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Abstract: A new water-soluble poly(propylene imine) dendrimer (PPI) modified with 4-sulfo-1,8-
naphthalimid units (SNID) and its related structure monomer analog (SNIM) has been prepared by
a simple synthesis. The aqueous solution of the monomer exhibited aggregation-induced emission
(AIE) at 395 nm, while the dendrimer emitted at 470 nm due to an excimer formation beside the AIE
at 395 nm. Fluorescence emission of the aqueous solution of either SNIM or SNID was significantly
affected by traces of different miscible organic solvents, and the limits of detection were found to be
less than 0.05% (v/v). Moreover, SNID exhibited the function to execute molecular size-based logic
gates where it mimics XNOR and INHIBIT logic gates using water and ethanol as inputs and the
AIE/excimer emissions as outputs. Hence, the concomitant execution of both XNOR and INHIBIT
enables SNID to mimic digital comparators.

Keywords: poly(propylene imine) dendrimer; 1,8-naphthalimides; aggregation-induced emission
(AIE); excimer; solvatochromism; water purity; INHIBIT; XNOR; digital comparator

1. Introduction

Dendrimers are three-dimensional star-shaped supramolecular architectures having
various functional groups in the structure. They have recently been attracting the attention
of scientists as an alternative to linear and branched polymers due to their unique structural
features, including large surface area and the flexibility to incorporate different compounds
into their periphery or interior parts [1–3]. Over the last two decades, numerous structural
scaffolds for dendrimers have been reported, ranging from pure organic molecular frame-
works to organometallic and biomaterials [4–6]. Exploration of dendrimers applications
in supramolecular chemistry is still ongoing. Recently, many reports have presented their
potential in drug delivery [7], tissue engineering [8], bio-imaging [9], catalysis [10], cancer
therapy [11], and a variety of other applications. Luminescent dendrimers are indispensable
components in high-technology industries, particularly optoelectronics, light-harvesting
antennae in solar cells, sensors for detecting pollutants in the environment, biology, and
medicine [12–14].

The peripheral functionalization of dendrimers with different chromophores such as
dansyl sulfonate [15,16], pyrene [17], azobenzenes [18], and coumarin [19,20] moieties and
their potential applications have been described. Our previous works have been focused
on the functionalization of poly(amidoamine) [21–30] and poly(propylene amine) [31–34]
dendrimers by 1,8-naphthalimide chromophor groups and studied their potential as sensors
for transition metal cations and pH. 1,8-Naphthalimides are promising fluorophores for
designing fluorescent sensors because of their good photostability, strong fluorescence
emission, high quantum yield, and flexibility to be modified. Molecular architectures
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based on 1,8-naphthalimides are well-known assemblies with bright emissive color, high
photostability, and sensor activities for colorimetric and fluorometric probing [35–39].

Aggregation-based luminogens are non-emissive molecules that become highly emis-
sive in solution by limiting their intramolecular rotation (RIR) in the aggregated state [40].
There are many reports about the applications of AIEgens, including liquid crystals [41],
organic light-emitting diodes (OLED) [42], photoluminescent agents [43], and sensors [44].
Moreover, aggregation makes some organic fluorophores exhibit a new red-shifted emission
caused by excited dimers, excimers, formed by associating two fluorophore units when
they are a close vicinity to each other [45]. There are two kinds of excimers (i) dynamic
excimers [46] resulting from associating a fluorophore in the excited state and (ii) static
excimers that are formed in the ground state [47]. These excimers absorb like monomers,
but the emission is red-shifted related to monomer emission [48,49]. The excimer emission
is extremely sensitive to the polarity of the solvent [50].

Water contamination by organic solvents is disadvantageous for the progress of chem-
ical reactions, biological processes, pharmaceuticals, and foodstuffs production [51–54].
Traditional methods for detecting traces of water in organic solvents, such as analytical,
chromatographic, and electrochemical methods, suffer from many drawbacks like toxic
agents, expensive instruments, and complicated operations [55–57]. Recently, many organic
molecular sensors for detecting water pollution have been reported, though they require
multistep synthesis, and the sensitivity achieved is low [58–60].

Recently, there has been considerable progress in developing optical molecular sensing
systems to mimic logic gates and operations for incorporation into information technology
instead of silicon-based ones [61–65]. A digital comparator to compare two inputs can be
constructed by the combinational logic circuit of three INHIBIT logic gates [66,67] or of
XNOR/INHIBIT gates [68,69].

In this work, a novel water-soluble PPA dendrimer modified with 4-sulfo-1,
8-naphthalimides units was synthesised as a part of our ongoing research on the syn-
thesis and characterization of novel periphery functionalized with 1,8-naphthalimides
dendrimers. The monomer of the dendrimer has also been synthesized and examined so
that the results from the investigations of the photophysical properties, solvatchromism,
and sensory function of both the monomer and the dendrimer could be compared. Experi-
ments on the excimer formation induced by the aggregation of the dendrimer were carried
out as well. Moreover, the function of both compounds to mimic logic gates was studied.

2. Materials and Methods

The first generation (poly propylene imine) dendrimer (PPI), 4-Sulfo-1,8-naphthalic
anhydride potassium salt and N,N-dimethyltrimethylenediamine were purchased from
Sigma Aldrich and used without purification. All used solvents (Sigma Aldrich, St. Louis,
MO, USA): dimethylsulfoxide (DMSO), N,N-dimetjylformamide (DMF), tetrahydrofuran
(THF), dichloromethane (DCM), ethanol, dioxane were of spectroscopic grade purity.
1H and 13C-NMR spectra were recorded at ambient temperature in DMSO-d6 as a solvent on
a Bruker Avance II+ 600 spectrometer operating at 600.13 MHz and 151 MHz, respectively.
The UV-Vis absorption and emission spectra were recorded on Varian Cary 5000 UV-Vis-
NIR spectrophotometer and on a “Cary Eclipse” spectrofluorometer, respectively, using
1 cm optical path length quartz cuvettes (Hellma, Müllheim im Markgräflerland, Germany).
Slits width of 5 nm for the excitation and emission. All of the measurements were measured
at 25.0 ◦C. TLC monitoring was conducted using silica gel (Fluka F60 254 20 × 20; 0.2 mm)
and toluene/methanol/ (4:1) as an eluent. OriginPro 8 software for data processing has
been used. Stock solutions of SNIM and SNID were prepared in DMF as 10−2 M to ensure
negligible volumes of the stock to reach the required concentration (3 µL for 10−5 M and
1.5 µL for 5 × 10−6 M) using 3 mL as a total volume of the solvent(s).



Sensors 2023, 23, 5268 3 of 14

2.1. Synthesis of Potassium
2-(3-(Dimethylamino)propyl)-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinoline-6-sulfonate SNIM

N,N-Dimethyltrimethylenediamine (250 µL, 2 mmole) were added dropwise to a
suspension of 4-sulfo-1,8-naphthalic anhydride 1 (0.53 gm, 1.7 mmole) in 25 mL of ethanol
and was refluxed for 4 h. The final product was isolated after filtration of the solid and
washing with ethanol. Yield 95%, 0.61 g, m.p. > 300 ◦C.

FT-IR (KBr) cm−1: 3080 (νCH (Aromatic)); 2960, 2860, 2810, 2780 (νCH (Aliphatic));
1700, 1650 (νC=O). 1H NMR (600 MHz, DMSO) δ 9.24 (dd, J = 8.6, 1.1 Hz, 1H), 8.49 (dd,
J = 7.2, 1.1 Hz, 1H), 8.46 (d, J = 7.5 Hz, 1H), 8.21 (d, J = 7.5 Hz, 1H), 7.88 (dd, J = 8.6, 7.3 Hz,
1H), 4.09–4.04 (m, 2H), 2.31 (t, J = 7.0 Hz, 2H), 2.12 (s, 6H), 1.80–1.72 (m, 2H). 13C NMR
(151 MHz, DMSO) δ 164.1, 163.6, 150.2, 134.5, 130.8, 130.6, 128.6, 128.0, 127.3, 125.4, 123.2,
122.6, 57.2, 45.5, 38.7, 25.9. Analysis: C17H17N2O5K S (400.22 g mol−1): Calc. (%): C-46.60,
H 4.40, N 7.25; Found (%): C-46.83, H 4.44, N 7.31.

2.2. Synthesis of 4-Sulfo-1.8-naphalimide Based PPI Dendrimer SNID

The poly(propylene imine) dendrimer from first generation (0.32 g, 1 mmol) and
4-sulfo-1,8-naphthalic anhydride 1 (1.3 g, 4 mmol) were refluxed in 25 mL ethanol, and
the reaction progress has been monitored by TLC. After 4 h, the product was filtered,
washed with ethanol, and dried. Yield: 1.34 g (98%), decomposed at temperatures higher
than 300 ◦C.

FT-IR (KBr) cm−1: 3070 (νCH (Aromatic)); 2950, 2850, 2810 (νCH (Aliphatic)); 1695,
1651 (νC=O). 1H NMR (600 MHz, DMSO) δ 9.21 (dd, J = 8.6, 1.2 Hz, 4H, Ar-H), 8.43 (d,
J = 7.5 Hz, 4H, Ar-H), 8.38 (d, J = 7.6 Hz, 4H, Ar-H), 8.20 (d, J = 7.6 Hz, 4H, Ar-H), 7.81
(dd, J = 8.6, 7.3 Hz, 4H, Ar-H), 4.13–4.03 (m, 8H, (OC)2NCH2), 3.10–2.80 (m, 4H, CH2N<),
2.60–2.55 (m, 8H, CH2N(CO)2), 1.83–1.74 (m, 8H, (OC)2NCH2CH2CH2N), 1.51–1.43 (m,
4H, >CH2CH2CH2CH2N<). 13C NMR (151 MHz, DMSO) δ 164.0 (C=O), 163.6 (C=O),
150.0, 134.4, 130.7, 130.49, 128.5, 127.9, 127.2, 125.5, 123.3, 122.5 (10 Ar. C), 51.4, 38.9, 25.4
(aliph C). Analysis: C64H52N6O20K4S4 (1509.15 g mol−1): Calc. (%): C-50.89, H 3.45, N 5.57;
Found (%): C-50.80, H 3.49, N 5.52.

3. Results and Discussion
3.1. Design and Synthesis of the Probe

The synthesis of 4-sulfo-1,8-naphthalimide-modified PPA dendrimer SNID and its
related monomer SNIM is presented in Scheme 1. Their chemical structures were con-
firmed by UV-Vis absorption, fluorescent, FT-IR, and NMR spectra (Figures S1–S6). The π-π
stacking of 1,8-naphthalimide units is favoured in water, and hence, aggregation-induced
emission AIE is possible. The function of the dendrimer scaffold is to stick close to the
4-sulfo-1,8-naphthalimde moieties, thus enabling the aggregation-induced excimer forma-
tion in water.
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3.2. Photophysical Characteristics

The influence of solvent polarity on the absorption and emission spectra of SNIM
and SNID has been investigated, and the respective data have been summarized in
Table 1. The absorption spectra of monomer and dendrimer have an absorption band
in the range of 300–370 nm corresponding to the 4-sulfo-1,8-naphthalimide chromophore
group, Figure 1. While the absorption band was characterized by a well-developed vi-
brational fine structure in most solvents, the structure is almost blurred in the hydroxylic
solvents due to hydrogen bonding with the solvent molecules and π–π stacking that re-
stricts the vibrational transitions. The position of the absorption band is not affected
significantly by the solvent polarity, suggesting that these compounds in the ground state
are not sensitive to the polarity of the environment. The solvent polarity has an impact only
on the vibrational transitions. On the other hand, the absorption spectra of the dendrimer
SNID in different solvents are similar to the ones of the monomer SNIM, except the molar
extinction coefficients at the absorption maxima, which are approximately four times higher
than those of the monomer SNIM, which indicates the full substitution of the primary
amino groups in the dendrimer periphery by 4-sulfo-1,8-naphthalimide units [70].

Table 1. Wavelength of absorption, wavelength of emission, Stocks shifts, absorption extinction
coefficient, and quantum yields of the SNIM and SNID in different solvents using Anthracene
(ΦF = 0.29 in ethanol) as a reference.

Solvents Water DMSO DMF Ethanol DCM THF Dioxane

SNIM
Dielectric constant (25 ◦C) 78.35 47.1 37.1 24.5 8.93 7.58 2.25
λabs.(nm) 339, 350 328, 342, 358 328, 341, 357 327, 337, 354 326, 338, 354 325, 339, 355 323, 336, 353
λem. (nm) 393 389 380 387 387 405 367
Stockes shift (cm−1) 3126 2226 1695 2409 2409 3478 1081

ε (l mol−1cm−1)
11,300
11,100

9100
12,400
11,000

8900
12,300
11,000

9200
11,700
10,500

8200
10,500
9300

9100
11,600
10,500

6900
9300
8600

ΦF 0.237 a 0.004 0.001 0.005 0.007 0.017 0.005
SNID
λabs. (nm) 342 327, 342, 357 326, 341, 357 326, 338, 354 324, 338, 354 325, 338, 354 324, 338, 354
λem. (nm) 393,474 387 379 388 - 404 378
(cm−1) 8143 2171 1626 2475 - 3496 1794

ε (l mol−1cm−1) 47,800
55,300
73,600
64,500

52,300
71,000
63,200

42,500
52,900
46,100

42,300
48,600
40,400

48,200
55,300
44,100

45,500
54,500
45,300

ΦF 0.132 a 0.001 0.001 0.0035 - 0.0083 0.0036
a Quinine H sulfate (0.54, water) as a reference.
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Figure 1. Influence of solvents on the absorption spectrum of (A) SNIM, c = 10−5 M and (B) SNID, c 
= 5 × 10−6 M. 
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Figure 1. Influence of solvents on the absorption spectrum of (A) SNIM, c = 10−5 M and (B) SNID,
c = 5 × 10−6 M.

Regarding fluorescence emission, after excitation at 340 nm, the monomer gives a
strong fluorescence emission centred at 392 nm only in water, Figure 2A. It is attributed
to the monomer molecules aggregation that is induced by the π–π stacking. This stacking
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restricts the nonradiative vibrational de-excitations processes of the excited molecules.
Moreover, the monomer SNIM gives a weak emission in ethanol and DCM due to the
vague formation of aggregates in these solvents. The fluorescence emission observed in
THF, despite the well-developed vibrational fine structure of the absorption band, refers to
the aggregation favoured in the excited state rather than in the ground state. Strikingly, the
behaviour of the dendrimer in water is different from that of the monomer, where besides
the emission at 395 nm, which is weaker, a strong emission centred at 475 nm is observed
(Figure 2B). This is confirmed by the photograph of the CNID and SNIM compounds
dissolved in water, DMF, and ethanol and irradiated with monochromatic UV light at
366 nm. The figure shows the blue-green fluorescence emission of CNID in an aqueous
solution, while SNIM emits blue fluorescence (Figure 2C). The former emission, as men-
tioned above, is caused by the excimer formation of 4-sulfo-1,8-naphthalimide units, while
that of the latter is due to the aggregation of dendrimer molecules [71].
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Figure 2. Influence of solvents on the emission spectra of (A) SNIM, c = 10−5 M; (B) SNID,
c = 5 × 10−6 M after excitation at 340 nm. Photograph of SNIM and SNID in a solution of
water (1), DMF (2), and ethanol (3) under monochromatic UV light irradiation at 366 nm (C).

The discriminated fluorescence emission of the monomer and its dendrimer in water
encouraged us to investigate the applicability of these compounds as probes for quantitative
measurements of the purity of water contaminated with another miscible organic solvent.
We used ethanol, DMF, and dioxane as representatives for polar protic and aprotic and
nonpolar solvents, respectively. Moreover, we investigated the influence of water traces in
the solvents on the emission response of the SNIM and SNID.

3.3. Solvatochromism of SNIM

It has been found that ethanol has no effect on the emission of the aqueous solution
of SNIM till 60% (v/v) of ethanol. Higher amounts of ethanol (>60%) led to emission
quenching at 395 nm due to the dissociation of aggregates by ethanol molecules. On the
other hand, fluorescence emission at 395 nm of ethanol solution of SNIM has enhanced
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by adding water, Figure 3. The limit of detection (LOD) for water presence in ethanol was
found to be 0.09% by volume. LOD was calculated using LOD = 3σ/b [38], where b is
the slop and σ is the standard deviation. The increase in the emission by adding water
is ascribed to the aggregation of SNIM molecules induced by π–π stacking of nonpolar
1,8-naphthalimide moieties in the presence of water. The low LOD of SNIM towards
water presence in ethanol indicates that it can be used as a low-cost reagent for the de-
tection of traces of water in alcohol. The required volume of water to reach saturation of
the fluorescence response of SNIM in the ethanol solution was found to be ≈24% (v/v)
(Figure S7).
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Moreover, SNIM exhibited the ability to investigate the contamination of water in
DMF, as a representative for polar aprotic solvents, by its fluorescence emission, Figure 4.
Similar to ethanol, the presence of DMF decreased the emission of SNIM in water due to
the dissociation of aggregated molecules by DMF solvation. The limit of detecting DMF
contamination was found to be 0.08%, refereeing to the applicability of SNIM to detect
traces of DMF in water. The saturation of emission response was reached after the addition
of 5% of DMF to the water solution, after which the decrease in fluorescence with increasing
DMF content up to 10% is negligible (Figure 4B).

Moreover, the effect of dioxane, as a representative of nonpolar solvents, on the
emission of a SNIM solution in water has also been investigated (Figure 5). In this case,
the emission is quenched by the presence of dioxane traces due to the dissociation of π–π
stacking between 1,8-naphthalimide moieties. The LOD and dioxane volume required to
reach saturation was found to be 0.05% and 10%, respectively. Moreover, the influence
of water presence on the emission of SNIM solution in dioxane has been investigated.
Contrarily, the presence of water traces enhanced the fluorescence emission. The limit of
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detection of water in dioxane was found to be 0.14%. Hence, SNIM has a dual sensitive
sensory applicability for investigating the purity of both water and dioxane in the presence
of the other as a contaminant. In other words, SNIM is able to detect the presence of
dioxane traces in a water sample and water traces in a dioxane sample.
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3.4. Solvatochromism of Dendrimer SNID

The effect of water traces on the emission of dendrimer solution was examined in
ethanol solution. As shown in Figure 6, water leads to emissions enhancement at both
395 nm and 470 nm, and the limits of detection were found to be 0.5% and 1%, respectively.
The fluorescence enhancement at 395 nm was observed till 50% water fraction; after that,
the emission quenched by further water addition, Figure 7, due to the higher rate of
excimer formation and to the fact that more 1,8-naphthalimides unites become included
in the excimer formation. In concomitance, the emission at 470 nm increased slowly till
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50 % water fraction, then further addition of water increased the rate. Behaviour of the
dendrimer in the presence of both water and ethanol solutions as inputs and the emission
at 395 nm (λex. = 340 nm) as output and using the initial case of 50% water fraction mimics
XNOR logic gate, Figure 7C, where at the initial state (water coded as 0 and ethanol as
0), the output is high (coded as 1). Addition of ethanol till water fraction = 20% (ethanol
coded as 1 and water coded as 0) gets the emission at 395 nm low (coded as 0). Moreover,
the addition of water till it reaches a water fraction of 80 % (ethanol coded as 0 and water
coded as 1) gets the emission low and coded as 0. Finally, the addition of both ethanol and
water in equal amounts (both coded as 1) retains the initial state (emission gets high and
coded as 1). On the other hand, using the emission at 470 nm as output and the emission
threshold shown in Figure 7B, SNID mimics INHIBIT logic gate where the emission can
be considered high (coded as 1) only in the case of adding water alone and otherwise the
emission is low (coded as 0). Moreover, a combination of XNOR and INHIBIT logic gates
works as a digital comparator, Figure 7D.
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Figure 7. Influence of water content (0–100%, v/v) on (A) the emission spectrum of SNID solution 
in ethanol, (B) the emissions at 395 nm and 470 nm and their function as outputs in mimicking logic 
gates. (C) Truth table for SNID using water and ethanol as inputs. (D) Electronic representation of 
digital comparator executed by SNID. c = 10−5 M, excitation at 340 nm. 

Figure 6. Influence of water content (0–10%, v/v) on (A) the emission spectrum, (B) the emissions at
395 nm, and (C) the emission at 470 nm of SNID solution in ethanol. c = 10−5 M, excitation at 340 nm.

Furthermore, the applicability of the dendrimer SNID for detecting DMF contami-
nation in water has been studied, Figure 8. The addition of DMF traces to SNID solution
in water was associated with quenching the emissions at 395 nm and 470. The limits
of detection were found to be 0.09% and 0.2% using emissions at 395 nm and 470 nm,
respectively. The quenching of the emissions by DMF contamination is linear in the range
of 0–1% of a DMF fraction. On the other hand, the emission spectrum of SNID solution in
DMF was affected only by large volumes of water, Figure 9, due to the good solvation of
DMF to dendrimer molecules.
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Figure 7. Influence of water content (0–100%, v/v) on (A) the emission spectrum of SNID solution 
in ethanol, (B) the emissions at 395 nm and 470 nm and their function as outputs in mimicking logic 
gates. (C) Truth table for SNID using water and ethanol as inputs. (D) Electronic representation of 
digital comparator executed by SNID. c = 10−5 M, excitation at 340 nm. 

Figure 7. Influence of water content (0–100%, v/v) on (A) the emission spectrum of SNID solution in
ethanol, (B) the emissions at 395 nm and 470 nm and their function as outputs in mimicking logic
gates. (C) Truth table for SNID using water and ethanol as inputs. (D) Electronic representation of
digital comparator executed by SNID. c = 10−5 M, excitation at 340 nm.
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Figure 8. Influence of DMF content on (A) the emission spectrum, (B) the emission at 395 nm, and
(C) the emission at 470 nm of SNID solution in water. c = 10−5 M, excitation at 340 nm.
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0.3% and 0.7% using emissions at 395 nm and 470 nm, respectively, Figure 10. On the other
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