaired people limits their
independence. Another challenge for the visually impaired, especially those with complete
vision loss, is navigating around places. The visually impaired must avoid obstacles to

Sensors 2023, 23, 5262. https://doi.org/10.3390/s23115262 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23115262
https://doi.org/10.3390/s23115262
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0613-4037
https://orcid.org/0000-0003-3586-3423
https://orcid.org/0000-0002-2121-4417
https://orcid.org/0000-0003-1359-6336
https://doi.org/10.3390/s23115262
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23115262?type=check_update&version=1

Sensors 2023, 23, 5262 2 of 18

ensure their safety. As a solution, an artificial vision system can be designed to detect
obstacles and warn the visually impaired person to avoid obstacles. In effect, an object
detection system must be used to detect obstacles for further processing.

Object detection is one of the most studied tasks in computer vision and has been
extensively investigated. Recently, most object detection methods have relied on convo-
lutional neural networks (CNNs) [1]. CNNs have been widely deployed for different
computer vision tasks, such as image classification [2], object detection [3], scene recogni-
tion [4], indoor object detection [5], and many others [6]. High performances have been
achieved by state-of-the-art object detection frameworks, such as faster region-based
CNNs (R-CNNs) [7], You Only Look Once (Yolo) [8], single shot multi-box detection
(SSD) [9], and EfficientDet [10]. However, all object detection frameworks have a com-
plicated design compared to those used for classification due to the need to localize and
classify multiple objects simultaneously on an image. In contrast, classification requires
predicting the label of a single object on the image. Due to the presented complexity
of the object detection task, designing a high-performance model requires substantial
manual effort to find the perfect hyperparameters.

Neural architecture search (NAS) [11] has recently proved its performance for auto-
matically searching high-performance neural network models in large-scale search spaces.
NAS are data-driven, unlike manual, experience-driven methods requiring less expert
intervention. The NAS workflow can be presented in three main stages. It first defines
the search strategy and sampling candidate architecture from a given search space. Sec-
ond, it evaluates the performance of the candidate architecture. Finally, it updates the
configuration and parameters based on the achieved performances.

The main limitation of deploying NAS for a wide range of applications is the need for
extensive computation overhead. In particular, the evaluation process is computationally
extensive and time-consuming because it comprises full training and validation processes.
To overcome this issue, a proxy task is applied to reduce the evaluation procedure time.
Practically, the proxy task requires scaling down the training iterations, network parameters,
and input data. However, the performance of the proxy task and the desired task presents
a wide gap, and the evaluation process is biased. Therefore, designing a proxy task with
high performance and efficiency for a particular task is challenging and requires high effort.
Another solution to avoid high computation requirements by the NAS method is to build a
supernet that covers the entire search space and then train candidate architectures based
on a shared parameters method [12]. However, this method requires substantial memory
and reduces the size of the search space.

To our knowledge, deploying NAS methods for object detection networks has rarely
been investigated. Most methods focus on the classification task and apply transfer learning
to move to the detection task. Devising an accurate and efficient NAS method for object
detection tasks is essential but presents many challenges. To this end, a new NAS method is
proposed in this work to search for an object detection network. The proposed NAS method
was based on reinforcement learning [13] with an LSTM-based controller. The proposed
method is computationally fast, requires less memory, and finds high-performance models
while saving search time.

To achieve real-time processing of our obstacle detection system, we proposed using
the Fully Convolutional One-Stage detector (FCOS) [14] as a baseline model. We also
applied the proposed NAS to search the Feature Pyramid Network (FPN) architecture and
the output prediction head. The FCOS model is an anchor-free object detection model
with many advantages compared to other one-stage detectors. For example, detecting
objects without predefined anchors reduces the number of hyperparameters, decrease the
training time and simplifying it. In addition, the anchor-free model eliminates complex
computations, such as anchor matching and intersection over union (IoU) calculation,
which accelerates the training testing and inference while reducing memory occupation.

Moreover, we proposed using the efficientNet [15] as a backbone guaranteeing that
the resulting model fits into embedded devices. The efficientNet is a CNN model designed

Sensors 2023, 23, 5262 3 of 18

for implementation on mobile devices with a lightweight size and high performance.
Additional compression techniques have been applied to the model to reduce its size and
accelerate its inference speed. A channel pruning technique [16] was applied to filter
channels from redundant and weak ones. This technique eliminates unnecessary channels
to reduce the model size and accelerates inference time. A post-training quantization
technique [17] was applied by replacing a 32-bit floating-point representation with a 4-bit
fixed-point representation for both activations and weights.

A set of objects were collected from two datasets to train and evaluate the proposed
obstacle detection model. First, to collect the outdoor obstacle, we searched the Coco
dataset [18] for possible target objects that could be considered obstacles for visually
impaired people. Second, the Indoor Object Detection and Recognition (IODR) dataset [19]
was used for indoor obstacles. These datasets were combined to create an indoor and
outdoor obstacle detection dataset. For the remaining classes in the Coco dataset, we
considered them negative samples.

The main contributions of this work are the following:

• Proposing an obstacle detection system for navigation assistance of visually im-
paired people;

• Collecting a dataset of indoor and outdoor obstacles to train and evaluate the
proposed system;

• Proposing a NAS method to search the FPN and the prediction head of an object
detection model by carefully specifying the search space design, the proxy task, and
the evaluation strategies;

• Proposing the use of an anchor-free object detection framework to achieve real-time
processing and reduce the memory footprint;

• Employing an efficient backbone model to guarantee embedded implementation;
• Compressing the resulting model to fit into embedded devices; and
• Proving the efficiency of the proposed NAS method by achieving high performance

compared to the original FCOS framework.

The remainder of this paper is organized as follows: Section 2 is reserved for discussing
related works. In Section 3, we explain and detail the proposed approach. The experiment
and results are presented and discussed in Section 4. Finally, in Section 5, we provide
conclusions and discuss future works.

2. Related Works

Detecting obstacles for assisting visually impaired people in their navigation has been
rarely investigated, and few works exist [5,6,20]. However, object detection has a wide
diversity, and many studies have been performed. This section discusses the most recent
object detection frameworks, focusing on those designed through NAS.

In the literature, object detection frameworks can be divided into two main categories:
those with one stage and those with two stages. The two-stage detection framework
comprises a region proposal mechanism and a detection network. The region proposal
convolutional neural networks (R-CNN) [21] family is the most dominant, and all recent
works have been based on its concept. This framework is based on an external region
proposal mechanism, a convolutional neural network for feature extraction, and a support
vector machine for classification. It presents an extensive computation overhead and a
complicated training process. It was followed by the faster R-CNN [7] framework, which
eliminates the external region proposal network and replaces it with an integrated, fully
convolutional neural network called a region proposal network (RPN). The new version
has achieved higher detection accuracy but is still computationally extensive with a slow
processing speed.

The one-stage detection framework has a simple architecture compared to two-stage
detectors. This category directly predicts the localization bounding box and object class
for each location on the output feature maps generated by the backbone. Therefore, one-
stage detection frameworks are much faster than two-stage frameworks, with comparable

Sensors 2023, 23, 5262 4 of 18

accuracies. Yolo [8] is one of the best one-stage detection frameworks. It solves the detection
task as a regression problem by predicting the localization bounding box and associating
a confidence score with each class label. Yolo is fast, making it suitable for real-time
processing, but it struggles to detect small and close objects. The third version of Yolo [22]
was proposed to solve this problem by introducing the detection of objects at different
scales and merging the detection for the final output.

The main common point between the two categories is prediction based on testing
anchors at different scales and aspect ratios. Unfortunately, using anchor boxes increases
the number of hyper-parameters, which requires more computation resources and longer
training times.

Recently, a new type of one-stage detection framework [23,24] was proposed. This
type has eliminated the use of an anchor box, expediting the processing time and reducing
the computation complexity and the required resources. cornerNet [24] is one of the anchor-
free object detection frameworks. The main idea of cornerNet is to detect objects with two
points: the top-left corner of the bounding box and the bottom-right corner based on a
CNN. This technique allows for eliminating the need for predefined anchors. In addition,
a corner pooling layer was proposed to improve network capability in detecting corners
to enhance performance. As a result, cornerNet has achieved state-of-the-art performance
with 42% AP on the Coco dataset [16] and with lower computation overhead.

CenterNet [25] has proposed detecting objects by their center points and corner points.
This framework was based on cornerNet with enhancement in precision. Additional custom
layers were added to collect rich features on the top-left and bottom-right corner points
and the center point of the cropped region. The proposed cascaded corner pooling and
center pooling layers effectively achieved better detection performances. As a result, the
framework achieved the top AP of 47% on the Coco dataset [16] while being faster.

As discussed above, object detection frameworks are very complicated and require
highly qualified experts to design an effective framework that achieves the desired perfor-
mance. However, the appearance of the NAS method has allowed for searching for new
architectures in a vast research space that is most suitable for each task. On the other hand,
the NAS method is computationally extensive and time-consuming, limiting its use for
many applications. Traditional NAS methods require up to 15,000 GPU-days [26] to find
a suitable architecture. Recent works have reduced the search time to 0.2 GPU-days [27]
by building a supernet that considers the complete search space and performing a single
training for all candidates based on weight sharing and bi-level optimization [28]. This
technique reduces the search time but requires substantial memory. Therefore, this NAS
method cannot be applied to searching complex neural networks.

To avoid the aforementioned problem, a single-path training approach [29] was pro-
posed to reduce bias caused by model simplification and approximation of the designed
supernet. DetNAS [30] deployed the single path training approach to search for a high-
performance object detection framework. However, this approach presented one limitation:
restricting the search space to a sequential structure. As a result, the single path sampling
of the weight gradients has introduced large variance into the optimization process. Such
variance limits the search for complex architectures and restricts the NAS method to apply
only simple variations, such as modifying the kernel size of predefined blocks.

Object detection frameworks are highly complicated and differ vastly from image
classification models, especially at the feature merging level and in their output predictions.
The feature pyramid network (FPN) [31] was proposed to handle feature merging and
parallel prediction in the object detection framework. Due to its importance for object
detection, NAS-FPN [32] was proposed to search for the best FPN architecture for the
RetinaNet object detection framework [33]. The FPN architectures were modeled with a
recurrent neural network controller, trained using reinforcement learning. The proposed
method is time-consuming even with a proxy task based on the ResNet [34]. A comparison
of different object detection models based on various criteria is provided in Table 1.

Sensors 2023, 23, 5262 5 of 18

Table 1. Comparison between different object detection models based on different criteria.

Design Type Model Specifications

Manual

Two-stage detectors

RCNN
high computation complexity

low detection accuracy
slow processing speed

Faster RCNN
high computation complexity

high detection accuracy
slow processing speed

One-stage detectors

Yolo
median computation complexity

low detection accuracy
fast processing speed

Yolo v3
median computation complexity

good detection accuracy
fast processing speed

Anchor-free detectors

CornerNet
good computation complexity

good detection accuracy
fast processing speed

CenterNet
good computation complexity

better detection accuracy
fast processing speed

Automatic NAS detectors

DetNAS
good computation complexity

good detection accuracy
fast processing speed

NAS-FPN
good computation complexity

good detection accuracy
fast processing speed

After a deep study of the literature, we discovered that all existing NAS methods for
object detection are restricted to the backbone design, or they target the FPN architecture.
In this work, we designed a NAS method to search for the FPN architecture and the
prediction head. To reduce the computation overhead, we applied the proposed NAS on an
anchor-free object detection framework, FCOS [14], which allows for reducing the search
time by eliminating anchor matching. Compared to an anchor-based framework, FCOS
is significantly faster with higher performance. The following section provides a detailed
description of the proposed approach.

3. Proposed Approach

In this work, we proposed a fast NAS method to search for the FPN and the prediction
head of an anchor-free object detection framework. The used framework facilitated the
application of the NAS method and reduced the search time.

3.1. Problem Formulation

The proposed search method was based on FCOS, a simple and effective object detec-
tion framework. As input (X), it takes an image with a size of h × w × 3, where 3 refers
to the number of channels of the RGB color space, h is the height of the image, and w is
the width of the image. As output (Y), a list of tensors ys is generated, and the size of each
tensor is ((k + 4 + 1) × hs × ws), where (hs × ws) is the dimension of the feature map at
level p of the FPN, and (k + 4 + 1) is the number of output channels. K refers to the number
of detection classes, 4 is the number of parameters of the detection bounding box, and 1 is
the centerness factor.

Therefore, the FCOS takes an input X and predicts an output Y. The framework has
three main components: the backbone, FPN, and prediction head. In the first stage, features
were extracted by mapping the input X to feature maps at different levels C = {c3, c4, c5}

Sensors 2023, 23, 5262 6 of 18

with a resolution of (hi × wi) = h/2i × w/2i. In the second stage, the FPN maps the feature
maps c to pyramid feature maps P = {p3, p4, p5, p6, p7}. In the final stage, the prediction
head generates the final prediction Y by collecting information from different levels of the
pyramid features.

Detecting objects at different scales and aspect ratios requires various receptive fields.
Therefore, selecting and merging feature maps from different levels require an effective
mechanism. Due to the high importance of this mechanism for object detection tasks, most
researchers have focused on the design of the FPN and multi-level prediction head while
deploying existing efficient backbones. Considering this concept, the main goal of this
work is to search for an effective FPN to decide how and when to merge the feature maps
and a prediction head to detect objects at different scales and aspect ratios while adopting
an existing backbone to ensure lightweight size and embedded implementation.

The original FCOS with the proposed backbone was pretrained on the target dataset
to improve the framework’s performance. Then, the backbone parameters were fixed,
and the search process was started. The proposed NAS method searched the FPN and
the prediction head as the main components of the object detection framework. The FPN
extracted features from different pyramid levels. The prediction head collected information
from the feature maps in p and merged them to generate the final prediction to avoid the
overfitting problem. The main discussion concerns diversifying the FPN to detect relevant
features and the number of layers in the prediction that merged the collected information
from different levels. In this work, we deployed the NAS method to search for the best
combination by automatically testing all possibilities.

3.2. Search Space

In this work, we search for different components of an object detection framework.
Since there is a difference between the FPN and the prediction head, two separate search
spaces were considered. For the FPN architecture, a basic block was designed with modified
connections. For the prediction head, a sequential search space was considered. For more
flexibility, the cell structure was replaced by atomic operations. To create a basic block,
two layers were selected from the sampling pool L with ID 1 and ID2, operations op1 and
op2 were applied to each layer, and a final aggregation operation was applied to fuse the
output into a single feature. Multiple basic blocks were stocked to create a deep structure,
and those blocks’ outputs were added to the sampling pool. At step time t, the basic block
bt transforms the sampling pool Lt−1 to Lt = Lt−1 ∪ {lt} where lt is the output of the basic
block bt.

Only depthwise convolution layers were considered to design a more efficient decoder.
Additionally, to enable the decoder to perform convolution filters on irregular feature maps,
we considered the 3 × 3 deformable convolution layers. For the aggregation operation,
element-wise addition and concatenation, followed by a 1 × 1 convolution layer, were
considered. Table 2 presents the considered operations in the proposed search process.

Table 2. Operations in the proposed search process.

I.D. Operation Kernel Size

0 Depthwise convolution 3 × 3
1 Depthwise convolution with dilation rate 3 3 × 3
2 Depthwise convolution with dilation rate 6 5 × 5
3 Skip connection --
4 Deformable convolution 3 × 3

The proposed decoder has three main components: FPN, prediction head, and weight
sharing. The concept of the proposed architecture is presented in Figure 1.

Sensors 2023, 23, 5262 7 of 18

Sensors 2023, 23, x FOR PEER REVIEW 7 of 19

4 Deformable convolution 3 × 3

The proposed decoder has three main components: FPN, prediction head, and weight
sharing. The concept of the proposed architecture is presented in Figure 1.

Figure 1. The concept of the proposed architecture (the numbers of layers and internal connections
are presented for illustration purposes and do not represent the real ones).

As discussed earlier, the FPN mapped feature maps C to feature maps P. We started
by seĴing the sapling pool ܮ଴ = ܥ. Then, the FPN architecture was defined by applying
seven consecutive basic blocks. To produce the pyramid structure of feature maps P, the
output of the last three basic blocks was collected, where {ݔହ, ݔ଺, ݔ଻} were mapped to {݌ଷ,
 .{ହ݌ ,ସ݌

To create a shared scheme across layers, a combination rule was proposed. If any
intermediate layer ݔ௧ was not sampled with the previous basic block and did not belong
to the last three layers, element-wise addition was performed to merge this layer to gen-
erate the output features. The proposed rule can be computed using Equation (1). Similar
to the aggregation function, if the feature maps presented different dimensions, the bilin-
ear interpolation was used for upsampling the smallest one. For ݌଺ and ݌଻, they were
obtained in the same way with FCOS by applying a 3 × 3 convolution layer with a stride
of 2 on ݌ହ and ݌଺ respectively.

௜݌
∗ = ௜݌ + ௧ (1)ݔ

The prediction head provides predictions of the class and localization bounding box
by collecting information from the pyramid architecture of the feature maps P. In the orig-
inal FCOS, the prediction head comprised four 3 × 3 convolution layers. A sequence of six
layers defined the prediction head. The basic operations of the prediction head were dif-
ferent from those of the FPN. Additional convolution layers were added, where regular 3
× 3 convolution layers and 1 × 1 convolution layers were added to the sampling pool. In
addition, the same as FCOS, the batch normalization layer was replaced by the group nor-
malization layer [34], allowing for weight sharing between different levels.

To make the weight-sharing technique at the prediction head more flexible, we intro-
duced an index i to manage the weight-sharing start point. For all layers, before the index,
i weights were processed independently. Otherwise, global weights were shared. By con-
sidering the independent part of the prediction head as an extension to the FPN and the
shared part as a variable-length prediction head, it is possible to manage the computations
of the individual FPN branch. Furthermore, such a configuration allows for extracting
specific features at different levels and generating predictions by sharing features across
all levels.

Figure 1. The concept of the proposed architecture (the numbers of layers and internal connections
are presented for illustration purposes and do not represent the real ones).

As discussed earlier, the FPN mapped feature maps C to feature maps P. We started by
setting the sapling pool L0 = C. Then, the FPN architecture was defined by applying seven
consecutive basic blocks. To produce the pyramid structure of feature maps P, the output
of the last three basic blocks was collected, where {x5, x6, x7} were mapped to {p3, p4, p5}.

To create a shared scheme across layers, a combination rule was proposed. If any
intermediate layer xt was not sampled with the previous basic block and did not belong to
the last three layers, element-wise addition was performed to merge this layer to generate
the output features. The proposed rule can be computed using Equation (1). Similar to
the aggregation function, if the feature maps presented different dimensions, the bilinear
interpolation was used for upsampling the smallest one. For p6 and p7, they were obtained
in the same way with FCOS by applying a 3 × 3 convolution layer with a stride of 2 on p5
and p6 respectively.

p*
i = pi + xt (1)

The prediction head provides predictions of the class and localization bounding box
by collecting information from the pyramid architecture of the feature maps P. In the
original FCOS, the prediction head comprised four 3 × 3 convolution layers. A sequence of
six layers defined the prediction head. The basic operations of the prediction head were
different from those of the FPN. Additional convolution layers were added, where regular
3 × 3 convolution layers and 1 × 1 convolution layers were added to the sampling pool.
In addition, the same as FCOS, the batch normalization layer was replaced by the group
normalization layer [34], allowing for weight sharing between different levels.

To make the weight-sharing technique at the prediction head more flexible, we in-
troduced an index i to manage the weight-sharing start point. For all layers, before the
index, i weights were processed independently. Otherwise, global weights were shared. By
considering the independent part of the prediction head as an extension to the FPN and the
shared part as a variable-length prediction head, it is possible to manage the computations
of the individual FPN branch. Furthermore, such a configuration allows for extracting
specific features at different levels and generating predictions by sharing features across
all levels.

3.3. NAS Method

The proposed NAS method was based on reinforcement learning with an LSTM-based
controller. The main idea was to specify hyperparameters and connection configuration
using a string former, such as filter width: 3, filter height: 3, num filter: 32, and so on. The
LSTM-based controller generated those strings for building the network architecture. Then,
the candidate architecture was trained with the target dataset and evaluated using the
validation data. Based on the achieved reward, a reinforcement learning algorithm was
used to update parameters in the controller. The workflow of the proposed NAS method is
presented in Figure 2.

Sensors 2023, 23, 5262 8 of 18

Sensors 2023, 23, x FOR PEER REVIEW 8 of 19

3.3. NAS Method
The proposed NAS method was based on reinforcement learning with an LSTM-

based controller. The main idea was to specify hyperparameters and connection configu-
ration using a string former, such as filter width: 3, filter height: 3, num filter: 32, and so
on. The LSTM-based controller generated those strings for building the network architec-
ture. Then, the candidate architecture was trained with the target dataset and evaluated
using the validation data. Based on the achieved reward, a reinforcement learning algo-
rithm was used to update parameters in the controller. The workflow of the proposed
NAS method is presented in Figure 2

Figure 2. Workflow of the proposed NAS method.

Reinforcement learning was used to train the controller. The reward was considered
to discover the top-performance candidate architecture by forcing the controller to max-
imize the expected reward. The update of the controller can be computed as Equation (2):

(௖ߠ)ܬ = ௣ (௔భ:೅; ഇ೎) (ܴ) (2)ܧ

The reward value is non-differentiable, imposing the use of the policy gradient to
update the controller parameters iteratively. First, the reinforcing method was applied to
achieve the update. Subsequently, an empirical approximation, normalized by the num-
ber of candidate architecture m generated in one batch, was performed to make the update
smoother. The number of hyperparameters to be predicted for the architecture by the con-
troller was limited to T. The update can be computed as Equation (3):

(௖ߠ)ܬ = ෍ ௣ (௔భ:೅; ഇ೎)ܧ
൫∇ߠ௖ log ௖൯ߠ ;൫ܽ௧หܽ(௧ିଵ):ଵݎ݌ ܴ൯

்

௧ୀଵ

(௖ߠ)ܬ =
1
݉ ෍ ෍൫∇ߠ௖ log ௖൯ߠ ;൫ܽ௧หܽ(௧ିଵ):ଵݎ݌ ܴ௞൯

்

௧ୀଵ

௠

௞ୀଵ

(3)

The proposed update presents high variance with an unbiased gradient estimation.
A bias function bf was adopted to minimize the variance of this estimation. If this function
is independent of the current action, then the gradient estimation is unbiased. Therefore,
the exponential moving average of the previous reward was employed as a bias function.
The final update can be computed as Equation (4):

(௖ߠ)ܬ =
1
݉ ෍ ෍൫∇ߠ௖ log ௖൯ߠ ;൫ܽ௧หܽ(௧ିଵ):ଵݎ݌ (ܴ௞ − ܾ݂)൯

்

௧ୀଵ

௠

௞ୀଵ

 (4)

In this work, a progressive search strategy was deployed instead of a joint search
strategy for both the FPN and the prediction head because FPN requires less computation
and a shorter search time than the prediction head. The training data were randomly di-
vided into meta-train (MT) and meta-validation (MV) subsets. The backbone was pre-

LSTM-based
controller

Train candidate
architecture

Candidate
architecture with

Compute gradient
of pr and scale it
with R to update

the controller
Figure 2. Workflow of the proposed NAS method.

Reinforcement learning was used to train the controller. The reward was considered to
discover the top-performance candidate architecture by forcing the controller to maximize
the expected reward. The update of the controller can be computed as Equation (2):

J(θc) = Ep(a1:T;θc)
(R) (2)

The reward value is non-differentiable, imposing the use of the policy gradient to
update the controller parameters iteratively. First, the reinforcing method was applied to
achieve the update. Subsequently, an empirical approximation, normalized by the number
of candidate architecture m generated in one batch, was performed to make the update
smoother. The number of hyperparameters to be predicted for the architecture by the
controller was limited to T. The update can be computed as Equation (3):

J(θc) =
T
∑

t=1
Ep(a1:T;θc)

(∇θclog pr(at|a(t−1):1; θc)R)

J(θc) =
1
m

m
∑

k=1

T
∑

t=1
(∇θclog pr(at|a(t−1):1; θc)Rk)

(3)

The proposed update presents high variance with an unbiased gradient estimation. A
bias function bf was adopted to minimize the variance of this estimation. If this function is
independent of the current action, then the gradient estimation is unbiased. Therefore, the
exponential moving average of the previous reward was employed as a bias function. The
final update can be computed as Equation (4):

J(θc) =
1
m

m

∑
k=1

T

∑
t=1

(∇θclog pr(at|a(t−1):1; θc)(R
k
− b f)) (4)

In this work, a progressive search strategy was deployed instead of a joint search
strategy for both the FPN and the prediction head because FPN requires less computation
and a shorter search time than the prediction head. The training data were randomly
divided into meta-train (MT) and meta-validation (MV) subsets. The backbone was pre-
trained and fixed to accelerate the training process, and the output feature map C was
stored in the cache. This strategy makes the training time independent of the complexity
of the backbone model. It was proved that backbone fine tuning could be eliminated if
the pre-trained feature maps were powerful enough to cause the framework to converge.
Additionally, acceleration techniques, such as Polyak weight averaging, were applied to
expedite the training process [35].

In object detection, average precision (AP) is the most used metric. Object detection is
a complicated task in which proposed models achieve very low AP at the early training
stage. Therefore, the model cannot provide information about network architecture (a)
performance, making the search process time-consuming and computationally extensive.
The negative loss sum was considered instead of the AP as the reward for facilitating

Sensors 2023, 23, 5262 9 of 18

architecture evaluation at the early stages. The proposed reward can be computed as
Equation (5):

R(a) = ∑(x,Y)∈MV(Lcls(x, Y|a)+ Lreg(x, Y|a) + Lctr(x, Y|a) (5)

where Lcls is the class loss, Lreg is the regression loss, and Lctr is the centerness loss.
The gradient of the LSTM-based controller was estimated using the proximal policy

optimization (PPO) [36].

4. Experiment and Results
4.1. Implementation Details
4.1.1. Search Process

A fast proxy task was proposed to search for the best architecture for the model
decoder, composed of the FPN and the prediction head. This proxy task allows for fast
evaluation of the sampled architecture. The MS Coco dataset was used as the proxy dataset.
The dataset contains 118 K images for training and 41 K images for testing and provides
bounding box annotations of 80 classes. The transfer learning technique was applied in
the training phase because different datasets will be used for the real task. The data were
already divided into meta-training and meta-validation sets. Each architecture sampled
by the controller was trained on the mat-train data, and the reward was computed on the
mat-validation data (testing set).

The input data size was set to 384 × 384, and the size of the target objects was scaled
correspondingly. The Adam optimizer was used for training with an initial learning rate
of 0.0008 and a batch size of 128. A decay rate of 0.9 was set for the Polyak averaging
technique. After every 300 iterations, the evaluation process was performed. For a fast
search, the output feature maps of the backbone were stored in cache memory for prompt
communication. To enhance the quality of the features generated by the backbone, they
were initialized by publicly available pre-trained weights. Then, they fine-tuned those
weights on the MS Coco dataset based on the FCOS strategy. It is worth mentioning that
the fine-tuning process was performed only at the start of the search stage.

To search for the FPN and prediction head, a progressive strategy was deployed.
First, the FPN was explored, and the original FCOS prediction head was used. The
majority of operations in the FPN architecture have 64 output channels. Therefore, the
inputs of the FPN were resized for compatibility with its output channels width, using a
1 × 1 convolution layer. After obtaining the best FPN structure, the prediction head was
searched. To do so, the same parameters used for searching the FPN were adopted with
minor modifications. Considering that the prediction head requires more features, the
output channel width was doubled from 64 to 128.

For searching the FPN, the model of the controller converged, searching more than
2.8 K structures based on the proposed proxy task. The reward of the controller model is
presented in Figure 3. Subsequently, the best top-20 structures were selected for the full
training process. The best performing FPN structure from the top 20 was selected to search
the prediction head, and the search process was performed. The model of the controller
converged after only 600 rounds, which is very fast compared to searching the FPN. Then,
the top 10 best performance prediction heads were selected for the full training process.
The search process of both the FPN and the prediction head lasted 4 days on a cloud-based
8 Nvidia V100 GPU.

Sensors 2023, 23, 5262 10 of 18

Sensors 2023, 23, x FOR PEER REVIEW 10 of 19

the prediction head, and the search process was performed. The model of the controller
converged after only 600 rounds, which is very fast compared to searching the FPN. Then,
the top 10 best performance prediction heads were selected for the full training process.
The search process of both the FPN and the prediction head lasted 4 days on a cloud-based
8 Nvidia V100 GPU.

Figure 3. Reward performances in the proxy task. Reward increases indicate that the training rein-
forcement learning model is working.

4.1.2. Full Training Process
In the full training process, the searched models were trained on the proposed com-

bination of the MS Coco and IODR datasets. Then, the models were evaluated using the
testing set, and the best model was selected. The primary purpose of this work is to build
an obstacle-detection system for assisting visually impaired people in their navigation.
Therefore, only objects that could be considered obstacles were considered from both da-
tasets. The considered classes are presented in Table 3. The same configuration was ap-
plied for a fair comprising of the original FCOS by resizing the images to a minimum size
of 800 pixels and a maximum size of 1333 pixels. The training process was performed
using a cloud-based 4 Nvidia V100 GPU. Each model was trained for 90 K iterations with
a batch size of 16. The learning rate was initialized to 0.01 and devised by 10 in the 60 K-
th iteration and at the 80 K-th iteration. Model improvement techniques were only applied
to the best-performing model.

Table 3. Classes for the obstacle detection system.

Class Name Class Name Class Name Class Name Class Name
Trash can Chair Elevator Door Truck

Stairs Fire hydrant Table Stop sign Heating
Person Bicycle Car moto cycle Bus
Vase Couch PoĴed plant Bed Mirror

Laptop Microwave Oven Desk T.V.
Street sign Fire extinguisher Train Dining table Refrigerator

4.2. Search Results
After training and evaluating the models, we discovered the best FPN and prediction

head structure. The FPN structure with the best performance is presented in Figure 4. The
controller removed connections with C2 features and achieved the best performance. In
addition, the controller discovered that deformable convolution layers with a 3 × 3 kernel
and skip connection led to the best performance.

Figure 3. Reward performances in the proxy task. Reward increases indicate that the training
reinforcement learning model is working.

4.1.2. Full Training Process

In the full training process, the searched models were trained on the proposed com-
bination of the MS Coco and IODR datasets. Then, the models were evaluated using the
testing set, and the best model was selected. The primary purpose of this work is to build
an obstacle-detection system for assisting visually impaired people in their navigation.
Therefore, only objects that could be considered obstacles were considered from both
datasets. The considered classes are presented in Table 3. The same configuration was
applied for a fair comprising of the original FCOS by resizing the images to a minimum
size of 800 pixels and a maximum size of 1333 pixels. The training process was performed
using a cloud-based 4 Nvidia V100 GPU. Each model was trained for 90 K iterations with a
batch size of 16. The learning rate was initialized to 0.01 and devised by 10 in the 60 K-th
iteration and at the 80 K-th iteration. Model improvement techniques were only applied to
the best-performing model.

Table 3. Classes for the obstacle detection system.

Class Name Class Name Class Name Class Name Class Name

Trash can Chair Elevator Door Truck
Stairs Fire hydrant Table Stop sign Heating

Person Bicycle Car moto cycle Bus
Vase Couch Potted plant Bed Mirror

Laptop Microwave Oven Desk T.V.
Street sign Fire extinguisher Train Dining table Refrigerator

4.2. Search Results

After training and evaluating the models, we discovered the best FPN and prediction
head structure. The FPN structure with the best performance is presented in Figure 4. The
controller removed connections with C2 features and achieved the best performance. In
addition, the controller discovered that deformable convolution layers with a 3 × 3 kernel
and skip connection led to the best performance.

The best-discovered prediction head was composed of two deformable convolution lay-
ers with a kernel size of 3× 3, two skip connections, a convolution layer with a 3 × 3 kernel,
and a convolution layer with a 1 × 1 kernel for output. The controller selected only four
operations instead of the six allowed operations. The discovered structure provides a
good balance between precision and computations. Figure 5 illustrates the structure of the
discovered prediction head.

Sensors 2023, 23, 5262 11 of 18Sensors 2023, 23, x FOR PEER REVIEW 11 of 19

Figure 4. Best performance searched FPN (Dconv refers to deformable convolution).

The best-discovered prediction head was composed of two deformable convolution
layers with a kernel size of 3 × 3, two skip connections, a convolution layer with a 3 × 3
kernel, and a convolution layer with a 1 × 1 kernel for output. The controller selected only
four operations instead of the six allowed operations. The discovered structure provides
a good balance between precision and computations. Figure 5 illustrates the structure of
the discovered prediction head.

Figure 5. Discovered prediction head structure.

Compared to the prediction head of the original FCOS, the discovered one has fewer
parameters and FLOPs while achieving higher performance.

The searched FPN and prediction head were used with a lightweight backbone, the
efficientNet, with different variations from b0 to b7. Different configurations for the de-
coder were proposed to achieve a good trade-off between performance and efficiency. The
first has a feature map dimension size of 128, the second has a size of 256, and the third
has a size of 128 for the FPN and 256 for the prediction head. The achieved results on the
testing set of the proposed dataset with an input image size of 800 pixels are presented in
Table 4.

The searched decoder with feature maps with a size of 256 outperformed the original
FCOS by 1.7% to 3.9% in AP under different variations of efficientNet. The decoder with
feature maps with a size of 128 was very efficient in reducing the number of parameters
and the computation overhead, making it suitable for implementation on embedded de-
vices. Notably, the searched decoder with the efficientNet b0 backbone outperformed the
original FCOS by 0.9% in AP with fewer FLOPs with a factor of 1/3. The decoder with
feature maps with a size of 128 for the FPN and 256 for the prediction head balanced the

Concat

C4

C3

Dconv, 3×3

Dconv, 3×3

Dconv,

Skip
connection

Dconv,

Dconv, 3×3

C5

Skip
connectio

Dconv, 3×3

Dconv, 3×3

Concat

Dconv, 3×3

Concat

Dconv, 3×3

Concat

Concat

Dconv, 3×3

Dconv, 3×3

Dconv, 3×3

Concat

Concat

P3

P4

P5

Dconv, 3×3

Skip connection Conv, 3×3

Skip connection Dconv, 1×1

Conv, 1×1

Figure 4. Best performance searched FPN (Dconv refers to deformable convolution).

Sensors 2023, 23, x FOR PEER REVIEW 11 of 19

Figure 4. Best performance searched FPN (Dconv refers to deformable convolution).

The best-discovered prediction head was composed of two deformable convolution
layers with a kernel size of 3 × 3, two skip connections, a convolution layer with a 3 × 3
kernel, and a convolution layer with a 1 × 1 kernel for output. The controller selected only
four operations instead of the six allowed operations. The discovered structure provides
a good balance between precision and computations. Figure 5 illustrates the structure of
the discovered prediction head.

Figure 5. Discovered prediction head structure.

Compared to the prediction head of the original FCOS, the discovered one has fewer
parameters and FLOPs while achieving higher performance.

The searched FPN and prediction head were used with a lightweight backbone, the
efficientNet, with different variations from b0 to b7. Different configurations for the de-
coder were proposed to achieve a good trade-off between performance and efficiency. The
first has a feature map dimension size of 128, the second has a size of 256, and the third
has a size of 128 for the FPN and 256 for the prediction head. The achieved results on the
testing set of the proposed dataset with an input image size of 800 pixels are presented in
Table 4.

The searched decoder with feature maps with a size of 256 outperformed the original
FCOS by 1.7% to 3.9% in AP under different variations of efficientNet. The decoder with
feature maps with a size of 128 was very efficient in reducing the number of parameters
and the computation overhead, making it suitable for implementation on embedded de-
vices. Notably, the searched decoder with the efficientNet b0 backbone outperformed the
original FCOS by 0.9% in AP with fewer FLOPs with a factor of 1/3. The decoder with
feature maps with a size of 128 for the FPN and 256 for the prediction head balanced the

Concat

C4

C3

Dconv, 3×3

Dconv, 3×3

Dconv,

Skip
connection

Dconv,

Dconv, 3×3

C5

Skip
connectio

Dconv, 3×3

Dconv, 3×3

Concat

Dconv, 3×3

Concat

Dconv, 3×3

Concat

Concat

Dconv, 3×3

Dconv, 3×3

Dconv, 3×3

Concat

Concat

P3

P4

P5

Dconv, 3×3

Skip connection Conv, 3×3

Skip connection Dconv, 1×1

Conv, 1×1

Figure 5. Discovered prediction head structure.

Compared to the prediction head of the original FCOS, the discovered one has fewer
parameters and FLOPs while achieving higher performance.

The searched FPN and prediction head were used with a lightweight backbone, the
efficientNet, with different variations from b0 to b7. Different configurations for the decoder
were proposed to achieve a good trade-off between performance and efficiency. The first
has a feature map dimension size of 128, the second has a size of 256, and the third has a
size of 128 for the FPN and 256 for the prediction head. The achieved results on the testing
set of the proposed dataset with an input image size of 800 pixels are presented in Table 4.

The searched decoder with feature maps with a size of 256 outperformed the original
FCOS by 1.7% to 3.9% in AP under different variations of efficientNet. The decoder with
feature maps with a size of 128 was very efficient in reducing the number of parameters and
the computation overhead, making it suitable for implementation on embedded devices.
Notably, the searched decoder with the efficientNet b0 backbone outperformed the original
FCOS by 0.9% in AP with fewer FLOPs with a factor of 1/3. The decoder with feature
maps with a size of 128 for the FPN and 256 for the prediction head balanced the precision
and computation complexity. It is worth noting that the searched decoder surpassed the
original one with the same backbone and with fewer parameters and FLOPs.

Moreover, we proved that the proposed NAS method is more efficient than the existing
ones. A comparison study is presented in Table 5 to prove the superiority of the proposed
NAS method compared to state-of-the-art methods. The proposed NAS can search more
architecture per GPU-day than other methods. Compared to DetNAS [30], more than twice
the architecture can be searched using the proposed NAS.

Sensors 2023, 23, 5262 12 of 18

Table 4. Comparison between the searched decoder and original decoder for the FCOS model with
efficientNet backbone.

Decoder Size Backbone FLOPs (G) Parameters
(M) AP (%)

Original FCOS 256

EfficientNet b0 103.2 2.4 64.5
EfficientNet b1 237.7 4.1 70.3
EfficientNet b2 484.5 6.9 73.6
EfficientNet b3 856.4 10.4 76.1
EfficientNet b4 1538.7 19.3 79.3
EfficientNet b5 3569.2 32.7 81.4
EfficientNet b6 6291.4 47.2 82.7
EfficientNet b7 12,946.5 51.4 83.2

FCOS (ours) 256

EfficientNet b0 97.4 2.1 67.3
EfficientNet b1 202.5 3.8 73.1
EfficientNet b2 432.8 6.1 76.3
EfficientNet b3 821.7 9.8 79.7
EfficientNet b4 1493.5 18.5 82.2
EfficientNet b5 3108.2 30.4 84.4
EfficientNet b6 5154.6 44.6 85.8
EfficientNet b7 10,435.1 49.3 86.3

FCOS (ours) 128/256

EfficientNet b0 92.5 1.8 66.3
EfficientNet b1 197.4 3.1 72.9
EfficientNet b2 421.9 7.2 74.5
EfficientNet b3 810.2 8.4 77.6
EfficientNet b4 1479.6 16.5 81.8
EfficientNet b5 3094.3 28.7 83.9
EfficientNet b6 5140.1 41.4 84.2
EfficientNet b7 10,427.7 46.2 85.7

FCOS (ours) 128

EfficientNet b0 47.2 1.2 65.6
EfficientNet b1 100.4 1.9 71.3
EfficientNet b2 223.6 3.8 73.7
EfficientNet b3 412.4 4.7 76.2
EfficientNet b4 802.5 7.9 80.3
EfficientNet b5 1445.2 13.8 82.9
EfficientNet b6 2983.8 20.5 83.6
EfficientNet b7 5201.7 23.7 84.8

Table 5. Comparison against state-of-the-art NAS method.

Method FLOPs (G) Cost
(GPU-Days) Number of Architectures

NAS-FPN 7 ResNet 50 256 [32] 1125 333× #TPUs 17,000
DetNAS-FPN-Faster [30] - 44 2200
DetNAS-RetinaNet [30] - 44 2200
NAS-FCOS-EfficientNet

(ours) 256 173.6 26 3000

NAS-FCOS-EfficientNet
(ours) 128–256 352.5 26 3000

Furthermore, the reward in the search process was correlated with the proxy dataset
and the achieved AP on the proposed dataset for obstacle detection. Figure 6 shows that a
high correlation was obtained between the achieved AP and the search reward. Therefore,
by investigating the searched architectures, low and high-performance architectures can be
observed easily through the reward on the proxy task.

Sensors 2023, 23, 5262 13 of 18

Sensors 2023, 23, x FOR PEER REVIEW 13 of 19

Table 5. Comparison against state-of-the-art NAS method .

Method FLOPs (G) Cost (GPU-Days) Number of Architectures

NAS-FPN 7 ResNet 50 256 [32] 1125 333× #TPUs 17,000

DetNAS-FPN-Faster [30] - 44 2200

DetNAS-RetinaNet [30] - 44 2200
NAS-FCOS-EfficientNet (ours)

256 173.6 26 3000

NAS-FCOS-EfficientNet (ours)
128–256 352.5 26 3000

Furthermore, the reward in the search process was correlated with the proxy dataset
and the achieved AP on the proposed dataset for obstacle detection. Figure 6 shows that
a high correlation was obtained between the achieved AP and the search reward. There-
fore, by investigating the searched architectures, low and high-performance architectures
can be observed easily through the reward on the proxy task.

Figure 6. Correlation obtained between achieved AP and search reward.

4.3. Power Analysis
The proposed model was evaluated on the Xilinx ZCU 102 board. This board com-

prises a quad-core Arm Cortex-A53, dual-core Cortex-R5F real-time processors, a Mali-
400 MP2 graphics processing unit, and programmable logic fabric. In terms of memory, it
is equipped with 4 GB of 64-bit memory aĴached to the processing system and 512 MB of
16-bit memory aĴached to programmable logic. In addition, the programmable logic used
for the acceleration has a high integration capability with 600 K logic cells with 32 MB of
on-chip memory and 2520 slices of digital signal processing units (DSP)—the ZCU 102

Figure 6. Correlation obtained between achieved AP and search reward.

4.3. Power Analysis

The proposed model was evaluated on the Xilinx ZCU 102 board. This board comprises
a quad-core Arm Cortex-A53, dual-core Cortex-R5F real-time processors, a Mali-400 MP2
graphics processing unit, and programmable logic fabric. In terms of memory, it is equipped
with 4 GB of 64-bit memory attached to the processing system and 512 MB of 16-bit
memory attached to programmable logic. In addition, the programmable logic used for the
acceleration has a high integration capability with 600 K logic cells with 32 MB of on-chip
memory and 2520 slices of digital signal processing units (DSP)—the ZCU 102 works
under a Peta Linux distribution. The Xilinx Vitis A.I. was used to implement the proposed
model. Power consumption was determined by reading the instantaneous power values
from the controllers on the hardware platform, accessible through the custom library in
the operating system. The overall power consumption resulted from the product of the
computation time and the average power value recorded with a period of 0.05 s. The
proposed model was quantized to fit the available resources of the ZCU 102 platform. An
8-bit fixed-point representation was used for weights and activations. The model with
128 feature map sizes was evaluated since it is the most suitable for embedded devices.
Table 6 presents the achieved results regarding processing speed, mAP after quantization,
and power consumption. Due to the quantization of the model, the mAP was slightly
decreased. However, the inference speed was good enough to achieve real-time processing,
and the power consumption was acceptable.

Sensors 2023, 23, 5262 14 of 18

Table 6. Power analysis of the proposed model on the Xilinx ZCU 102 board.

Model Size Backbone F.P.S. Power (w) mAP (%)

FCOS (ours) 128

EfficientNet b0 47.2 3.2 63.8
EfficientNet b1 34.4 3.9 70.1
EfficientNet b2 32.6 3.8 71.9
EfficientNet b3 25.4 5.7 74.7
EfficientNet b4 23.5 5.9 78.6
EfficientNet b5 21.2 6.8 80.6
EfficientNet b6 19.8 7.5 81.3
EfficientNet b7 15.7 7.7 82.9

4.4. Quantitative Results

After evaluation and power analysis, the proposed navigation assistance system was
evaluated to measure its usability in real-world applications. According to users, six main
features can be used for accepting an assistive system by visually impaired people. First,
processing speed is a vital feature for system assessment. Respecting real-time processing
constraints means detecting obstacles before a certain distance, separating them from the
visually impaired. Detecting an obstacle at a distance of less than 1.5 m is preferred. Second,
working space can define the performance of the assistive system. Covering indoor and
outdoor environments is very important for complete guidance. Finally, the robustness of
the proposed system against different challenges, such as occlusion, lighting conditions,
and noise, is significant.

Third, the maximum working distance is an important feature. Obtaining more space
between the obstacles and the visually impaired person results in safer navigation. Detect-
ing obstacles of different shapes and sizes and detecting moving obstacles are preferred.
The portability of the system can be used to assess its performance. A light, economic, and
wearable system is more suitable. The friendliness feature defines how easy it is to use the
system. An assistive system must be easy to use and not require difficult and long training.
A maximum of 19 points is assigned for each feature that presents satisfaction with its
conditions. For example, a system that respects real-time constraints will obtain 10 points.
A system work for indoor and outdoor spaces will earn 10 points. A system with a working
distance of 5 m or more will obtain 10 points. A friendly system will obtain 10 points if it is
easy to use and does not require difficult and long training. Table 7 presents a comparison
of the proposed system to state-of-the-art assistance systems. In this comparison, only
systems based on RGB cameras are considered for fair comparison since the proposed
system is based on this camera.

Table 7. Comparison of the proposed system against state-of-the-art assistance systems for visually
impaired people.

System Speed (fps) Space Robustness Working Distance Friendliness

Smart vision [37] 5 10 3 5 8
Mobile vision [38] 7 5 8 8 9
Mechatronics [39] 10 5 5 10 4
Proposed (ours) 10 10 8 10 8

As reported in Table 7, the proposed system outperforms state-of-the-art systems
in most assessment features. The findings proved that developing navigation assistance
systems based on computer vision and deep learning techniques is very promising and
could lead to a trusted assistance system being adopted by the visually impaired community.
Unfortunately, designed systems are still far from approaching the human sensing level
for environmental understanding. However, coupling more technologies, such as voice
recognition and generation, will lead to more powerful assistance systems.

Sensors 2023, 23, 5262 15 of 18

4.5. Ablation Study

As mentioned earlier, a wide range of metrics can be used to reward different tasks in
NAS, such as AP for object detection and accuracy for image classification. However, it was
proved that using AP as a reward for the proxy task does not provide the desired precision
for detecting architecture performance in early search stages. Moreover, a deep analysis of
the problem revealed that mapping the AP calculation to the decoder reward is complicated.
Thus, learning this mapping quickly at the early search stage is impossible. Therefore, we
proposed a solution using the negative loss sum on validation data as a reward.

An ablation study was performed through three different experiments to investigate
the impact of the search space on the overall performance. First, the FPN was searched
using the original prediction head of the FCOS model. Second, the prediction head was
searched based on the original FPN of the FCOS model. Third, the FPN and prediction
head were searched simultaneously. Table 8 summarizes the achieved results. The results
showed that searching the FPN can perform better than searching the prediction head.
However, the proposed progressive search method achieved the best performance.

Table 8. Impact of search space on the achieved AP.

Model Search Space AP (%)

Original FCOS-EffcientNet b7 - 83.2
FCOS-EffcientNet b7 (ours) Prediction head 85.1
FCOS-EffcientNet b7 (ours) FPN 85.6
FCOS-EffcientNet b7 (ours) FPN + prediction head 86.3

As proved above, deformable convolution layers were the most dominating in the
FPN structure and prediction heads due to their ability to adapt to the geometric variation
of the target objects. It was identified within each of these findings that including this
type of layer is very important for achieving the obtained results. The searched FCOS
model achieved better AP than the original FCOS, even when using feature maps with a
size of 128.

4.6. Use Case: Indoor and Outdoor Navigation

Navigation for visually impaired people is a very complicated task that requires
high-performance assistance systems. Navigation must respect social rules, e.g., visually
impaired persons must avoid approaching or upsetting individuals who are unwilling to
interact with them. In this work, two scenarios have been considered for evaluating the
proposed system and the performance of the detection model: first, the problem statement
of visually impaired people’s navigation in indoor and outdoor spaces; and second, the use
cases for which the proposed system is assessed are specified.

4.6.1. Problem Statement

Most algorithms in the literature have evaluated all obstacles of equivalent significance,
including people. This logic does not apply to a visually impaired person, who must be
able to travel in the same way that normal people do. It is important to extend the metric
and semantic map concepts to cover areas where the visually impaired person may traverse
without bothering people and avoiding obstacles that threaten his or her safety.

Supposing two scenarios of navigation, which are indoor navigation and outdoor
navigation, for indoor navigation, the proposed system must be able to detect relevant
obstacles, such as doors, tables, chairs, and stairs, in addition to other objects, such as
light switches, trashcans and fire extinguishers. This ability may facilitate the navigation
of the visually impaired person in unfamiliar spaces, such as supermarkets, universities,
and hospitals. For outdoor navigation, the system is charged with detecting obstacles that
threaten safety, such as vehicles, and other interactive objects, such as pedestrians. To
obtain acceptable results, a powerful, intelligent system capable of extracting information

Sensors 2023, 23, 5262 16 of 18

from the positions of people and objects, detecting changes in those positions (tracking
objects and people), and, of course, knowing the visually impaired person’s physical world
at any time is required. It is not a straightforward challenge, and it requires an architecture
capable of transferring and processing data in real time.

4.6.2. Use Case Presentation

Two use cases are presented for indoor navigation and outdoor navigation scenarios.
Considering that the placement of the camera providing information is on the visually
impaired person, a frontal overview is captured and processed for obstacle detection. The
proposed navigation assistance system was designed to provide support by providing
information about surrounding obstacles. In particular, it communicates with the visually
impaired person through audio and vibration.

The first use case scenario describes indoor navigation in which the person is moving
in a corridor, and the system provides information about the existence of doors and then
warns the user about the existence of stairs. This goal is accomplished by processing the
visual data provided by the camera through the proposed object detection model.

The second use case scenario describes indoor navigation in a restaurant: the assistance
system provides information about the existing tables and chairs. In addition, the system
warns the user of the existence of persons in chairs, so the visually impaired can decide
whether the table is available. The third use case scenario concerns moving on a pedestrian
path. The system presents the ability to detect moving pedestrians and warn the visually
impaired person. The system warns the visually impaired person about interacting with
people to avoid passing between them. In addition, the system provides information about
trees, traffic signs, and other possible obstacles.

The last use case scenario describes a visually impaired person crossing the street. The
proposed assistance system can provide information about the existing vehicles, including
cars, buses, motorcycles, bicycles, and trucks. In addition, the proposed system can detect
other people crossing the street to help the visually impaired person to decide whether he or
she can cross the street. This scenario presents high danger and requires more information
to make the final decision. This goal can be accomplished by detecting the traffic light state
in some cases.

5. Conclusions

Helping visually impaired people to integrate into society is very important and
requires high-performance artificial techniques. In this paper, we proposed an obstacle
detection system with high performance that is suitable for mobile device implementation.
In effect, we proposed to use NAS method to design an object detection model with the
desired performance. We proposed the FCOS model as a baseline to optimize search
time and computation and searched for the FPN structure prediction head. This process
modeled a single-stage anchor-free object detection framework. This specification allowed
for accelerating the search time and the investigation of more complex structures more
easily. In addition, we proposed the integration of the efficientNet model as a backbone.
It is a lightweight CNN model with high performance suitable for implementation on
embedded devices. The proposed NAS method was based on an LSTM controller and a
reinforcement learning training model. The high-performance decoder for the FCOS model
was searched by carefully designing the search space, the proxy task, and the evaluation
metric. Extensive experimentation on the proposed dataset, which was composed of the
MS Coco dataset and the IDOR dataset, proved the efficiency of the searched decoder
integrated with the efficientNet backbone. In future works, we will discuss implementing
the obtained model on embedded devices and testing it under real environments.

Sensors 2023, 23, 5262 17 of 18

Author Contributions: Conceptualization, Y.S. and M.A.; methodology, A.B.A.; software, Y.S. and
Y.A.A.; validation, M.A. and M.A.A.; formal analysis, M.A.; investigation, A.B.A.; resources, M.A.A.;
data curation, Y.A.A.; writing—original draft preparation, Y.S., M.A.A., and Y.A.A.; writing—review
and editing, Y.S., M.A., and A.B.A.; visualization, Y.A.A.; supervision, Y.S.; project administration,
Y.S. and M.A.; funding acquisition, Y.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by King Salman Center for Disability Research under grant
number KSRG-2022-023.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be made available on request.

Acknowledgments: The authors extend their appreciation to the King Salman Center for Disability
Research for funding of this work through Research Group no KSRG-2022-023.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology.

Insights Into Imaging 2018, 9, 611–629. [CrossRef] [PubMed]
2. Ayachi, R.; Afif, M.; Said, Y.; Ben Abdelali, A. Traffic Sign Recognition Based On Scaled Convolutional Neural Network For

Advanced Driver Assistance System. In Proceedings of the 2020 IEEE 4th International Conference on Image Processing,
Applications and Systems (IPAS), Genova, Italy, 9–11 December 2020; pp. 149–154. [CrossRef]

3. Ayachi, R.; Said, Y.; Atri, M. A Convolutional Neural Network to Perform Object Detection and Identification in Visual Large-Scale
Data. Big Data 2021, 9, 41–52. [CrossRef] [PubMed]

4. Afif, M.; Ayachi, R.; Said, Y.; Atri, M. Deep Learning Based Application for Indoor Scene Recognition. Neural Process. Lett. 2020,
51, 2827–2837. [CrossRef]

5. Afif, M.; Ayachi, R.; Pissaloux, E.; Said, Y.; Atri, M. Indoor objects detection and recognition for an ICT mobility assistance of
visually impaired people. Multimed. Tools Appl. 2020, 79, 31645–31662. [CrossRef]

6. Afif, M.; Ayachi, R.; Said, Y.; Pissaloux, E.; Atri, M. An efficient object detection system for indoor assistance navi-gation using
deep learning techniques. Multimed. Tools Appl. 2022, 81, 16601–16618. [CrossRef]

7. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

8. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

9. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Computer
Vision—ECCV 2016: Lecture Notes in Computer Science, 9905; Springer: Cham, Switzerland, 2016; pp. 21–37.

10. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790.

11. Elsken, T.; Metzen, J.H.; Hutter, F. Neural architecture search: A survey. J. Mach. Learn. Res. 2019, 20, 1997–2017.
12. Pham, H.; Guan, M.; Zoph, B.; Le, Q.; Dean, J. Efficient neural architecture search via parameters sharing. In Proceedings of the

35th International Conference on Machine Learning, Stockholmsmässan, Stockholm, 10–15 July 2018; pp. 4095–4104.
13. Han, Z.; Hong, D.; Gao, L.; Roy, S.K.; Zhang, B.; Chanussot, J. Reinforcement Learning for Neural Architecture Search in

Hyperspectral Unmixing. IEEE Geosci. Remote. Sens. Lett. 2022, 19, 1–5. [CrossRef]
14. Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9627–9636.
15. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International

Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.
16. He, Y.; Zhang, X.; Sun, J. Channel pruning for accelerating very deep neural networks. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1389–1397.
17. Hubara, I.; Nahshan, Y.; Hanani, Y.; Banner, R.; Soudry, D. Accurate post training quantization with small calibration sets.

In Proceedings of the 38th International Conference on Machine Learning, Virtual Event, 18–24 July 2021; pp. 4466–4475.
18. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L. Microsoft coco: Common objects in context.

In ECCV 2014: Computer Vision–ECCV 2014; Springer: Cham, Switzerland, 2014; pp. 740–755.
19. Afif, M.; Ayachi, R.; Said, Y.; Pissaloux, E.; Atri, M. A Novel Dataset For Intelligent Indoor Object Detection Systems. Artif. Intell.

Adv. 2019, 1, 52–58. [CrossRef]
20. Meliones, A.; Filios, C.; Llorente, J. Reliable Ultrasonic Obstacle Recognition for Outdoor Blind Navigation. Technologies 2022, 10,

54. [CrossRef]

https://doi.org/10.1007/s13244-018-0639-9
https://www.ncbi.nlm.nih.gov/pubmed/29934920
https://doi.org/10.1109/ipas50080.2020.9334944
https://doi.org/10.1089/big.2019.0093
https://www.ncbi.nlm.nih.gov/pubmed/32991200
https://doi.org/10.1007/s11063-020-10231-w
https://doi.org/10.1007/s11042-020-09662-3
https://doi.org/10.1007/s11042-022-12577-w
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.1109/LGRS.2022.3199583
https://doi.org/10.30564/aia.v1i1.925
https://doi.org/10.3390/technologies10030054

Sensors 2023, 23, 5262 18 of 18

21. eGirshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 23–28 June 2014;
pp. 580–587.

22. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
23. Kong, T.; Sun, F.; Liu, H.; Jiang, Y.; Li, L.; Shi, J. FoveaBox: Beyound Anchor-Based Object Detection. IEEE Trans. Image Process.

2020, 29, 7389–7398. [CrossRef]
24. Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer

Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750.
25. Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. CenterNet: Keypoint triplets for object detection. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 15–20 June 2019; pp. 6569–6578.
26. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. arXiv 2016, arXiv:1611.01578.
27. Zhou, H.; Yang, M.; Wang, J.; Pan, W. Bayesnas: A bayesian approach for neural architecture search. In International Conference on

Machine Learning; PMLR: New York, NY, USA, 2017; pp. 7603–7613.
28. Liu, C.; Chen, L.C.; Schroff, F.; Adam, H.; Hua, W.; Yuille, A.L.; Fei-Fei, L. Auto-deeplab: Hierarchical neural architecture search

for semantic image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Long Beach, CA, USA, 16–17 June 2019; pp. 82–92.

29. Stamoulis, D.; Ding, R.; Wang, D.; Lymberopoulos, D.; Priyantha, B.; Liu, J.; Marculescu, D. Single-path nas: Designing hardware-
efficient convnets in less than 4 hours. In ECML PKDD 2019: Machine Learning and Knowledge Discovery in Databases; Springer:
Cham, Switzerland, 2019; pp. 481–497.

30. Chen, Y.; Yang, T.; Zhang, X.; Meng, G.; Xiao, X.; Sun, J. Detnas: Backbone search for object detection. Adv. Neural Inf. Process.
Syst. 2019, 32, 6642–6652.

31. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

32. Ghiasi, G.; Lin, T.Y.; Le, Q.V. Nas-fpn: Learning scalable feature pyramid architecture for object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7036–7045.

33. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

34. Wu, Y.; He, K. Group normalization. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany,
8–14 September 2018; pp. 3–19.

35. Nekrasov, V.; Chen, H.; Shen, C.; Reid, I. Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary
Cells. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA,
USA, 15–20 June 2019; pp. 9118–9127. [CrossRef]

36. Hsu, C.C.Y.; Mendler-Dünner, C.; Hardt, M. Revisiting design choices in proximal policy optimization. arXiv 2020, arXiv:2009.10897.
37. Du Buf, J.H.; Barroso, J.; Rodrigues, J.M.; Paredes, H.; Farrajota, M.; Fernandes, H.; Jose, J.; Teixeira, V.; Saleiro, M. The SmartVision

Navigation Prototype for Blind Users. Int. J. Digit. Content Technol. Its Appl. 2011, 5, 351–361. [CrossRef]
38. Manduchi, R. Mobile Vision as Assistive Technology for the Blind: An Experimental Study. In International Conference on Computers

for Handicapped Persons; Springer: Berlin/Heidelberg, Germany, 2012; pp. 9–16. [CrossRef]
39. Mancini, A.; Frontoni, E.; Zingaretti, P. Mechatronic System to Help Visually Impaired Users During Walking and Running.

IEEE Trans. Intell. Transp. Syst. 2018, 19, 649–660. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TIP.2020.3002345
https://doi.org/10.1109/cvpr.2019.00934
https://doi.org/10.4156/jdcta.vol5.issue5.39
https://doi.org/10.1007/978-3-642-31534-3_2
https://doi.org/10.1109/TITS.2017.2780621

	Introduction
	Related Works
	Proposed Approach
	Problem Formulation
	Search Space
	NAS Method

	Experiment and Results
	Implementation Details
	Search Process
	Full Training Process

	Search Results
	Power Analysis
	Quantitative Results
	Ablation Study
	Use Case: Indoor and Outdoor Navigation
	Problem Statement
	Use Case Presentation

	Conclusions
	References

